Three Existence Results in the Fixed Point Theory
Abstract
1. Introduction
2. The First Result
3. The Second Result
4. The Third Result
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Bargetz, C.; Medjic, E. On the rate of convergence of iterated Bregman projections and of the alternating algorithm. J. Math. Anal. Appl. 2020, 481, 23. [Google Scholar] [CrossRef]
- Du, W.-S. Some generalizations of fixed point theorems of Caristi type and Mizoguchi–Takahashi type under relaxed conditions. Bull. Braz. Math. Soc. 2019, 50, 603–624. [Google Scholar] [CrossRef]
- Karapinar, E.; Mitrovic, Z.; Ozturk, A.; Radenovic, S. On a theorem of Ciric in b-metric spaces. Rend. Circ. Mat. Palermo 2021, 70, 217–225. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhäuser/Springer: Cham, Switzerland, 2015. [Google Scholar]
- Radenovic, S.; Dosenovic, T.; Lampert, T.A.; Golubovic, Z.A. A note on some recent fixed point results for cyclic contractions in b-metric spaces and an application to integral equations. Appl. Math. Comput. 2015, 273, 155–164. [Google Scholar] [CrossRef]
- Rakotch, E. A note on contractive mappings. Proc. Amer. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Bojor, F. Fixed point theorems for Reich type contractions on metric spaces with a graph. Nonlinear Anal. 2012, 75, 3895–3901. [Google Scholar] [CrossRef]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Amer. Math. Soc. 2008, 136, 1359–1373. [Google Scholar] [CrossRef]
- Suantai, S.; Donganont, M.; Cholamjiak, W. Hybrid methods for a countable family of G-nonexpansive mappings in Hilbert spaces endowed with graphs. Mathematics 2019, 7, 936. [Google Scholar] [CrossRef]
- Suparatulatorn, R.; Cholamjiak, W.; Suanta, S. A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs. Numer. Algorithms 2018, 77, 479–490. [Google Scholar] [CrossRef]
- Younis, M.; Ahmad, H.; Chen, L.; Han, M. Computation and convergence of fixed points in graphical spaces with an application to elastic beam deformations. J. Geom. Phys. 2023, 192, 104955. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 94, 6. [Google Scholar] [CrossRef]
- Fabiano, N.; Kadelburg, Z.; Mirkov, N.; Cavic, V.S.; Radenovic, S. On F-contractions: A Survey. Contemp. Math. 2022, 3, 327–342. [Google Scholar] [CrossRef]
- Parvaneh, M.; Farajzadeh, A.P. On weak Wardowski-Presic-type fixed point theorems via noncompactness measure with applications to a system of fractional integral equations. J. Nonlinear Convex Anal. 2023, 24, 1–15. [Google Scholar]
- Rakocevic, V.; Roy, K.; Saha, M. Wardowski and Ciric type fixed point theorems over non-triangular metric spaces. Quaest. Math. 2022, 45, 1759–1769. [Google Scholar] [CrossRef]
- Cho, S.-H. Fixed point theorems for set-valued contractions in metric spaces. Axioms 2024, 13, 86. [Google Scholar] [CrossRef]
- Rudin, W. Principles of Mathematical Analysis; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Uddin, I.; Garodia, C.; Nieto, J.J. Mann iteration for monotone nonexpansive mappings in ordered CAT(0) space with an application to integral equations. J. Inequal. Appl. 2018, 2018, 339. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Three Existence Results in the Fixed Point Theory. Axioms 2024, 13, 425. https://doi.org/10.3390/axioms13070425
Zaslavski AJ. Three Existence Results in the Fixed Point Theory. Axioms. 2024; 13(7):425. https://doi.org/10.3390/axioms13070425
Chicago/Turabian StyleZaslavski, Alexander J. 2024. "Three Existence Results in the Fixed Point Theory" Axioms 13, no. 7: 425. https://doi.org/10.3390/axioms13070425
APA StyleZaslavski, A. J. (2024). Three Existence Results in the Fixed Point Theory. Axioms, 13(7), 425. https://doi.org/10.3390/axioms13070425