Monogenity and Power Integral Bases: Recent Developments
Abstract
:1. Introduction
2. Tools
2.1. Dedekind’s Criterion
- 1.
- p does not divide the index .
- 2.
- For every , either or and does not divide in .
2.2. The Field Index
- The prime factors of the field index are smaller than the degree of the field.
2.3. Newton Polygon Method
- 1.
- We haveThe equality holds if is p-regular.
- 2.
- If is p-regular, thenis the factorization of into powers of prime ideals of lying above p, where , is the length of , is the ramification degree of , and is the residue degree of the prime ideal over p.
2.4. Algorithmic Methods
3. Results
3.1. Pure Fields, Trinomials, Quadrinomials, etc.
- Z. S. Aygin and K. D. Nguyen [24]: ;
- L. El Fadil [25]: ;
- L. El Fadil [26]: ;
- L. El Fadil [27]: ;
- L. El Fadil [28]: ;
- L. El Fadil [29]: ;
- Fadil, L.E. H. Ben Yakkou and J. Didi [30]: ;
- Fadil, L.E. H. Choulli and O. Kchit [31]: ;
- L. El Fadil and M. Faris [32]: ;
- H. Ben Yakkou and O. Kchit [33]: ;
- L. El Fadil [34]: ;
- L. El Fadil [35]: ;
- Yakkou, H.B. A. Chillali and L. El Fadil [36]: ;
- L. El Fadil [37]: ;
- L. El Fadil and A. Najim [38]: ;
- L. El Fadil and O. Kchit [39]: ;
- L. El Fadil [40]: ;
- H. Ben Yakkou and L. El Fadil [41]: ;
- L. El Fadil [42]: , m composite;
- L. El Fadil and I. Gaál [16]: , m composite.
- L. El Fadil [45]: ;
- L. El Fadil and I. Gaál [46]: ;
- H. Smith [47]: ;
- L. Jones [48] showed that there exist exactly three distinct monogenic trinomials of the form with Galois ;
- Jakhar, A. S. Kaur and S. Kumar [49]: ;
- L. El Fadil [50]: ;
- L. El Fadil [51]: ;
- L. El Fadil [52]: ;
- A. Jakhar and S. Kumar [53]: ;
- L. El Fadil [54]: ;
- L. El Fadil and O. Kchit [55]: ;
- A. Jakhar and S. Kaur [56]: ;
- R. Ibarra, H. Lembeck, M. Ozaslan, H. Smith and K. E. Stange [57]: for ;
- L. El Fadil and O. Kchit [58]: ;
- H. Ben Yakkou [59]: ;
- Jakhar, A. S. Kaur and S. Kumar [60]: ;
- H. Ben Yakkou [61]: ;
- H. Ben Yakkou and B. Boudine [62]: ;
- Jakhar, A. S. Kaur and S. Kumar [63]: ;
- L. Jones [64] considered monogenic trinomials of type with prescribed Galois group;
- O. Kchit [65]: ;
- H. Ben Yakkou and P. Tiebekabe [66]: ;
- L. El Fadil and O. Kchit [67]: ;
- L. El Fadil and O. Kchit [68]: ;
- H. Ben Yakkou [69]: ;
- H. Ben Yakkou and L. El Fadil [70]: ;
- A. Jakhar and S. Kumar [71] gave explicit conditions for the non-monogenity of ;
- A. Jakhar [72]: ;
- B. Jhorar and S. K. Khanduja [73]: , showed also that is monogenic, if and only if is squarefree;
- H. Ben Yakkou [74]: ;
- L. El Fadil [75]: ;
- A. Jakhar [76]: ;
- Jakhar, A. S. Khanduja and N. Sangwan [77]: ;
- Jakhar, A. S. Khanduja and N. Sangwan [78] gave necessary and sufficient conditions in terms of for a given prime, p, to divide , where is a root of ;
- L. Jones [79] considered monogenic reciprocal trinomials of type ;
- L. Jones [80] showed that there are infinitely many primes p, such that is monogenic with Galois group ;
- L. Jones [81] showed that is monogenic, if and only if its discriminant is squarefree;
- L. Jones and T. Phillips [82] showed that is monogenic infinitely often;
- L. Jones and D. White [83] found new infinite families of monogenic trinomials of type .
- T. A. Gassert, H. Smith and K. E. Stange [84]: ;
- H. Ben Yakkou [85]: ;
- J. Harrington and L. Jones [86] constructed new families of quartic polynomials with various Galois groups, which are monogenic infinitely often;
- A. Jakhar and R. Kalwaniya [87]: ;
- L. Jones [64]: ;
- L. Jones [89]: ;
- Jakhar, A. S. Kaur and S. Kumar [90]: ;
- Jakhar, A. S. Kaur and S. Kumar [91]: ;
- A. Jakhar [92]: ;
- L. Jones [93] constructed infinite families of reciprocal monogenic polynomials with prescribed Galois group;
- L. Jones [94] showed that if and then is monogenic for infinitely many primes p;
- L. Jones [95]: ;
- L. Jones [96]: with , when is monic and ;
- L. Jones [97] constructed reciprocal monogenic quintinomials of type ;
- L. Jones [98] considered infinite families of monogenic quadrinomials, quintinomials and sextinomials.
3.2. The Relative Case
- M. Sahmoudi and M. E. Charkani [101] considered relative pure cyclic extensions;
- A. Soullami, M. Sahmoudi and O. Boughaleb [102]: over number fields;
- O. Boughaleb, A. Soullami and M. Sahmoudi [103]: over number fields;
- H. Smith [104] studied relative radical extensions;
- S. K. Khanduja and B. Jhorar [105] gave equivalent versions of Dedekind’s criterion in general rings;
- R. Sekigawa [108] constructed an infinite number of cyclic relative extensions of prime degree that are relative monogenic.
3.3. Composite Polynomials
- J. Harrington and L. Jones [109] gave conditions for the monogenity of , and the composition of and ;
- Jakhar, A. R. Kalwaniya and P. Yadav [110] considered monogenity of , and the composition of and using a refined version of the Dedekind criterion;
- J. Harrington and L. Jones [111] considered monogenity of , where is the cyclotomic polynomial of index N;
- L. Jones [112] considered monotonically stable polynomials of type ;
- L. Jones [113] constructed infinite collections of monic Eisenstein polynomials , such that are monogenic for all integers and ;
- L. Jones [114] considered monogenity of , where the Shanks polynomial;
- L. Jones [115] considered monogenity of , where is the characteristic polynomial of an Nth order linear recurrence;
- J. Harrington and L. Jones [116] gave conditions for the monogenity of , where ;
- S. Kaur, S. Kumar and L. Remete [117] considered monogenity of , where .
3.4. Connection with primes
3.5. Number of Generators of Power Integral Bases
- M. Kang and D. Kim [122] considered the number of monogenic orders in pure cubic fields;
- J. H. Evertse [123] considered “rationally monogenic” orders of number fields;
- S. Akhtari [124] showed that a positive proportion of cubic number fields, when ordered by their discriminant, are not monogenic;
- L. Alpöge, M. Bhargava, A. Shnidman [125] showed that, if isomorphism classes of cubic fields are ordered by absolute discriminant, then a positive proportion are not monogenic and yet have no local obstruction to being monogenic (that is, the index form equations represent or mod p for all primes p);
- M. Bhargava [126] proved that an order O in a quartic number field can have at most 2760 inequivalent generators of power integral bases (and at most 182 if is sufficiently large). The problem is reduced to counting the number solutions of cubic and quartic Thue equations, somewhat analogously like described in Section 2.4, using a refined enumeration;
- S. Akhtari [127] gave another proof of Bhargava’s result [126]: she used the more direct approach of Section 2.4 and applied sharp bounds for the numbers of solutions of cubic and quartic Thue equations.
3.6. Miscellaneous
- H. H. Kim [128] showed that the number of monogenic dihedral quartic extensions with absolute discriminant is of size ;
- N. Khan, S. Katayama, T. Nakahara and T. Uehara [129] proved that the composite of a totally real field with a cyclotomic field of odd conductor or even ≥8 has no power integral basis;
- N. Khan, T. Nakahara and H. Sekiguchi [130] proved that there are exactly three monogenic cyclic sextic fields of prime-power conductor, namely and the maximal real subfield of ;
- D. Gil-Muňoz and M. Tinková [131] considered the indices of non-monogenic simplest cubic polynomials;
- L. Jones [132] considered infinite families of monogenic Pisot (anti-Pisot) polynomials;
- A. Jakhar and S. K. Khanduja [133] gave lower bounds for the p-index of a polynomial;
- M. Castillo, [134] showed, e.g., that is monogenic, where and for ;
- T. Kashio and R. Sekigawa [135] showed that a monogenic normal cubic field is a simplest cubic field for some parameter;
- F. E. Tanoé [136] considered monogenity of biquadratic fields using a special integer basis;
- Aruna C. and P. Vanchinathan [140] showed that an infinite number of so-called exceptional quartic fields are monogenic.
3.7. Explicit Calculations, Algorithms
- Z. Franŭsić and B. Jadrijević [141] calculated generators of relative power integral bases in a family of quartic extensions of imaginary quadratic fields;
- I. Gaál [142] showed that index form equations in composites of a totally real cubic field and a complex quadratic field can be reduced to absolute Thue equations;
- I. Gaál [143] showed that the index form equations in composites of a totally real field and a complex quadratic field can be reduced to the absolute index form equations of the totally real field;
- I. Gaál [144] considered generators of power integral bases in fields generated by monogenic trinomials of type ;
- I. Gaál [145] considered generators of power integral bases in fields generated by monogenic binomial compositions of type ;
- I. Gaál [146] gave an efficient method to determine all generators of power integral bases of pure sextic fields;
- I. Gaál and L. Remete [147] considered monogenity in octic fields of type ;
- I. Gaál [148] determined “small” solutions of the index form equation in , for , such that is monogenic (1521 fields). Experience: is the only generator of power integral bases;
- I. Gaál [149] determined “small” solutions of index form equations in , , such that is monogenic (2024 fields). Experience: is the only generator of power integral bases, except for ;
4. Further Research
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dedekind, R. Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen. Göttingen Abh. 1878, 23, 1–23. [Google Scholar]
- Hensel, K. Theorie der Algebraischen Zahlen; Teubner: Leipzig, Germany, 1908. [Google Scholar]
- Hasse, H. Zahlentheorie; Akademie: Berlin, Germany, 1963. [Google Scholar]
- Gaál, I. Diophantine equations and power integral bases. In Theory and algorithms, 2nd ed.; Birkhäuser: Boston, MA, USA, 2019. [Google Scholar]
- Birch, B.J.; Merriman, J.R. Finiteness theorems for binary forms with given discriminant. Proc. Lond. Math. Soc. 1972, 24, 385–394. [Google Scholar] [CrossRef]
- Győry, K. Sur les polynômes a coefficients entiers et de discriminant donne, III. Publ. Math. (Debrecen) 1976, 23, 141–165. [Google Scholar] [CrossRef]
- Neukirch, J. Algebraic Number Theory; Springer: Berlin, Germany, 1999. [Google Scholar]
- Cohen, H. A Course in Computational Algebraic Number Theory, GTM 138; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Pohst, M.P.; Zassenhaus, H. Algorithmic Algebraic Number Theory; Encyclopedia of Mathematics and Its Applications; Campridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Engstrom, H.T. On the common index divisor of an algebraic number field. Trans. Am. Math. Soc. 1930, 32, 223–237. [Google Scholar] [CrossRef]
- Ore, O. Newtonsche Polygone in der Theorie der algebraischen Korper. Math. Ann. 1928, 99, 84–117. [Google Scholar] [CrossRef]
- Montes, J.; Nart, E. On a theorem of Ore. J. Algebra 1992, 146, 318–334. [Google Scholar] [CrossRef]
- Fadil, L.E.; Montes, J.; Nart, E. Newton polygons and p-integral bases of quartic number fields. J. Algebra Appl. 2012, 11, 1250073. [Google Scholar] [CrossRef]
- Fadil, L.E. On Newton polygon techniques and factorization of polynomial over Henselian valued fields. J. Algebra Appl. 2020, 19, 2050188. [Google Scholar] [CrossRef]
- Guardia, J.; Montes, J.; Nart, E. Newton polygons of higher order in algebraic number theory. Trans. Amer. Math. Soc. 2012, 364, 361–416. [Google Scholar] [CrossRef]
- Fadil, L.E.; Gaál, I. Integral bases and monogenity of pure number fields with non-square free parameters up to degree 9. Tatra Mt. Math. Publ. 2023, 83, 61–86. [Google Scholar] [CrossRef]
- Bosma, W.; Cannon, J.; Playoust, C. The Magma Algebra System. I. The User Language. J. Symb. Comput. 1997, 24, 235–265. [Google Scholar] [CrossRef]
- Gaál, I.; Pethő, A.; Pohst, M. On the resolution of index form equations in quartic number fields. J. Symb. Comput. 1993, 16, 563–584. [Google Scholar] [CrossRef]
- Gaál, I.; Pethő, A.; Pohst, M. Simultaneous representation of integers by a pair of ternary quadratic forms—With an application to index form equations in quartic number fields. J. Number Theory 1996, 57, 90–104. [Google Scholar] [CrossRef]
- Mordell, L.J. Diophantine Equations; Academic Press: New York, NY, USA; London, UK, 1969. [Google Scholar]
- Ahmad, S.; Nakahara, T.; Syed, M. Power integral bases for certain pure sextic fields. Int. J. Number Theory 2014, 10, 2257–2265. [Google Scholar] [CrossRef]
- Gassert, T.A. A note on the monogeneity of power maps. Albanian J. Math. 2017, 11, 3–12. [Google Scholar] [CrossRef]
- Fadil, L.E. A note on monogenity of pure number fields. arXiv 2021, arXiv:2106.00004. [Google Scholar]
- Aygin, Z.S.; Nguyen, K.D. Monogenic pure cubics. J. Number Theory 2021, 219, 356–367, Erratum in J. Number Theory 2023, 242, 244. [Google Scholar] [CrossRef]
- Fadil, L.E. On power integral bases for certain pure number fields. Publ. Math. Debr. 2022, 100, 219–231. [Google Scholar] [CrossRef]
- Fadil, L.E. On power integral bases for certain pure number fields defined by x18 − m. Commentat. Math. Univ. Carol. 2022, 63, 11–19. [Google Scholar]
- Fadil, L.E. On monogenity of certain pure number fields defined by x20 − m. Sao Paulo J. Math. Sci. 2022, 16, 1063–1071. [Google Scholar] [CrossRef]
- Fadil, L.E. On power integral bases for certain pure number fields defined by x24 − m. Stud. Sci. Math. Hung. 2020, 57, 397–407. [Google Scholar] [CrossRef]
- Fadil, L.E. On power integral bases for certain pure number fields defined by x36 − m. Stud. Sci. Math. Hung. 2021, 58, 371–380. [Google Scholar]
- Fadil, L.E.; Yakkou, H.B.; Didi, J. On power integral bases of certain pure number fields defined by x42 − m. Bol. Soc. Mat. Mex. III. Ser. 2021, 27, 81. [Google Scholar] [CrossRef]
- Fadil, L.E.; Choulli, H.; Kchit, O. On monogenity of certain pure number fields defined by x60 − m. Acta Math. Vietnam 2023, 48, 283–293. [Google Scholar] [CrossRef]
- Fadil, L.E.; Faris, M. On power integral bases of certain pure number fields defined by x84 − m. Rev. Unión Mat. Argent. 2023, 65, 197–211. [Google Scholar] [CrossRef]
- Yakkou, H.B.; Kchit, O. On power integral bases of certain pure number fields defined by x3r − m. Sao Paulo J. Math. Sci. 2022, 16, 1072–1079. [Google Scholar] [CrossRef]
- Fadil, L.E. On power integral bases for certain pure number fields defined by x2·3k − m. Acta Arith. 2021, 201, 269–280. [Google Scholar] [CrossRef]
- Fadil, L.E. On power integral bases for certain pure sextic fields. Bol. Soc. Parana. Mat. 2022, 40, 143. [Google Scholar] [CrossRef]
- Yakkou, H.B.; Chillali, A.; Fadil, L.E. On power integral bases for certain pure number fields defined by x2r·5s − m. Commun. Algebra 2021, 49, 2916–2926. [Google Scholar] [CrossRef]
- Fadil, L.E. On power integral bases of certain pure number fields defined by x3r·7s − m. Colloq. Math. 2022, 169, 307–317. [Google Scholar] [CrossRef]
- Fadil, L.E.; Najim, A. On monogenity of certain pure number fields defined by x2u·3v − m. Acta Sci. Math. 2022, 88, 581–594. [Google Scholar] [CrossRef]
- Fadil, L.E.; Kchit, O. On monogenity of certain pure number fields defined by x2r·7s − m. Bol. Soc. Parana. Mat. 2023, 41, 138. [Google Scholar]
- Fadil, L.E. On monogenity of certain pure number fields defined by x2u·3v·5t − m. arXiv 2022, arXiv:2204.02436. [Google Scholar]
- Yakkou, H.B.; Fadil, L.E. On monogenity of certain pure number fields defined by xpr − m. Int. J. Number Theory 2021, 17, 2235–2242. [Google Scholar] [CrossRef]
- Fadil, L.E. On integral bases and monogeneity of pure sextic number fields with non-squarefree coefficients. J. Number Theory 2021, 228, 375–389. [Google Scholar] [CrossRef]
- Gaál, I.; Remete, L. Integral bases and monogenity of pure fields. J. Number Theory 2017, 173, 129–146. [Google Scholar] [CrossRef]
- Fadil, L.E.; Gaál, I. On integral bases and monogenity of pure octic number fields with non-square free parameters. arXiv 2022, arXiv:2202.04417. [Google Scholar]
- Fadil, L.E. A note on indices of quartic number fields defined by trinomials x4 + ax + b. Commun. Algebra 2024, 52, 1349–1359. [Google Scholar] [CrossRef]
- Fadil, L.E.; Gaál, I. On the monogenity of quartic number fields defined by x4 + ax2 + b. arXiv 2022, arXiv:2204.03226. [Google Scholar]
- Smith, H. Two families of monogenic S4 quartic number fields. Acta Arith. 2018, 186, 257–271. [Google Scholar] [CrossRef]
- Jones, L. Monogenic cyclic quartic trinomials. arXiv 2024, arXiv:2404.17869. [Google Scholar]
- Jakhar, A.; Kaur, S.; Kumar, S. Common index divisor of the number fields defined by x5 + ax + b. Proc. Edinb. Math. Soc. II. Ser. 2022, 65, 1147–1161. [Google Scholar] [CrossRef]
- Fadil, L.E. On common index divisors and monogenity of certain number fields defined by x5 + ax2 + b. Commun. Algebra 2022, 50, 3102–3112. [Google Scholar] [CrossRef]
- Fadil, L.E. On the index divisors and monogenity of number fields defined by x5 + ax3 + b. Quaest. Math. 2023, 46, 2355–2365. [Google Scholar] [CrossRef]
- Fadil, L.E. On common index divisor and monogenity of certain number fields defined by trinomials X6 + AX + B. Quaest. Math. 2023, 46, 1609–1627. [Google Scholar] [CrossRef]
- Jakhar, A.; Kumar, S. On nonmonogenic number fields defined by x6 + ax + b. Can. Math. Bull. 2022, 65, 788–794. [Google Scholar] [CrossRef]
- Fadil, L.E. On non monogenity of certain number fields defined by trinomials x6 + ax3 + b. J. Number Theory 2022, 239, 489–500. [Google Scholar] [CrossRef]
- Fadil, L.E.; Kchit, O. On index divisors and monogenity of certain sextic number fields defined by x6 + ax5 + b. arXiv 2022, arXiv:2206.05529. [Google Scholar]
- Jakhar, A.; Kaur, S. A note on non-monogenity of number fields arised from sextic trinomials. Quaest. Math. 2023, 46, 833–840. [Google Scholar] [CrossRef]
- Ibarra, R.; Lembeck, H.; Ozaslan, M.; Smith, H.; Stange, K.E. Monogenic fields arising from trinomials. Involve 2022, 15, 299–317. [Google Scholar] [CrossRef]
- Fadil, L.E.; Kchit, O. On index divisors and monogenity of certain septic number fields defined by x7 + ax3 + b. Commun. Algebra 2023, 51, 2349–2363. [Google Scholar] [CrossRef]
- Yakkou, H.B. The index of the septic number field defined by x7 + ax5 + b. arXiv 2022, arXiv:2206.14345. [Google Scholar]
- Jakhar, A.; Kaur, S.; Kumar, S. On common index divisor of the number fields defined by x7 + ax + b. arXiv 2023, arXiv:2301.00365. [Google Scholar]
- Yakkou, H.B. On monogenity of certain number fields defined by x8 + ax + b. Acta Math. Hung. 2022, 166, 614–623. [Google Scholar] [CrossRef]
- Yakkou, H.B.; Boudine, B. On the index of the octic number field defined by x8 + ax + b. Acta Math. Hung. 2023, 170, 585–607. [Google Scholar] [CrossRef]
- Jakhar, A.; Kaur, S.; Kumar, S. Non-monogenity of certain octic number fields defined by trinomials. Colloq. Math. 2023, 171, 145–152. [Google Scholar] [CrossRef]
- Jones, L. Monogenic even octic polynomials and their Galois groups. arXiv 2024, arXiv:2404.17921. [Google Scholar]
- Kchit, O. On the index divisors and monogenity of certain nonic number fields. arXiv 2023, arXiv:2307.03284. [Google Scholar]
- Yakkou, H.B.; Tiebekabe, P. On common index divisors and monogenity of of the nonic number field defined by a trinomial x9 + ax + b. arXiv 2022, arXiv:2212.05029. [Google Scholar]
- Fadil, L.E.; Kchit, O. The index of certain nonic number fields defined by x9 + ax2 + b. arXiv 2023, arXiv:2310.13509. [Google Scholar]
- Fadil, L.E.; Kchit, O. On index divisors and monogenity of certain number fields defined by x12 + axm + b. Ramanujan J. 2024, 63, 451–482. [Google Scholar] [CrossRef]
- Yakkou, H.B. On monogenity of certain number fields defined by x2r + axm + b. arXiv 2022, arXiv:2203.10413. [Google Scholar]
- Yakkou, H.B.; Fadil, L.E. On monogenity of certain number fields defined by trinomials. Funct. Approx. Comment. Math. 2022, 67, 199–221. [Google Scholar] [CrossRef]
- Jakhar, A.; Kumar, S. Non-monogenity of some number fields generated by binomials or trinomials of prime-power degree. J. Algebra Appl. 2024, 23, 2450095. [Google Scholar] [CrossRef]
- Jakhar, A. On nonmonogenic algebraic number fields. Rocky Mt. J. Math. 2023, 53, 103–110. [Google Scholar] [CrossRef]
- Jhorar, B.; Khanduja, S.K. On power basis of a class of algebraic number fields. Int. J. Number Theory 2016, 12, 2317–2321. [Google Scholar] [CrossRef]
- Yakkou, H.B. On nonmonogenic number fields defined by trinomials of type xn + axm + b. Rocky Mt. J. Math. 2023, 53, 685–699. [Google Scholar]
- Fadil, L.E. On index and monogenity of certain number fields defined by trinomials. Math. Slovaca 2023, 73, 861–870. [Google Scholar] [CrossRef]
- Jakhar, A. Nonmonogenity of number fields defined by trinomials. N. Y. J. Math. 2022, 28, 650–658. [Google Scholar]
- Jakhar, A.; Khanduja, S.K.; Sangwan, N. On prime divisors of the index of an algebraic integer. J. Number Theory 2016, 166, 47–61. [Google Scholar] [CrossRef]
- Jakhar, A.; Khanduja, S.K.; Sangwan, N. Characterization of primes dividing the index of a trinomial. Int. J. Number Theory 2017, 13, 2505–2514. [Google Scholar] [CrossRef]
- Jones, L. Monogenic reciprocal trinomials and their Galois groups. J. Algebra Appl. 2022, 21, 2250026. [Google Scholar] [CrossRef]
- Jones, L. Sextic reciprocal monogenic dihedral polynomials. Ramanujan J. 2021, 56, 1099–1110. [Google Scholar] [CrossRef]
- Jones, L. Infinite families of non-monogenic trinomials. Acta Sci. Math. 2021, 87, 95–105. [Google Scholar] [CrossRef]
- Jones, L.; Phillips, T. Infinite families of monogenic trinomials and their Galois groups. Int. J. Math. 2018, 29, 1850039. [Google Scholar] [CrossRef]
- Jones, L.; White, D. Monogenic trinomials with non-squarefree discriminant. Int. J. Math. 2021, 32, 2150089. [Google Scholar] [CrossRef]
- Gassert, T.A.; Smith, H.; Stange, K.E. A family of monogenic S4 quartic fields arising from elliptic curves. J. Number Theory 2019, 197, 361–382. [Google Scholar] [CrossRef]
- Yakkou, H.B. On indices and monogenity of quartic number fields defined by quadrinomials. arXiv 2024, arXiv:2401.12782. [Google Scholar]
- Harrington, J.; Jones, L. Monogenic quartic polynomials and their Galois groups. arXiv 2024, arXiv:2404.05487v2. [Google Scholar]
- Jakhar, A.; Kalwaniya, R. On the index divisors of certain number fields. arXiv 2023, arXiv:2303.00484. [Google Scholar]
- Jones, L. Monogenic polynomials with non-squarefree discriminant. Proc. Am. Math. Soc. 2020, 148, 1527–1533. [Google Scholar] [CrossRef]
- Jones, L. On necessary and sufficient conditions for the monogeneity of a certain class of polynomials. Math. Slovaca 2022, 72, 591–600. [Google Scholar] [CrossRef]
- Jakhar, A.; Kaur, S.; Kumar, S. On power basis of a class of number fields. Mediterr. J. Math. 2023, 20, 315. [Google Scholar] [CrossRef]
- Jakhar, A.; Kaur, S.; Kumar, S. On non-monogenity of the number fields defined by certain quadrinomials. Commun. Algebra 2023, 51, 2448–2459. [Google Scholar] [CrossRef]
- Jakhar, A. On primes dividing the index of a quadrinomial. Rocky Mt. J. Math. 2020, 50, 2117–2125. [Google Scholar] [CrossRef]
- Jones, L. Infinite families of reciprocal monogenic polynomials and their Galois groups. New York J. Math. 2021, 27, 1465–1493. [Google Scholar]
- Jones, L. Some new infinite families of monogenic polynomials with non-squarefree discriminant. Acta Arith. 2021, 197, 213–219. [Google Scholar] [CrossRef]
- Jones, L. A brief note on some infinite families of monogenic polynomials. Bull. Aust. Math. Soc. 2019, 100, 239–244. [Google Scholar] [CrossRef]
- Jones, L. Generating infinite families of monogenic polynomials using a new discriminant formula. Albanian J. Math. 2020, 14, 37–45. [Google Scholar] [CrossRef]
- Jones, L. 0 Reciprocal monogenic quintinomials of degree 2n. Bull. Aust. Math. Soc. 2022, 106, 437–447. [Google Scholar] [CrossRef]
- Jones, L. Infinite families of monogenic quadrinomials, quintinomials and sextinomials. Colloq. Math. 2022, 169, 1–10. [Google Scholar] [CrossRef]
- Charkani, M.E.; Deajim, A. Generating a power basis over a Dedekind ring. J. Number Theory 2012, 132, 2267–2276. [Google Scholar] [CrossRef]
- Deajim, A.; Fadil, L.E. A note on generating a power basis over a Dedekind ring. Stud. Sci. Math. Hung. 2021, 58, 367–370. [Google Scholar] [CrossRef]
- Sahmoudi, M.; Charkani, M.E. On relative pure cyclic fields with power integral bases. Math. Bohem. 2023, 148, 117–128. [Google Scholar] [CrossRef]
- Soullami, A.; Sahmoudi, M.; Boughaleb, O. On relative power integral basis of a family of numbers fields. Rocky Mt. J. Math. 2021, 51, 1443–1452. [Google Scholar] [CrossRef]
- Boughaleb, O.; Soullami, A.; Sahmoudi, M. On relative monogeneity of a family of number fields defined by Xpn + aXps − b. Bol. Soc. Mat. Mex., III. Ser. 2023, 29, 5. [Google Scholar] [CrossRef]
- Smith, H. The monogeneity of radical extensions. Acta Arith. 2021, 198, 313–327. [Google Scholar] [CrossRef]
- Khanduja, S.K.; Jhorar, B. When is R[ϑ] integrally closed? J. Algebra Appl. 2016, 15, 1650091. [Google Scholar] [CrossRef]
- Arpin, S.; Bozlee, S.; Herr, L.; Smith, H. The scheme of monogenic generators I: Representability. Res. Number Theory 2023, 9, 14. [Google Scholar] [CrossRef]
- Arpin, S.; Bozlee, S.; Herr, L.; Smith, H. The scheme of monogenic generators. II: Local monogenicity and twists. Res. Number Theory 2023, 9, 43. [Google Scholar] [CrossRef]
- Sekigawa, R. Rikuna’s generic cyclic polynomial and the monogenity. J. Number Theory 2022, 231, 239–250. [Google Scholar] [CrossRef]
- Harrington, J.; Jones, L. Monogenic binomial compositions. Taiwan. J. Math. 2020, 24, 1073–1090. [Google Scholar] [CrossRef]
- Jakhar, A.; Kalwaniya, R.; Yadav, P. A study of monogenity of binomial composition. arXiv 2024, arXiv:2402.10131. [Google Scholar]
- Harrington, J.; Jones, L. Monogenic cyclotomic compositions. Kodai Math. J. 2021, 44, 115–125. [Google Scholar] [CrossRef]
- Jones, L. Monogenically stable polynomials. Albanian J. Math. 2021, 15, 85–98. [Google Scholar] [CrossRef]
- Jones, L. The monogenity of power-compositional Eisenstein polynomials. Ann. Math. Inform. 2022, 55, 93–113. [Google Scholar] [CrossRef]
- Jones, L. On the monogenicity of power-compositional Shanks polynomials. Funct. Approx. Comment. Math. 2023, 69, 93–103. [Google Scholar] [CrossRef]
- Jones, L. The monogenicity of power-compositional characteristic polynomials. arXiv 2023, arXiv:2311.08875. [Google Scholar]
- Harrington, J.; Jones, L. The Irreducibility and Monogenicity of Power-Compositional Trinomials. arXiv 2022, arXiv:2204.07784. [Google Scholar]
- Kaur, S.; Kumar, S.; Remete, L. On the index of power compositional polynomials. arXiv 2024, arXiv:2404.17351. [Google Scholar]
- Jones, L. A connection between the monogenicity of certain power-compositional trinomials and k-Wall-Sun-Sun primes. arXiv 2022, arXiv:2211.14834. [Google Scholar]
- Jones, L. Generalized Wall-Sun-Sun primes and monogenic power compositional trinomials. Albanian J. Math. 2023, 17, 3–17. [Google Scholar] [CrossRef]
- Jones, L. A new condition for k-Wall-Sun-Sun primes. Taiwan. J. Math. 2024, 28, 17–28. [Google Scholar] [CrossRef]
- Harrington, J.; Jones, L. A note on generalised Wall-Sun-Sun primes. Bull. Aust. Math. Soc. 2023, 108, 373–378. [Google Scholar] [CrossRef]
- Kang, M.; Kim, D. The proportion of monogenic orders of prime power indices of the pure cubic field. arXiv 2023, arXiv:2306.13295. [Google Scholar]
- Evertse, J.H. Orders with few rational monogenizations. Acta Arith. 2023, 210, 307–335. [Google Scholar] [CrossRef]
- Akhtari, S. Counting monogenic cubic orders. In Combinatorial and Additive Number Theory III; Nathanson, M.B., Ed.; Papers Based on Talks Given at the CANT 2017 and 2018 Workshops, New York, NY, USA, May 2017 and May 2018; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Alpöge, L.; Bhargava, M.; Shnidman, A. A positive proportion of cubic fields are not monogenic yet have no local obstruction to being so. arXiv 2020, arXiv:2011.01186. [Google Scholar]
- Bhargava, M. On the number of monogenizations of a quartic order (with an appendix by Shabnam Akhtari). Publ. Math. Debr. 2022, 100, 513–531. [Google Scholar] [CrossRef]
- Akhtari, S. Quartic index form equations and monogenizations of quartic orders. Essent. Number Theory 2022, 1, 57–72. [Google Scholar] [CrossRef]
- Kim, H.H. Monogenic dihedral quartic extensions. Ramanujan J. 2019, 50, 459–464. [Google Scholar] [CrossRef]
- Khan, N.; Katayama, S.; Nakahara, T.; Uehara, T. Monogenity of totally real algebraic extension fields over a cyclotomic field. J. Number Theory 2016, 158, 348–355. [Google Scholar] [CrossRef]
- Khan, N.; Nakahara, T.; Sekiguchi, H. An ideal theoretic proof on monogenity of cyclic sextic fields of prime power conductor. J. Number Theory 2019, 198, 43–51. [Google Scholar] [CrossRef]
- Gil-Munoz, D.; Tinková, M. Additive structure of non-monogenic simplest cubic fields. arXiv 2022, arXiv:2212.00364. [Google Scholar]
- Jones, L. Monogenic Pisot and anti-Pisot polynomials. Taiwan J. Math. 2022, 26, 233–250. [Google Scholar] [CrossRef]
- Jakhar, A.; Khanduja, S.K. On the index of an algebraic integer and beyond. J. Pure Appl. Algebra 2020, 224, 106281. [Google Scholar] [CrossRef]
- Castillo, M. A dynamical characterization for monogenity at every level of some infinite 2-towers. Canad. Math. Bull. 2022, 65, 806–814. [Google Scholar] [CrossRef]
- Kashio, T.; Sekigawa, R. The characterization of cyclic cubic fields with power integral bases. Kodai Math. J. 2021, 44, 290–306. [Google Scholar] [CrossRef]
- Tanoé, F.E. Chatelain’s integer bases for biquadratic fields. Afr. Mat. 2017, 28, 727–744. [Google Scholar] [CrossRef]
- Kouakou, K.V.; Tanoé, F.E. Chatelain’s integral bases for triquadratic number fields. Afr. Mat. 2017, 28, 119–149. [Google Scholar] [CrossRef]
- Tanoé, F.E.; Kouakou, K.V. Diophantine proof of non-monogeneity for triquadratic number fields with odd discriminant. Fundam. J. Math. Math. Sci. 2021, 15, 9–37. [Google Scholar]
- Tanoé, F.E.; Kouassi, V. Generators of power integral bases of = (, , ). Ann. Mathématiques Afr. 2025, 5, 117–131. [Google Scholar]
- Aruna, C.; Vanchinathan, P. Exceptional Quartics are Ubiquitous. arXiv 2023, arXiv:2306.17556. [Google Scholar]
- Franŭsić, Z.; Jadrijević, B. Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields. Publ. Math. Debr. 2018, 92, 293–315. [Google Scholar] [CrossRef]
- Gaál, I. Monogenity in totally complex sextic fields, revisited. JP J. Algebra Number Theory Appl. 2020, 47, 87–98. [Google Scholar] [CrossRef]
- Gaál, I. Monogenity in totally real extensions of imaginary quadratic fields with an application to simplest quartic fields. Acta Sci. Math. 2023, 89, 3–12. [Google Scholar] [CrossRef]
- Gaál, I. An experiment on the monogenity of a family of trinomials. JP J. Algebra Number Theory Appl. 2021, 51, 97–111. [Google Scholar] [CrossRef]
- Gaál, I. On the monogenity of certain binomial compositions. JP J. Algebra Number Theory Appl. 2022, 57, 1–16. [Google Scholar] [CrossRef]
- Gaál, I. Calculating generators of power integral bases in pure sextic fields. Funct. Approx. Comment. Math. 2024, 70, 85–100. [Google Scholar] [CrossRef]
- Gaál, I.; Remete, L. On the monogenity of pure quartic relative extensions of Q(i). Acta Sci. Math. 2023, 89, 357–371. [Google Scholar] [CrossRef]
- Gaál, I. A note on the monogenity of totally complex pure sextic fields. JP J. Algebra Number Theory Appl. 2023, 60, 85–96. [Google Scholar]
- Gaál, I. On the monogenity of totally complex pure octic fields. arXiv 2024, arXiv:2402.09293. [Google Scholar]
- Gaál, I. A note on the monogenity of some trinomials of type x4 + ax2 + b. JP J. Algebra Number Theory Appl. 2024, 63, 265–279. [Google Scholar]
- Gaál, I. Calculating power integral bases in some quartic fields corresponding to monogenic families of polynomials. arXiv 2024, arXiv:2405.13429. [Google Scholar]
- Gaál, I.; Pohst, M. Computing power integral bases in quartic relative extensions. J. Number Theory 2000, 85, 201–219. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaál, I. Monogenity and Power Integral Bases: Recent Developments. Axioms 2024, 13, 429. https://doi.org/10.3390/axioms13070429
Gaál I. Monogenity and Power Integral Bases: Recent Developments. Axioms. 2024; 13(7):429. https://doi.org/10.3390/axioms13070429
Chicago/Turabian StyleGaál, István. 2024. "Monogenity and Power Integral Bases: Recent Developments" Axioms 13, no. 7: 429. https://doi.org/10.3390/axioms13070429
APA StyleGaál, I. (2024). Monogenity and Power Integral Bases: Recent Developments. Axioms, 13(7), 429. https://doi.org/10.3390/axioms13070429