Special Geometric Objects in Generalized Riemannian Spaces
Abstract
:1. Introduction
1.1. Generalized Riemannian Spaces
1.2. Mappings of Space
- Geodesic Mappings of Space
- Preferred Methodology for Obtaining Invariants of Mappings
- The deformation tensor is expressed as
- In the next step, it was concluded that . In this way, it was proved that the geometrical object is an invariant for the mapping F. The geometrical object is the associated basic invariant of Thomas type for the mapping F.
- In the next, based on the equalityThe invariant is the associated basic invariant of the Weyl type for the mapping F.
- After contracting the difference , another invariant for the mapping F was obtained.
- The trace is a linear monic function of the Ricci tensor, unlike the trace .
1.3. Variations and Variational Derivatives
1.4. Motivation
2. Main Results
2.1. Invariants
2.2. Physical Examples
2.3. Contorsion and Spin Tensors
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eisenhart, L.P. Riemannian Geometry; Princeton University Press: London, UK; Humphrey Milfold, Oxford University Press: Oxford, UK, 1926. [Google Scholar]
- Sinyukov, N.S. Geodesic Mappings of Riemannian Spaces; Nauka: Moscow, Russia, 1979. (In Russian) [Google Scholar]
- Mikeš, J.; Stepanova, E.; Vanžurová, A.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Gavrilchenko, M.L.; Haddad, M.L. Differential Geometry of Special Mappings; Palacký University: Olomouc, Czech Republic, 2019. [Google Scholar]
- Mikeš, J.; Berezovski, V.E.; Stepanova, E.; Chudá, H. Geodesic Mappings and Their Generalizations. J. Math. Sci. 2016, 217, 607–623. [Google Scholar] [CrossRef]
- Mikeš, J.; Stepanova, E.; Vanžurová, A.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Gavrilchenko, M.L.; Haddad, M.L. Differential Geometry of Special Mappings; Palacký University: Olomouc, Czech Republic, 2015. [Google Scholar]
- Mikeš, J.; Vanžurová, A.; Hinterleitner, I. Geodesic Mappings and Some Generalizations; Palacký University: Olomouc, Czech Republic, 2009. [Google Scholar]
- Hinterleitner, I. 4-planar Mappings of Quaternionic Kähler Manifolds. In Geometric Methods in Physics, XXXI Workshop 2012 Trends in Mathematics; Birkhäuser: Basel, Switzerland, 2013; pp. 187–193. [Google Scholar]
- Hinterleitner, I.; Mikeš, J. Geodesic mappings of (pseudo-) Riemannian manifolds preserve class of differentiability. Miskolc Math. Notes 2013, 14, 575–582. [Google Scholar] [CrossRef]
- Stepanov, S.E.; Mikeš, J. Betti and Tachibana numbers of compact Riemannian manifolds. Diff. Geom. Appl. 2013, 31, 486–495. [Google Scholar] [CrossRef]
- Eisenhart, L.P. Generalized Riemannian Spaces. Proc. Natl. Acad. Sci. USA 1951, 37, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Eisenhart, L.P. Generalized Riemannian Spaces, II. Proc. Natl. Acad. Sci. USA 1952, 38, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Vesić, N.O. Cosmological Meaning of Geometric Curvatures. Filomat 2020, 34, 4107–4121. [Google Scholar] [CrossRef]
- Eisenhart, L.P. Non-Riemannian Geometry; Courier Corporation: New York, NY, USA, 1927. [Google Scholar]
- Ivanov, S.; Zlatanović, M. Connections on a non-symmetric (generalized) Riemannian manifold and gravity. Class. Quantum Gravity 2016, 33, 075016. [Google Scholar] [CrossRef]
- Ivanov, S.; Zlatanović, M. Non-symmetric Riemannian gravity and Sasaki-Einstein 5-manifolds. Class. Quantum Gravity 2020, 37, 025002. [Google Scholar] [CrossRef]
- Ješic, S.N.; Cirovic, N.A.; Nikolic, R.M.; Rand-elovic, B.M. A fixed point theorem in strictly convex b-fuzzy metric spaces. AIMS Math. 2023, 8, 20989–21000. [Google Scholar] [CrossRef]
- Ranđelović, B.M.; Ćirović, N.A.; Ješic, S.N. A Characterisation of Completeness of B-Fuzzy Metric Spaces and Nonlinear Contractions. Appl. Anal. Discret. Math. 2021, 15, 233–242. [Google Scholar] [CrossRef]
- Simjanović, D.J.; Vesić, N.O. Novel Invariants for Almost Geodesic Mappings of the Third Type. Miskolc Math. Notes 2021, 22, 961–975. [Google Scholar] [CrossRef]
- Vesić, N.O. Basic Invariants of Geometric Mappings. Miskolc Math. Notes 2020, 21, 473–487. [Google Scholar] [CrossRef]
- Thomas, T.Y. On the projective and equi-projective geometries of paths. Proc. Nat. Acad. Sci. USA 1925, 11, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Weyl, H. Zur infinitesimal geometrie: Einordnung der projectiven und der konformen auffssung. Gott. Nachrichten 1921, 11, 99–112. [Google Scholar]
- Stanković, M.S.; Ćirić, M.S.; Zlatanović, M.L. Geodesic mappings of equiaffine and anti-equiaffine general affine connection spaces preserving torsion. Filomat 2012, 26, 439–451. [Google Scholar] [CrossRef]
- Stanković, M.S.; Minčić, S.M.; Velimirović, L.S.; Zlatanović, M.L. On Equitorsion Geodesic Mappings of General Affine Connection Space. Rend. Semin. Mat. ’Universita’ Padova/Math. J. Univ. Padova 2010, 124, 77–90. [Google Scholar] [CrossRef]
- Stanković, M.S.; Zlatanović, M.L.; Velimirović, L.S. Equitorsion Holomorphically Projective Mappings of Generalized Kählerian Space of the Second Kind. Int. Electron. J. Geom. 2010, 3, 26–39. [Google Scholar]
- Zlatanović, M.L. New projective tensors for equitorsion geodesic mappings. Appl. Math. Lett. 2012, 25, 890–897. [Google Scholar] [CrossRef]
- Zlatanović, M.L.; Stanković, V.M. Some invariants of holomorphically projective mappings of generalized Kählerian spaces. J. Math. Anal. Appl. 2018, 458, 601–610. [Google Scholar] [CrossRef]
- Najdanović, M.S.; Zlatanović, M.L.; Hinterleitner, I. Conformal and Geodesic Mappings of Generalized Equidistant Spaces. Publ. Inst. Math. 2015, 98, 71–84. [Google Scholar] [CrossRef]
- Vesić, N.O.; Milenković, V.M.; Stanković, M.S. Two Invariants for Geometric Mappings. Axioms 2022, 11, 239. [Google Scholar] [CrossRef]
- Gelfand, I.M.; Fomin, S.V. Calculus of Variations; Silverman, R.A., Translator; Revised English Edition; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1963. [Google Scholar]
- Blau, M. Lecture Notes on General Relativity; Albert Einstein Center for Fundamental Physics, Universität Bern: Bern, Switzerland, 2015. [Google Scholar]
- Sean, C.M. Spacetime and Geometry: An Introduction to General Relativity; Addison-Wesley: San Franciso, CA, USA, 2004. [Google Scholar]
- Madsen, M.S. Scalar Fields Curved Spacetimes. Class. Quantum Gravity 1988, 5, 627–639. [Google Scholar] [CrossRef]
- Vesić, N.O.; Dimitrijević, D.D.; Simjanović, D.J. Generalized Riemannian Spaces With Respect to 4-Velocity Vectors and Functions of State Parameters. Filomat 2020, 35, 1519–1541. [Google Scholar] [CrossRef]
- Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M. General relativity with spin and torison: Foundations and prospects. Rev. Mod. Phys. 1976, 48, 393–416. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanović, M.; Vesić, N.; Simjanović, D.; Randjelović, B. Special Geometric Objects in Generalized Riemannian Spaces. Axioms 2024, 13, 463. https://doi.org/10.3390/axioms13070463
Stefanović M, Vesić N, Simjanović D, Randjelović B. Special Geometric Objects in Generalized Riemannian Spaces. Axioms. 2024; 13(7):463. https://doi.org/10.3390/axioms13070463
Chicago/Turabian StyleStefanović, Marko, Nenad Vesić, Dušan Simjanović, and Branislav Randjelović. 2024. "Special Geometric Objects in Generalized Riemannian Spaces" Axioms 13, no. 7: 463. https://doi.org/10.3390/axioms13070463
APA StyleStefanović, M., Vesić, N., Simjanović, D., & Randjelović, B. (2024). Special Geometric Objects in Generalized Riemannian Spaces. Axioms, 13(7), 463. https://doi.org/10.3390/axioms13070463