Next Article in Journal
Integral Equations: New Solutions via Generalized Best Proximity Methods
Next Article in Special Issue
Topological Degree via a Degree of Nondensifiability and Applications
Previous Article in Journal
Fuzzy Milne, Ostrowski, and Hermite–Hadamard-Type Inequalities for ħ-Godunova–Levin Convexity and Their Applications
Previous Article in Special Issue
Achieving Optimal Order in a Novel Family of Numerical Methods: Insights from Convergence and Dynamical Analysis Results
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Right Quantum Calculus on Finite Intervals with Respect to Another Function and Quantum Hermite–Hadamard Inequalities

by
Asawathep Cuntavepanit
1,
Sotiris K. Ntouyas
2,* and
Jessada Tariboon
3
1
Interdisciplinary Studies, Mahidol University Kanchanaburi Campus, Kanchanaburi 71150, Thailand
2
Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece
3
Department of Mathematics, Faculty of Applied Science, Intelligent and Nonlinear Dynamic Innovations Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
*
Author to whom correspondence should be addressed.
Axioms 2024, 13(7), 466; https://doi.org/10.3390/axioms13070466
Submission received: 12 June 2024 / Revised: 5 July 2024 / Accepted: 9 July 2024 / Published: 10 July 2024

Abstract

:
In this paper, we study right quantum calculus on finite intervals with respect to another function. We present new definitions on the right quantum derivative and right quantum integral of a function with respect to another function and study their basic properties. The new definitions generalize the previous existing results in the literature. We provide applications of the newly defined quantum calculus by obtaining new Hermite–Hadamard-type inequalities for convex, h-convex, and modified h-convex functions.

1. Introduction

Quantum calculus, also known as q-calculus or non-standard calculus, is a mathematical framework that extends traditional calculus to handle discrete and quantum phenomena. It introduces new operators, such as q-derivatives and q-integrals, which capture the discrete nature of the underlying systems. The development of quantum calculus was motivated by the need to model and understand phenomena at the quantum level, where traditional calculus fails to provide accurate descriptions. By incorporating principles from quantum mechanics and discrete mathematics, quantum calculus offers a powerful mathematical framework for solving problems in various fields, including physics, engineering, and computer science.
Historically, in the eighteenth century, Euler obtained the basic formulae in q-calculus. However, Jackson [1] first established what are known as q-derivatives and q-integrals. Currently, there is a significant interest in implementing the q-calculus due to its applications in several areas, such as mathematics, physics, number theory, orthogonal polynomials, hypergeometric functions, and combinatorics; see [2,3]. The q-derivatives and q-integrals were generalized to non-integer orders in [4,5]. For some recent results, we refer the reader to [6,7,8,9,10,11,12,13,14,15] and the references cited therein. The quantum calculus on finite intervals was introduced by Tariboon and Ntouyas [16]. See also [17] for further details on quantum calculus and the recent results.
Recently, in [18], we initiated the study of the quantum calculus on finite intervals with respect to another function. For a function Π : [ x , y ] R , the quantum derivative   x D q , ψ Π and the quantum integral   x I q , ψ Π with respect to the function ψ and quantum number q were defined, and their properties were discussed. The newly defined quantum calculus on finite intervals with respect to another function was applied, and a new Hermite–Hadamard quantum inequality for a convex function was obtained. In this paper, we extend further the quantum calculus on finite intervals with respect to another function by defining the corresponding right quantum derivative   y D q , ψ Π and the right quantum integral   y I q , ψ Π with respect to the function ψ and quantum number q for a function Π : [ x , y ] R . The basic properties of the right quantum derivative and integral are proved in detail. For the newly defined notions, we prove the corresponding Hermite–Hadamard inequalities for some classes of convex functions. For comprehensive reviews of the Hermite–Hadamard inequality pertaining to fractional integral operators and to quantum calculus, respectively, see [19,20]. For some recent results on Hermite–Hadamard inequality, see [21,22,23,24,25,26] and the references cited therein.
The rest of this paper is organized as follows. In Section 2, we present the new definitions of the right quantum derivative   y D q , ψ Π and the right quantum integral   y I q , ψ Π with respect to the function ψ and show their basic properties. As an application of the newly defined right quantum notions, we obtain Hermite–Hadamard-type inequalities for convex, h-convex, and modified h-convex functions. Our results are novel and significantly contribute to the literature on this new subject regarding quantum calculus on finite intervals with respect to another function.

2. Right Quantum Calculus on Finite Intervals with Respect to Another Function

Let us recall the new definition of quantum derivative with respect to the function ψ provided recently in [18].
Definition 1. 
Let Π : [ x , y ] R be a continuous function and q ( 0 , 1 ) and ψ : [ x , y ] R , x 0 be a strictly increasing function. The q x -derivative   x D q , ψ Π with respect to the function ψ on [ x , y ] is defined by
  x D q , ψ Π ( z ) = Π ( z ) Π ( q z + ( 1 q ) x ) ψ ( z ) ψ ( q z + ( 1 q ) x ) , z x ,
and   x D q , ψ Π ( x ) = lim z x {   x D q , ψ Π ( z ) } .
Remark 1. 
( i ) Note that, if ψ ( z ) = z , then
  x D q , z Π ( z ) = Π ( z ) Π ( q z + ( 1 q ) x ) ( 1 q ) ( z x ) ,
which is the q-derivative defined by Tariboon–Ntouyas in [16]. For x = 0 , it provides Jackson’s q-derivative [1]
  0 D q , z Π ( z ) = Π ( z ) Π ( q z ) ( 1 q ) z .
Now, we define the quantum right q y -derivative of a function Π with respect to the function ψ .
Definition 2. 
Let Π : [ x , y ] R be a continuous function and q ( 0 , 1 ) and ψ : [ x , y ] R , x 0 be a strictly increasing function. The right q y -derivative   y D q , ψ Π of a function Π with respect to the function ψ, on [ x , y ] , is defined by
  y D q , ψ Π ( z ) = Π ( z ) Π ( q z + ( 1 q ) y ) ψ ( z ) ψ ( q z + ( 1 q ) y ) = Π ( z ) Π (   y Q q ( z ) ) ψ ( z ) ψ (   y Q q ( z ) ) , t y ,
and   y D q , ψ Π ( y ) = lim z y {   y D q , ψ Π ( z ) } , where
  y Q q ( z ) = q z + ( 1 q ) y
is a q-shifting operator.
Remark 2. 
( i ) If ψ ( z ) = z , then we obtain the q y -derivative of Π at z [ x , y ] defined in Bermudo et al. [27] as
  y D q , z Π ( z ) = Π ( z ) Π ( q z + ( 1 q ) y ) ( 1 q ) ( t y ) .
( i i ) If ψ ( z ) = log z , where log z = log e z and z [ x , y ] , x > 0 , then we have
  y D q , log z Π ( z ) = Π ( z ) Π ( q z + ( 1 q ) y ) log z log ( q z + ( 1 q ) y ) ,
which is the new definition of quantum derivative in the Hadamard sense. Indeed, it is enough to note that
lim q 1 Π ( z ) Π ( q z + ( 1 q ) y ) log z log ( q z + ( 1 q ) y ) = z d d z Π ( z ) ,
by L’H o ^ pital’s rule, which is the ordinary Hadamard derivative.
Corollary 1. 
If Π ( z ) = ψ n ( z ) in (2), n Z + , then we have
  y D q , ψ ψ n ( z ) = i = 0 n 1 ψ n 1 i ( z ) ψ i ( q z + ( 1 q ) y ) .
Proof. 
Using (2), we obtain
  y D q , ψ ψ n ( z ) = ψ n ( z ) ψ n (   y Q q ( z ) ) ψ ( z ) ψ (   y Q q ( z ) ) = 1 ψ ( z ) ψ (   y Q q ( z ) ) [ ψ ( z ) ψ (   y Q q ( z ) ) ( ψ n 1 ( z ) + ψ n 2 ( z ) ψ (   y Q q ( z ) ) + + ψ ( z ) ψ n 2 (   y Q q ( z ) ) + ψ n 1 (   y Q q ( z ) ) ) ] = i = 0 n 1 ψ n 1 i ( z ) ψ i (   y Q q ( z ) ) ,
which ends the proof. □
In the next lemma, we summarize the basic properties of the right q y -quantum derivative with respect to another function.
Lemma 1. 
( i ) (Linearity).
  y D q , ψ ( α Π ( z ) + β P ( z ) ) = α   y D q , ψ Π ( z ) + β   y D q , ψ P ( z ) , α , β c o n s t a n t s .
( i i ) (Quantum derivative of product).
  y D q , ψ ( Π P ) ( z ) = Π ( z )   y D q , ψ P ( z ) + P ( q z + ( 1 q ) y )   y D q , ψ Π ( z ) = P ( z )   y D q , ψ Π ( z ) + Π ( q z + ( 1 q ) y )   y D q , ψ P ( z ) .
( i i i ) (Quantum derivative of quotient).
  y D q , ψ Π P ( z ) = P ( z )   y D q , ψ Π ( z ) Π ( z )   y D q , ψ P ( z ) P ( z ) P ( q z + ( 1 q ) y ) ,
where P ( z ) P ( q z + ( 1 q ) y ) 0 for all z [ x , y ] .
Proof. 
For ( i ) , we have
  y D q , ψ ( α Π ( z ) + β P ( z ) ) = α Π ( z ) + β P ( z ) α Π (   y Q q ( z ) ) β P (   y Q q ( z ) ) ψ ( z ) ψ (   y Q q ( z ) ) = α Π ( z ) Π (   y Q q ( z ) ) + β P ( z ) P (   y Q q ( z ) ) ψ ( z ) ψ (   y Q q ( z ) ) = α   y D q , ψ Π ( z ) + β   y D q , ψ P ( z ) .
Next, for the first part of ( i i ) , we have
  y D q , ψ ( Π P ) ( z ) = ( Π P ) ( z ) ( Π P ) (   y Q q ( z ) ) ψ ( z ) ψ (   y Q q ( z ) ) = Π ( z ) P ( z ) P (   y Q q ( z ) ) Π ( z ) Π (   y Q q ( z ) ) P (   y Q q ( z ) ) + P (   y Q q ( z ) ) Π ( z ) ψ ( z ) ψ (   y Q q ( z ) ) = Π ( z )   y D q , ψ P ( z ) + P (   y Q q ( z ) )   y D q , ψ Π ( z ) .
We can prove the second equality in a similar way. To show ( i i i ) , we have
  y D q , ψ Π P ( z ) = Π P ( z ) Π P (   y Q q ( z ) ) ψ ( z ) ψ (   y Q q ( z ) ) = Π ( z ) P (   y Q q ( z ) ) + Π ( z ) P ( z ) Π (   y Q q ( z ) ) P ( z ) Π ( z ) P ( z ) P ( z ) P (   y Q q ( z ) ) ψ ( z ) ψ (   y Q q ( z ) ) = P ( z )   y D q , ψ Π ( z ) Π ( z )   y D q , ψ P ( z ) P ( z ) P (   y Q q ( z ) ) .
 □
To derive the right quantum integral with respect to another function, we define a q-shifting operator by
  y Q q Π ( z ) = Π (   y Q q ( z ) ) = Π ( q z + ( 1 q ) y ) , with   y Q q 0 Π ( z ) = Π ( z ) .
Then, we can see that   y Q q n Π ( z ) = Π (   y Q q n ( z ) ) = Π ( q n z + ( 1 q n ) y ) for all n Z 0 . To show this, for n = 0 , we have   y Q   q 0 Π ( z ) = Π ( q 0 z + ( 1 q 0 ) y ) = Π ( z ) . Assume that   y Q q k Π ( z ) = Π ( q k z + ( 1 q k ) y ) holds for n = k . Then, we obtain
  y Q q k + 1 Π ( z ) =   y Q q   y Q q k Π ( z ) =   y Q q Π ( q k z + ( 1 q k ) y ) = Π ( q k ( q z + ( 1 q ) y ) + ( 1 q k ) y ) = Π ( q k + 1 z + ( 1 q k + 1 ) y ) .
Thus, it holds that n = k + 1 , and, hence, for every n , by mathematical induction.
From (2), we set
H ( z ) = Π ( z ) Π ( q z + ( 1 q ) y ) ψ ( z ) ψ ( q z + ( 1 q ) y ) = ( 1   y Q q ) Π ( z ) ψ ( z ) ψ ( q z + ( 1 q ) y ) ,
and we obtain
Π ( z ) = 1 1   y Q q ψ ( z ) ψ ( q z + ( 1 q ) y ) H ( z ) = i = 0   y Q q i ψ ( z ) ψ ( q z + ( 1 q ) y ) H ( z ) = i = 0 ψ ( q i z + ( 1 q i ) y ) ψ ( q i + 1 z + ( 1 q i + 1 ) y ) H ( q i z + ( 1 q i ) y ) ,
provided that the right-hand side is convergent. From this concept of quantum antiderivative, we are in a position to define the right quantum integral on finite intervals with respect to another function.
Definition 3. 
Let Π : [ x , y ] R ,   q ( 0 , 1 ) , and ψ : [ x , y ] R ,   x 0 be a strictly increasing function. The q y -integral   y I q , ψ Π with respect to the function ψ on [ x , y ] , is defined by
  y I q , ψ Π ( z ) = z y Π ( s )   y d q ψ s = i = 0 ψ ( q i z + ( 1 q i ) y ) ψ ( q i + 1 z + ( 1 q i + 1 ) y ) Π ( q i z + ( 1 q i ) y ) = i = 0 ψ (   y Q q i ( z ) ) ψ (   y Q q i + 1 ( z ) ) Π (   y Q q i ( z ) ) ,
which is well-defined if the right-hand side exists. Moreover, for c ( x , y ) , the right quantum integral can be written as
z c Π ( s )   y d q ψ s = z y Π ( s )   y d q ψ s c y Π ( s )   y d q ψ s = i = 0 ψ ( q i z + ( 1 q i ) y ) ψ ( q i + 1 z + ( 1 q i + 1 ) y ) Π ( q i z + ( 1 q i ) y ) i = 0 ψ ( q i c + ( 1 q i ) y ) ψ ( q i + 1 c + ( 1 q i + 1 ) y ) Π ( q i c + ( 1 q i ) y ) .
Remark 3. 
If ψ ( z ) = z , then we obtain q y -definite quantum integral defined by Bermudo et al. [27] by
  y I q , z Π ( z ) = ( 1 q ) ( y z ) i = 0 q i Π ( q i z + ( 1 q i ) y ) .
Remark 4. 
If z = 0 and y = 1 in Remark 3, then
0 1 Π ( s )   1 d q s = ( 1 q ) i = 0 q i Π ( 1 q i ) .
Example 1. 
Let ψ ( z ) = ( y z ) m , Π ( z ) = ( y z ) n , m , n > 0 . Then,
z y ( y s ) n   y d q ( y z ) m s = i = 0 q i ( y z ) m q i + 1 ( y z ) m q i ( y z ) n = ( y z ) m + n i = 0 q m + n i q m i = 0 q m + n i = ( y z ) m + n 1 q m 1 q m + n
since y   y Q q i ( z ) = q i ( y z ) .
Now, some basic relations of right quantum calculus with respect to another function will be proved.
Theorem 1. 
The following relations hold:
( i )   y D q , ψ   y I q , ψ Π ( z ) = Π ( z ) .
( i i )   y I q , ψ   y D q , ψ Π ( z ) = Π ( z ) Π ( y ) , where z ( x , y ] .
Proof. 
By using Definitions 2 and 3, we have
  y D q , ψ   y I q , ψ Π ( z ) =   y D q , ψ i = 0 ψ (   y Q q i ( z ) ) ψ (   y Q q i + 1 ( z ) ) Π (   y Q q i ( z ) ) = 1 ( ψ ( z ) ψ (   y Q q ( z ) ) ) { i = 0 ψ (   y Q q i ( z ) ) ψ (   y Q q i + 1 ( z ) ) Π (   y Q q i ( z ) ) i = 0 ψ (   y Q q i + 1 ( z ) ) ψ (   y Q q i + 2 ( z ) ) Π (   y Q q i + 1 ( z ) ) } = 1 ( ψ ( z ) ψ (   y Q q ( z ) ) ) × [ ψ ( z ) ψ (   y Q q ( z ) ) Π ( z ) + ψ (   y Q q ( z ) ) ψ (   y Q q 2 ( z ) ) Π (   y Q q ( z ) ) + ψ (   y Q q 2 ( z ) ) ψ (   y Q q 3 ( z ) ) Π (   y Q q 2 ( z ) ) + { ψ (   y Q q ( z ) ) ψ (   y Q q 2 ( z ) ) Π (   y Q q ( z ) ) + ψ (   y Q q 2 ( z ) ) ψ (   y Q q 3 ( z ) ) Π (   y Q q 2 ( z ) ) + } ] = Π ( z ) ,
which proves ( i ) .
Also, we have
  y I q , ψ   y D q , ψ Π ( z ) =   y I q , ψ Π ( z ) Π (   y Q q ( z ) ) ψ ( z ) ψ (   y Q q ( z ) ) = i = 0 ψ (   y Q q i ( z ) ) ψ (   y Q q i + 1 ( z ) ) Π (   y Q q i ( z ) ) Π (   y Q q i + 1 ( z ) ) ψ (   y Q q i ( z ) ) ψ (   y Q q i + 1 ( z ) ) = Π ( z ) Π (   y Q q ( z ) ) + Π (   y Q q ( z ) ) Π (   y Q q 2 ( z ) ) + Π (   y Q q 2 ( z ) ) Π (   y Q q 3 ( z ) ) + = Π ( z ) Π ( y ) ,
with lim u Π ( q u z + ( 1 q u ) y ) = Π ( y ) , and thus ( i i ) is proved. □

3. Right Quantum Hermite–Hadamard Inequalities

In this section, we apply the newly defined right quantum integral with respect to another function to establish new Hermite–Hadamard-type inequalities for convex functions on [ x , y ] . We recall that Π is called convex if
Π ( λ x + ( 1 λ ) y ) λ Π ( x ) + ( 1 λ ) Π ( y )
for all λ [ 0 , 1 ] .
Theorem 2 
([18]). Assume that Π : [ x , y ] R is a convex differentiable function on ( x , y ) . Then, the left quantum integral of Π with respect to ψ ( z ) = ( z x ) m , m > 0 satisfies
Π y ( 1 q m ) + x q m ( 1 q ) 1 q m + 1 1 ( y x ) m x y Π ( s )   x d q ( z x ) m s ( 1 q m ) Π ( y ) + q m ( 1 q ) Π ( x ) 1 q m + 1 .
Using the idea of proving Theorem 2, we prove a new right quantum Hermite–Hadamard inequality.
Theorem 3. 
Assume that Π : [ x , y ] R is a convex differentiable function on ( x , y ) . Then, the right quantum integral of Π with respect to ψ ( z ) = ( y z ) m , m > 0 satisfies
Π x ( 1 q m ) + y q m ( 1 q ) 1 q m + 1 1 ( y x ) m x y Π ( s )   y d q ( y z ) m s ( 1 q m ) Π ( x ) + q m ( 1 q ) Π ( y ) 1 q m + 1 .
Proof. 
Consider the point c : = x ( 1 q m ) + y q m ( 1 q ) 1 q m + 1 . Then, c [ x , y ] since lim q 0 c = x and
lim q 1 x ( 1 q m ) + y q m ( 1 q ) 1 q m + 1 = m x + y m + 1 ( x , y )
for all m > 0 , by L’H o ^ pital’s rule with respect to q.
Note that there exists a tangent line ϕ ( z ) under the curve of Π ( z ) , i.e., for z ( x , y ) ,
ϕ ( z ) = Π ( c ) + Π ( c ) ( z c ) Π ( z ) ,
by the fact that Π is differentiable convex function on ( x , y ) . In order to prove the left side of (8), we take quantum integration with respect to a function ψ ( z ) = ( y z ) m , m > 0 and apply the formula in Example 1 for n = 0 , 1 , and we have
x y ϕ ( s )   y d q ( y z ) m d s = x y Π ( c ) + Π ( c ) ( s c )   y d q ( y z ) m s = ( y x ) m Π ( c ) + Π ( c ) a y ( y c ( y s ) )   y d q ( y z ) m s = ( y x ) m Π ( c ) + Π ( c ) ( y x ) m + 1 ( 1 q m ) 1 q m + 1 ( y x ) m + 1 ( 1 q m ) 1 q m + 1 = ( y x ) m Π x ( 1 q m ) + y q m ( 1 q ) 1 q m + 1 x y Π ( s )   y d q ( y z ) m s .
To prove the right-hand inequality, we consider the line connecting the points ( x , Π ( x ) ) and ( y , Π ( y ) )
χ ( z ) = Π ( y ) + Π ( y ) Π ( x ) y x ( z y ) ,
which, from convexity, implies that Π ( z ) χ ( z ) for all z [ x , y ] . Hence,
x y χ ( s )   y d q ( y z ) m s = x y Π ( y ) + Π ( y ) Π ( x ) y x ( s y )   y d q ( y z ) m s = ( y x ) m ( 1 q m ) Π ( x ) + q m ( 1 q ) Π ( y ) 1 q m + 1 x y Π ( s )   y d q ( y z ) m s .
The proof is completed by combining both cases. □
Remark 5. 
If m = 1 , then (8) is reduced to
Π x + q y 1 + q 1 ( y x ) x y Π ( s )   y d q s Π ( x ) + q Π ( y ) 1 + q ,
which appears in [27].
From Theorems 2 and 3, we yield the next corollary.
Corollary 2. 
Let Π : [ x , y ] R be a convex differentiable function on ( x , y ) and q ( 0 , 1 ) . Then, we have
Π y ( 1 q m ) + x q m ( 1 q ) 1 q m + 1 + Π x ( 1 q m ) + y q m ( 1 q ) 1 q m + 1 1 ( y x ) m x y Π ( s )   x d q ( z x ) m s + x y Π ( s )   y d q ( y z ) m s Π ( x ) + Π ( y ) .
Corollary 3. 
Let Π : [ x , y ] R be a convex differentiable function on ( x , y ) and q ( 0 , 1 ) . Then, we have
2 Π x + y 2 1 ( y x ) m x y Π ( s )   x d q ( z x ) m s + x y Π ( s )   y d q ( y z ) m s Π ( x ) + Π ( y ) .
Proof. 
Note that
Π x + y 2 = Π y ( 1 q m ) + x q m ( 1 q ) 2 ( 1 q m + 1 ) + x ( 1 q m ) + y q m ( 1 q ) 2 ( 1 q m + 1 ) 1 2 Π y ( 1 q m ) + x q m ( 1 q ) ( 1 q m + 1 ) + 1 2 Π x ( 1 q m ) + y q m ( 1 q ) ( 1 q m + 1 ) .
From Corollary 2, we have the result. □
Now, we prove new inequalities for q x - and q y -integrals with respect to other functions for h convex functions.
Definition 4 
([28]). Let h : [ 0 , 1 ] R 0 + and Π : [ x , y ] R R 0 + . Then, the function Π is called h-convex if we have
Π ( λ u + ( 1 λ ) v ) h ( λ ) Π ( u ) + h ( 1 λ ) Π ( v )
for all u , v [ x , y ] and λ ( 0 , 1 ) .
Theorem 4. 
Let Π : [ x , y ] R 0 + be an h-convex function such that h ( 1 2 ) 0 and q ( 0 , 1 ) . Then, we have
1 h ( 1 2 ) Π x + y 2 1 ( y x ) x y Π ( t )   x d q ( z x ) t + x y Π ( t )   y d q ( y z ) t 0 1 h ( z ) d q z + 0 1 h ( 1 z ) d q z Π ( x ) + Π ( y ) .
Proof. 
We have for all u , v [ x , y ] that
Π u + v 2 h 1 2 Π ( u ) + Π ( v )
by the h-convexity of Π . By putting u = z y + ( 1 z ) x and v = z x + ( 1 z ) y , we obtain
1 h 1 2 Π x + y 2 Π ( z y + ( 1 z ) x ) + Π ( z x + ( 1 z ) y ) .
q-integrating both sides of (12), according to Jackson integral, we have
x y 1 h ( 1 2 ) Π x + y 2 d q z = 1 h ( 1 2 ) Π x + y 2 ( y x ) ,
x y Π ( z y + ( 1 z ) x ) d q z = ( y x ) ( 1 q ) i = 0 q i Π ( q i y + ( 1 q i ) x ) = i = 0 q i ( y x ) q i + 1 ( y x ) Π ( q i y + ( 1 q i ) x ) = x y Π ( t ) x d q ( z x ) t ,
x y Π ( z x + ( 1 z ) y ) d q z = ( y x ) ( 1 q ) i = 0 q i Π ( q i x + ( 1 q i ) y ) = i = 0 q i ( y x ) q i + 1 ( y x ) Π ( q i x + ( 1 q i ) y ) = x y Π ( t ) y d q ( y z ) t .
From (13)–(15), we have the first inequality of (11).
From the definitions of q x and q y -integrals, we have
1 y x x y Π ( t )   x d q ( z x ) t = ( 1 q ) i = 0 q i Π ( q i y + ( 1 q i ) x ) = ( 1 q ) i = 0 q i Π ( x + q i ( y x ) ) = 0 1 Π ( x + z ( y x ) ) d q z .
By h-convexity of Π , we have
0 1 Π ( x + z ( y x ) ) d q z = 0 1 Π ( z y + ( 1 z ) x ) d q z Π ( y ) 0 1 h ( z ) d q z + Π ( x ) 0 1 h ( 1 z ) d q z .
Similarly,
1 y x x y Π ( t )   y d q ( y z ) t = ( 1 q ) i = 0 q i Π ( q i x + ( 1 q i ) y ) = ( 1 q ) i = 0 q i Π ( y q i ( y x ) ) = 0 1 Π ( y z ( y x ) ) d q z
and
0 1 Π ( y z ( y x ) ) d q z Π ( x ) 0 1 h ( z ) d q z + Π ( y ) 0 1 h ( 1 z ) d q z .
So, we obtain the right-hand side of inequality (11). □
Example 2. 
Let [ x , y ] = [ 0 , 1 ] , Π ( z ) = z 2 , h ( z ) = z and q = 1 2 . Then, Π is convex on [ 0 , 1 ] . We have h ( 1 2 ) = 1 2 , Π ( x + y 2 ) = 1 4 , Π ( x ) = 0 ,   Π ( y ) = 1 , and we find
x y Π ( t )   x d q ( z x ) t = 4 7 , x y Π ( t )   y d q ( y z ) x = 5 21 , 0 1 h ( z ) d q z = 2 3 , 0 1 h ( 1 z ) d q z = 1 3 .
Hence,
1 2 = 1 h ( 1 2 ) Π x + y 2 1 ( y x ) x y Π ( t )   x d q ( z x ) t + x y Π ( t )   y d q ( y z ) t = 4 7 + 5 21 0 1 h ( z ) d q z + 0 1 h ( 1 z ) d q z Π ( x ) + Π ( y ) = 2 3 + 1 3 ,
which means that inequality (11) holds.
Then, we obtain another inequality concerning modified h-convex functions.
Definition 5 
([29]). Let h : [ 0 , 1 ] R 0 + and Π : [ x , y ] R R 0 + . If
Π ( λ u + ( 1 λ ) v ) h ( λ ) Π ( u ) + ( 1 h ( λ ) ) Π ( v )
holds for any u , v [ x , y ] and λ [ 0 , 1 ] , then Π is called modified h-convex function.
Theorem 5. 
Let Π : [ x , y ] R 0 + be a modified h-convex function and q ( 0 , 1 ) . Then, we have
2 Π x + y 2 1 ( y x ) x y Π ( t )   x d q ( z x ) t + x y Π ( t )   y d q ( y z ) t Π ( x ) + Π ( y ) .
Proof. 
Because Π is modified h-convex, then for all u , v [ x , y ] we have
Π u + v 2 h 1 2 Π ( u ) + 1 h 1 2 Π ( v )
and
Π u + v 2 h 1 2 Π ( v ) + 1 h 1 2 Π ( u ) .
Adding these two inequalities, we obtain 2 Π u + v 2 Π ( u ) + Π ( v ) . By replacing u = z y + ( 1 z ) x and v = z x + ( 1 z ) y and q-integrating both sides according to Jackson integral, we have the first inequality of (16).
The second inequality is proved by combining the following two inequalities.
x y Π ( t )   x d q ( z x ) t = 0 1 Π ( x + z ( y x ) ) d q z Π ( y ) 0 1 h ( z ) d q z + Π ( x ) 0 1 [ 1 h ( z ) ] d q z ,
x y Π ( t )   y d q ( y z ) t = 0 1 Π ( y z ( y x ) ) d q z Π ( x ) 0 1 h ( z ) d q z + Π ( y ) 0 1 [ 1 h ( z ) ] d q z .
 □

4. Conclusions

In the present research, we have further discussed the quantum calculus on finite intervals with respect to another function, which was initiated by the authors in [18], where the derivative   x D q , ψ and the integral   x I q , ψ were defined and their properties were studied. Here, we defined the corresponding quantum derivative   y D q , ψ and quantum integral   y I q , ψ with respect to another function and studied their basic properties. As applications of the newly defined right quantum calculus with respect to another function, we obtained new Hermite–Hadamard-type inequalities for convex, h-convex, and modified h-convex functions.
For future study, we plan to investigate if we can apply the new definition of quantum calculus in finite intervals with respect to another function to other types of quantum inequalities, such as Fejer, Ostrowski, Grüss, etc.

Author Contributions

Conceptualization, S.K.N. and J.T.; methodology, A.C., S.K.N. and J.T.; validation, A.C., S.K.N. and J.T.; formal analysis, A.C., S.K.N. and J.T.; writing—original draft preparation, A.C., S.K.N. and J.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Jackson, F.H. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
  2. Ernst, T.A. A Comprehensive Treatment of q-Calculus; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
  3. Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
  4. Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef]
  5. Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
  6. Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
  7. Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
  8. Ma, J.; Yang, J. Existence of solutions for multi-point boundary value problem of fractional q-difference equation. Electron. J. Qual. Theory Differ. Equ. 2011, 92, 1–10. [Google Scholar] [CrossRef]
  9. Yang, C. Positive Solutions for a three-point boundary value problem of fractional q-difference equations. Symmetry 2018, 10, 358. [Google Scholar] [CrossRef]
  10. Guo, C.; Guo, J.; Kang, S.; Li, H. Existence and uniqueness of positive solutions for nonlinear q-difference equation with integral boundary conditions. J. Appl. Anal. Comput. 2020, 10, 153–164. [Google Scholar] [CrossRef]
  11. Ouncharoen, R.; Patanarapeelert, N.; Sitthiwirattham, T. Nonlocal q-symmetric integral boundary value problem for sequential q-symmetric integrodifference equations. Mathematics 2018, 6, 218. [Google Scholar] [CrossRef]
  12. Zhai, C.; Ren, J. Positive and negative solutions of a boundary value problem for a fractional q-difference equation. Adv. Differ. Equ. 2017, 2017, 82. [Google Scholar] [CrossRef]
  13. Ren, J.; Zhai, C. Nonlocal q-fractional boundary value problem with Stieltjes integral conditions. Nonlinear Anal. Model. 2019, 24, 582–602. [Google Scholar] [CrossRef]
  14. Ma, K.; Li, X.; Sun, S. Boundary value problems of fractional q-difference equations on the half-line. Bound. Value Probl. 2019, 2019, 46. [Google Scholar] [CrossRef]
  15. Wongcharoen, A.; Thatsatian, A.; Ntouyas, S.K.; Tariboon, J. Nonlinear fractional q-difference equation with fractional Hadamard and quantum integral nonlocal conditions. J. Function Spaces 2020, 2020, 9831752. [Google Scholar] [CrossRef]
  16. Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef]
  17. Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Quantum Calculus: New Concepts, Impulsive IVPs and BVPs, Inequalities; World Scientific: Singapore, 2016. [Google Scholar]
  18. Kamsrisuk, N.; Passary, D.; Ntouyas, S.K.; Tariboon, J. Quantum calculus with respect to another function. AIMS Math. 2024, 9, 10446–10461. [Google Scholar] [CrossRef]
  19. Tariq, M.; Ntouyas, S.K.; Shaikh, A.A. A comprehensive review of the Hermite–Hadamard inequality pertaining to fractional integral operators. Mathematics 2023, 11, 1953. [Google Scholar] [CrossRef]
  20. Tariq, M.; Ntouyas, S.K.; Shaikh, A.A. A comprehensive review of the Hermite-Hadamard inequality pertaining to Quantum Calculus. Foundations 2023, 3, 340–379. [Google Scholar] [CrossRef]
  21. Ali, M.A.; Köbis, E. Some new q-Hermite-Hadamartd-Mercer inequalities and related estimates in Quantum calculus. J. Nonlinear Var. Anal. 2023, 7, 49–66. [Google Scholar]
  22. Butt, S.I.; Aftab, M.N.; Nabwey, H.; Etemad, S. Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus. AIMS Math. 2024, 9, 5523–5549. [Google Scholar] [CrossRef]
  23. Li, H.; Meftah, B.; Saleh, W.; Xu, H.; Kiliçman, A.; Lakhdari, A. Further Hermite–Hadamard-type inequalities for fractional integrals with exponential kernels. Fractal Fract. 2024, 8, 345. [Google Scholar] [CrossRef]
  24. Junjua, M.-D.; Qayyum, A.; Munir, A.; Budak, H.; Saleem, M.M.; Supadi, S.S. A study of some New Hermite-Hadamard inequalities via specific convex functions with applications. Mathematics 2024, 12, 478. [Google Scholar] [CrossRef]
  25. Tunc, T.; Demir, I. On a new version of Hermite–Hadamard-type inequality based on proportional Caputo-hybrid operator. Bound. Value Prob. 2024, 2024, 44. [Google Scholar] [CrossRef]
  26. Samraiz, M.; Malik, M.; Naheed, S.; Rahman, G.; Nonlaopon, K. Hermite-Hadamard-type inequalities via different convexities with applications. J. Ineq. Appl. 2023, 2023, 70. [Google Scholar] [CrossRef]
  27. Bermudo, S.; Korus, P.; Valdes, J.E.N. On q-Hermite–Hadamard inequalities for general convex functions. Acta Math. Hungar. 2020, 162, 364–374. [Google Scholar] [CrossRef]
  28. Toader, G. Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, Romania, 1985; University of Cluj-Napoca: Cluj-Napoca, Romania, 1985; pp. 329–338. [Google Scholar]
  29. Varosanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Cuntavepanit, A.; Ntouyas, S.K.; Tariboon, J. Right Quantum Calculus on Finite Intervals with Respect to Another Function and Quantum Hermite–Hadamard Inequalities. Axioms 2024, 13, 466. https://doi.org/10.3390/axioms13070466

AMA Style

Cuntavepanit A, Ntouyas SK, Tariboon J. Right Quantum Calculus on Finite Intervals with Respect to Another Function and Quantum Hermite–Hadamard Inequalities. Axioms. 2024; 13(7):466. https://doi.org/10.3390/axioms13070466

Chicago/Turabian Style

Cuntavepanit, Asawathep, Sotiris K. Ntouyas, and Jessada Tariboon. 2024. "Right Quantum Calculus on Finite Intervals with Respect to Another Function and Quantum Hermite–Hadamard Inequalities" Axioms 13, no. 7: 466. https://doi.org/10.3390/axioms13070466

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop