Umbral Methods and Harmonic Numbers
Abstract
:1. Introduction
2. Harmonic Numbers and Generating Functions
3. Harmonic-Based Functions and Differential Equations
4. Truncated Exponential Numbers and Final Comments
Author Contributions
Funding
Conflicts of Interest
References
- Dattoli, G.; Srivastava, H.M. A Note on Harmonic Numbers, Umbral Calculus and Generating Functions. Appl. Math. Lett. 2008, 21, 686–693. [Google Scholar] [CrossRef]
- Weisstein, E.W. CRC Concise Encyclopedia of Mathematics; Chapman and Hall/CRC: Boca Raton, FL, USA, 2003; p. 3115. ISBN 1-58488-347-2. [Google Scholar]
- Coffey, M.W. Expressions for Harmonic Number Generating Functions. In Contemporary Mathematics, 517, Gems in Experimental Mathematics; Amdeberhan, T., Medina, L.A., Moll, V.H., Eds.; AMS Special Session, Experimental Mathematics: Washington, DC, USA, 2009. [Google Scholar]
- Cvijović, D. The Dattoli-Srivastava Conjectures Concerning Generating Functions Involving the Harmonic Numbers. Appl. Math. Comput. 2010, 215, 4040–4043. [Google Scholar] [CrossRef]
- Mezo, I. Exponential Generating Function of Hyper-Harmonic Numbers Indexed by Arithmetic Progressions. Cent. Eur. J. Math. 2013, 11, 931–939. [Google Scholar]
- Conway, J.H.; Guy, R.K. The Book of Numbers; Springer: New York, NY, USA, 1996. [Google Scholar]
- Rochowicz, J.A., Jr. Harmonic Numbers: Insights, Approximations and Applications. Spreadsheets Educ. eJSiE 2015, 8, 4. [Google Scholar]
- Lagarias, J.C. Euler’s Constant: Euler’s Work and Modern Developments. Bulletin (New Series) of the American Mathematical Society. S 0273-0979(2013)01423-X. pp. 527–628. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.363.9527&rep=rep1&type=pdf (accessed on 19 July 2013).
- Cartier, P. Mathemagics (A Tribute to L. Euler and R. Feynman). In Noise, Oscillators and Algebraic Randomness. Lecture Notes in Physics; Planat, M., Ed.; Springer: Berlin, Heidelberg, 2000; Volume 550. [Google Scholar]
- Licciardi, S. Umbral Calculus, A Different Mathematical Language. Ph.D. Thesis, Department of Mathematics and Computer Sciences, XXIX Cycle, University of Catania, Catania, Italy, 2018. [Google Scholar]
- Roman, S.M.; Rota, G.-C. The umbral calculus. Adv. Math 1978, 27, 95–188. [Google Scholar] [CrossRef]
- Doetsch, G. Handbuch der Laplace Transformation; Birkhnauser: Basel, Switzerland, 1950. [Google Scholar]
- Mező, I.; Dil, A. Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence. Cent. Eur. J. Math. 2009, 7, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Zhukovsky, K.; Dattoli, G. Umbral Methods, Combinatorial Identities And Harmonic Numbers. Appl. Math. 2011, 1, 46. [Google Scholar] [CrossRef]
- Dattoli, G. Generalized Polynomials, Operational Identities and their Applications. J. Comput. Appl. Math 2000, 118, 111–123. [Google Scholar] [CrossRef]
- Dattoli, G.; Ricci, P.E.; Marinelli, L. Generalized Truncated Exponential Polynomials and Applications. In An International Journal of Mathematics; Rendiconti dell’Istituto di Matematica dell’Universitá di Trieste: Trieste, Italy, 2002; Volume 34, pp. 9–18. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dattoli, G.; Germano, B.; Licciardi, S.; Martinelli, M.R. Umbral Methods and Harmonic Numbers. Axioms 2018, 7, 62. https://doi.org/10.3390/axioms7030062
Dattoli G, Germano B, Licciardi S, Martinelli MR. Umbral Methods and Harmonic Numbers. Axioms. 2018; 7(3):62. https://doi.org/10.3390/axioms7030062
Chicago/Turabian StyleDattoli, Giuseppe, Bruna Germano, Silvia Licciardi, and Maria Renata Martinelli. 2018. "Umbral Methods and Harmonic Numbers" Axioms 7, no. 3: 62. https://doi.org/10.3390/axioms7030062
APA StyleDattoli, G., Germano, B., Licciardi, S., & Martinelli, M. R. (2018). Umbral Methods and Harmonic Numbers. Axioms, 7(3), 62. https://doi.org/10.3390/axioms7030062