On a New Class of Laplace-Type Integrals Involving Generalized Hypergeometric Functions
Abstract
:1. Introduction
- (i)
- converges for all finite z if ;
- (ii)
- converges for if ; and
- (iii)
- diverges for all z if .
- (i)
- absolutely convergent for if ;
- (ii)
- conditionally convergent for , if ; and
- (iii)
- divergent for if , where
- Gauss Theorem for
- Kummer’s Theorem
- Second Gauss Theorem
- Bailey’s Theorem
- Dixon’s Theorem for
- Watson’s Theorem for
- Whipple’s Theorem for
- Pfaff-Saalschütz Theorem
- Second Whipple’s Theorem
- Dougall’s Theorem for
- Second Dougall’s Theorem
2. Laplace-Type Integrals Involving Generalized Hypergeometric Functions
- (a)
- In Theorem 1, if we take , we get the following results.
- (b)
- In Theorem 4, if we take , we get the following results.
- (c)
- In Theorem 7, if we take , we get the following results.
- (d)
- In Theorem 10, if we take , we get the following results.
- (e)
- In Theorem 11, if we take , we get the following results.
- (f)
- In Theorem 14, if we take , we get the following results.
- (g)
- In Theorem 17, if we take , we get the following results.
- (h)
- In Theorem 21, if we take , we get the following results.
3. Concluding Remark
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935; Reprinted by Stechert-Hafner, New York, NY, USA, 1964. [Google Scholar]
- Oberhettinger, F.; Badi, L. Tables of Laplace Transforms; Springer: Berlin, Germany, 1973. [Google Scholar]
- Rainville, E.D. Special Functions; The Macmillan Company: New York, NY, USA, 1960; Reprinted by Chelsea Publishing Company, Bronx, NY, USA, 1971. [Google Scholar]
- Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities, 2nd ed.; Springer: London, UK, 2014. [Google Scholar]
- Bromwich, T.J. An Introduction to the Theory of Infinite Series; Macmillan: New York, NY, USA, 1948. [Google Scholar]
- Knopp, K. Theory and Applications of Infinite Series; Hafner: New York, NY, USA, 1990; Reprinted by Dover. [Google Scholar]
- Luke, Y.L. The Special Functions and Their Approximations; Academic Press: New York, NY, USA, 1969; Volume 1. [Google Scholar]
- Bailey, W.N. Products of Generalized Hypergeometric Series. Proc. Lond. Math. Soc. 1928, 28, 242–254. [Google Scholar] [CrossRef]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. More Special Functions; Integrals and Series; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1990; Volume 3. [Google Scholar]
- Masjed-Jamei, M.; Koepf, W. Some Summation Theorems for Generalized Hypergeometric Functions. Axioms 2018, 7, 38. [Google Scholar] [CrossRef]
- Kim, Y.S.; Rakha, M.A.; Rathie, A.K. Extensions of Certain Classical Summation Theorems for the Series 2F1, 3F2 and 4F3 with Applications in Ramanujan’s Summations. Int. J. Math. Math. Sci. 2010, 2010, 309503. [Google Scholar] [CrossRef]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K. Generalizations of Watson’s theorem on the sum of a 3F2. Indian J. Math. 1992, 34, 23–32. [Google Scholar]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K.; Arora, K. Generalizations of Dixon’s Theorem on the sum of a 3F2(1). Math. Comp. 1994, 62, 267–276. [Google Scholar]
- Lavoie, J.L.; Grondin, F.; Rathie, A.K. Generalizations of Whipple’s theorem on the sum of a 3F2. J. Comput. Appl. Math. 1996, 72, 293–300. [Google Scholar] [CrossRef]
- Rakha, M.A.; Rathie, A.K. Generalizations of classical summation theorems for the series 2F1 and 3F2 with applications. Integral Transform. Spec. Funct. 2011, 22, 823–840. [Google Scholar] [CrossRef]
- Davis, B. Integral Transforms and Their Applications, 3rd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Doetsch, G. Introduction to the Theory and Applications of the Laplace Transformation; Springer: New York, NY, USA, 1974. [Google Scholar]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw Hill: New York, NY, USA, 1954; Volume I–II. [Google Scholar]
- Slater, L.J. Confluent Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1960. [Google Scholar]
- Deepthi, P.; Prajapati, J.C.; Rathie, A.K. New Laplace transforms of the 2F2 hypergeometric function. J. Fract. Calc. Appl. 2017, 8, 150–155. [Google Scholar]
- Parmar, R.K.; Purohit, S.D. Certain integral transforms and fractional integral formulas for the extended hypergeometric functions. TWMS J. Appl. Eng. Math. 2017, 7, 74–81. [Google Scholar]
- Kim, Y.S.; Rathie, A.K.; Civijovic, D. New Laplace transforms of Kummer’s confluent hypergeometric functions. Math. Comput. Model. 2012, 55, 1068–1071. [Google Scholar] [CrossRef]
- Kim, Y.S.; Rathie, A.K.; Lee, C.H. New Laplace transforms for the generalized hypergeometric functions 2F2. Honam Math. J. 2015, 37, 245–252. [Google Scholar] [CrossRef]
- Jun, S.; Kim, I.; Rathie, A.K. On a new class of Eulerian’s type integrals involving generalized hypergeometric functions. Aust. J. Math. Anal. Appl. 2019, 16, 10. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koepf, W.; Kim, I.; Rathie, A.K. On a New Class of Laplace-Type Integrals Involving Generalized Hypergeometric Functions. Axioms 2019, 8, 87. https://doi.org/10.3390/axioms8030087
Koepf W, Kim I, Rathie AK. On a New Class of Laplace-Type Integrals Involving Generalized Hypergeometric Functions. Axioms. 2019; 8(3):87. https://doi.org/10.3390/axioms8030087
Chicago/Turabian StyleKoepf, Wolfram, Insuk Kim, and Arjun K. Rathie. 2019. "On a New Class of Laplace-Type Integrals Involving Generalized Hypergeometric Functions" Axioms 8, no. 3: 87. https://doi.org/10.3390/axioms8030087
APA StyleKoepf, W., Kim, I., & Rathie, A. K. (2019). On a New Class of Laplace-Type Integrals Involving Generalized Hypergeometric Functions. Axioms, 8(3), 87. https://doi.org/10.3390/axioms8030087