A Vehicle Comparison and Re-Identification System Based on Residual Network
Abstract
:1. Introduction
2. Related Work
2.1. Convolutional Neural Network
2.2. Person Re-Identification
2.3. Vehicle Re-Identification
3. System Description
3.1. Framework
3.2. Pre-Processing
3.3. Backbone
3.4. Aggregation
3.5. Head
3.6. Loss Function
3.7. Distance Metrics
3.8. Post-Processing
4. Experiments
4.1. Dataset
4.2. Evaluation Indicators
4.3. Vehicle Comparison
4.4. Vehicle Re-ID
4.4.1. Comparison with Attribute Based Methods on VeRi Dataset
4.4.2. Ablation Studies
4.4.3. Comparison with State-of-the-Art Methods on Our Dataset
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baek, N.; Park, S.M.; Kim, K.J.; Park, S.B. Vehicle color classification based on the support vector machine method. In International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1133–1139. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Ojala, T.; Pietikainen, M.; Harwood, D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 9–13 October 1994; Volume 1, pp. 582–585. [Google Scholar]
- Datar, M.; Immorlica, N.; Indyk, P.; Mirrokni, V.S. Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the 20th Annual Symposium on Computational Geometry, Buffalo, NY, USA, 7–11 June 2021; pp. 253–262. [Google Scholar]
- Wang, J.; Kumar, S.; Chang, S.F. Semi-supervised hashing for large-scale search. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2393–2406. [Google Scholar] [CrossRef] [PubMed]
- Xia, R.; Pan, Y.; Lai, H.; Liu, C.; Yan, S. Supervised hashing for image retrieval via image representation learning. In Proceedings of the National Conference on Artificial Intelligence, Madeira, Portugal, 24–26 September 2014; Volume 3, pp. 2156–2162. [Google Scholar]
- Zheng, L.; Shen, L.; Tian, L.; Wang, S.; Wang, J.; Tian, Q. Scalable person re-identification: A benchmark. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1116–1124. [Google Scholar]
- Luo, H.; Jiang, W.; Gu, Y.; Liu, F.; Liao, X.; Lai, S.; Gu, J. A strong baseline and batch normalization neck for deep person re-identification. IEEE Trans. Multimed. 2020, 22, 2597–2609. [Google Scholar] [CrossRef]
- Ye, M.; Shen, J.; Lin, G.; Xiang, T.; Shao, L.; Hoi, S.C. Deep learning for person re-identification: A survey and outlook. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 2872–2893. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zheng, L.; Deng, W.; Wang, S. SVDNet for pedestrian retrieval. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October2017; pp. 3800–3808. [Google Scholar]
- Varior, R.R.; Shuai, B.; Lu, J.; Xu, D.; Wang, G. A siamese long short-term memory architecture for human re-identification. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 135–153. [Google Scholar]
- Su, C.; Zhang, S.; Xing, J.; Gao, W.; Tian, Q. Deep attributes driven multi-camera person re-identification. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 475–491. [Google Scholar]
- Sun, R.; Huang, Q.H.; Fang, W.; Zhang, X. Attributes-based person re-identification via CNNs with coupled clusters loss. J. Syst. Eng. Electron. 2020, 31, 45–55. [Google Scholar] [CrossRef]
- Liu, H.; Jie, Z.; Jayashree, K.; Qi, M.; Jiang, J.; Yan, S.; Feng, J. Video-based person re-identification with accumulative motion context. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 2788–2802. [Google Scholar] [CrossRef]
- Varior, R.R.; Haloi, M.; Wang, G. Gated siamese convolutional neural network architecture for human re-identification. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 791–808. [Google Scholar]
- Cheng, D.; Gong, Y.; Zhou, S.; Wang, J.; Zheng, N. Person re-identification by multichannel parts-based CNN with improved triplet loss function. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Amsterdam, The Netherlands, 11–14 October 2016; pp. 1335–1344. [Google Scholar]
- Chen, W.; Chen, X.; Zhang, J.; Huang, K. Beyond triplet loss: A deep quadruplet network for person re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1320–1329. [Google Scholar]
- Deng, J.; Hao, Y.; Khokhar, M.S.; Kumar, R.; Cai, J.; Kumar, J.; Aftab, M.U. Trends in vehicle re-identification past, present and future: A comprehensive review. Mathematics 2021, 9, 1–35. [Google Scholar]
- Wang, H.; Peng, J.; Chen, D.; Jiang, G.; Zhao, T.; Fu, X. Attribute-Guided Feature Learning Network for Vehicle Reidentification. IEEE Multimed. 2020, 27, 112–121. [Google Scholar] [CrossRef]
- Qian, J.; Jiang, W.; Luo, H.; Yu, H. Stripe-based and attribute-aware network: A two-branch deep model for vehicle re-identification. Meas. Sci. Technol. 2020, 31, 095401. [Google Scholar] [CrossRef]
- Chen, G.W.; Yang, C.M.; İk, T.U. Real-time license plate recognition and vehicle tracking system based on deep learning. In Proceedings of the 22nd Asia-Pacific Network Operations and Management Symposium, Tainan, Taiwan, 8–10 September 2021; pp. 378–381. [Google Scholar]
- Liu, X.; Liu, W.; Mei, T.; Ma, H. PROVID: Progressive and multimodal vehicle reidentification for large-scale urban surveillance. IEEE Trans. Multimed. 2018, 20, 645–658. [Google Scholar] [CrossRef]
- Shen, Y.; Xiao, T.; Li, H.; Yi, S.; Wang, X. Learning deep neural networks for vehicle re-id with visual-spatio-temporal path proposals. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1918–1927. [Google Scholar]
- Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning augmentation policies from data. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 113–123. [Google Scholar]
- Pan, X.; Luo, P.; Shi, J.; Tang, X. Two at once: Enhancing learning and generalization capacities via IBN-Net. In Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 484–500. [Google Scholar]
- Radenovic, F.; Tolias, G.; Chum, O. Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1655–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Sun, Y.; Cheng, C.; Zhang, Y.; Zhang, C.; Zheng, L.; Wang, Z.; Wei, Y. Circle Loss: A unified perspective of pair similarity optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6397–6406. [Google Scholar]
- Liu, X.; Liu, W.; Mei, T.; Ma, H. A Deep Learning-Based Approach to Progressive Vehicle Re-identification for Urban Surveillance. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Volume 9906, pp. 869–884. [Google Scholar]
- Liu, H.; Tian, Y.; Wang, Y.; Pang, L.; Huang, T. Deep Relative Distance Learning: Tell the Difference between Similar Vehicles. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Amsterdam, The Netherlands, 11–14 October 2016; pp. 2167–2175. [Google Scholar]
- Wang, G.; Yuan, Y.; Chen, X.; Li, J.; Zhou, X. Learning discriminative features with multiple granularities for person re-identification. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Korea, 22–26 October 2018; pp. 274–282. [Google Scholar]
- He, S.; Luo, H.; Wang, P.; Wang, F.; Li, H.; Jiang, W. Transreid: Transformer-based object re-identification. In Proceedings of the International Conference on Computer Vision, Online, 11–17 October 2021; pp. 14993–15002. [Google Scholar]
Similarity | 01_c1 | 01_c2 | 02_c1 | 02_c2 | 03_c1 |
---|---|---|---|---|---|
01_c1 | 1.0000 | 0.7476 | 0.0562 | ||
01_c2 | 0.7476 | 1.0000 | 0.1228 | ||
02_c1 | 1.0000 | 0.8781 | |||
02_c2 | 0.8781 | 1.0000 | |||
03_c1 | 0.1228 | 1.0000 |
Measure | 0.60 | 0.62 | 0.64 | 0.66 | 0.68 | 0.70 |
---|---|---|---|---|---|---|
Precision | 90.23 | 92.70 | 94.46 | 95.75 | 96.75 | 97.45 |
Recall | 97.11 | 96.34 | 95.32 | 94.06 | 92.50 | 90.50 |
Method | Rank-1 | Rank-5 | mAP |
---|---|---|---|
AGNet [20] | 90.90 | 96.20 | 66.32 |
SAN [21] | 93.30 | 97.10 | 72.50 |
PROVID [23] | 81.56 | 95.11 | 53.42 |
Siamese-CNN+Path-LSTM [24] | 83.49 | 90.04 | 58.27 |
Ours | 96.6 | 97.0 | 81.6 |
GeM Pooling | Circle Loss | Feature Stored | Rank-1 | mAP | Inference-Time |
---|---|---|---|---|---|
97.47 | 91.25 | 8.52 ms | |||
✓ | 98.12 | 92.47 | 8.61 ms | ||
✓ | 98.42 | 93.96 | 8.53 ms | ||
✓ | 97.47 | 91.25 | 2.13 ms | ||
✓ | ✓ | ✓ | 98.62 | 95.79 | 2.34 ms |
Model | Rank-1 | Rank-5 | mAP | mINP |
---|---|---|---|---|
Strong-baseline | 97.47 | 98.94 | 91.25 | 74.39 |
Transreid | 93.88 | 97.80 | 80.99 | 55.01 |
MGN | 94.34 | 98.16 | 84.61 | 62.85 |
AGW | 97.79 | 99.16 | 92.98 | 78.36 |
Ours | 98.62 | 99.04 | 95.79 | 85.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, W.; Min, Y.; Zhai, J. A Vehicle Comparison and Re-Identification System Based on Residual Network. Machines 2022, 10, 799. https://doi.org/10.3390/machines10090799
Yin W, Min Y, Zhai J. A Vehicle Comparison and Re-Identification System Based on Residual Network. Machines. 2022; 10(9):799. https://doi.org/10.3390/machines10090799
Chicago/Turabian StyleYin, Weifeng, Yusong Min, and Junyong Zhai. 2022. "A Vehicle Comparison and Re-Identification System Based on Residual Network" Machines 10, no. 9: 799. https://doi.org/10.3390/machines10090799
APA StyleYin, W., Min, Y., & Zhai, J. (2022). A Vehicle Comparison and Re-Identification System Based on Residual Network. Machines, 10(9), 799. https://doi.org/10.3390/machines10090799