1. Introduction
Urban motorways represent an important part of the traffic infrastructure of the urban traffic network and, as high-performance roads, represent key traffic routes. They serve local and transit traffic, and due to the large number and dense arrangement of on- and off-ramps, they are often congested, especially during the morning and afternoon peak hours. One of the solutions to relieve congestion is to expand and upgrade the existing traffic infrastructure by adding more traffic lanes. Such a solution is not always feasible due to high costs and a lack of space, especially in larger urban cities.
For this reason, solutions from the field of Intelligent Transportation Systems (ITS) are increasingly being used. The urban motorway operational service capacity and Level of Service (LoS) can be improved in existing traffic infrastructure by using traffic control approaches such as Ramp Metering (RM) and the Variable Speed Limit (VSL). In this paper, we apply the VSL to the existing urban motorway model to improve the traffic Measures of Effectiveness (MoEs). The VSL aims to harmonize speeds in mainstream traffic, reducing the sudden changes in speed that often cause shock waves [
1]. Furthermore, by controlling the speed of vehicles moving in a mainstream traffic flow, the flow of vehicles to the conflicting areas where congestion occurs due to the interference of vehicles from the on-ramp can be reduced. Slowing down the mainstream traffic flow before the on-ramp enables the faster and safer entry of vehicles from the on-ramp to the mainstream flow and increases the operational capacity of an urban motorway.
To implement a VSL control system, it is necessary to define speed limit activation rules based on measurements of traffic and/or meteorological data. Recently, control approaches based on Reinforcement Learning (RL) have been used for the VSL [
2]. More specifically, RL is employed for the optimization of the VSL control policy based on the principle of maximizing the Quality value (Q-value) for each state–action pair. By doing so, the action that produces the best results for a particular state will have the highest Q-value and is considered the best action for that state. The assessment of the performance of such systems is most often measured by certain MoEs that include the Mean Travel Time (
), Total Travel Time (
), Total Time Spent (
), and total delay time.
The classic VSL control systems have a few major drawbacks that include the need to have a fixed position for the applicable speed limit and a fixed position to measure traffic states based on the traffic density, segment Travel Time (
), or the exiting traffic flow from the area of interest. The recent appearance and rapid development of Autonomous Vehicles (AVs) and Connected Autonomous Vehicles (CAVs) present fresh prospects for improving the measurement of traffic states for the operation of the VSL control system. The appearance and implementation of such vehicles in the traffic flow alongside Human-Driven Vehicles (HDVs) have created a recently emerged type of traffic flow commonly named “mixed traffic flow”. The introduction of CAVs into the control loop of a VSL control system presents new possibilities for the measurement of traffic states and the imposition of speed limits, since CAVs have the ability to communicate with the VSL control system and send relevant traffic data to approximate the position and the severity of the congestion [
3]. Furthermore, they can receive speed limit information with no fixed position for the applicable VSL area. An overview of the optimization of such RL-based VSL control approaches that include mixed traffic flows was conducted in [
2].
In this paper, the Q-Learning VSL (QL-VSL) control approach based on dynamic congested area detection, dynamic speed limit zone positions, and imposed speed limits based on the computed gradients of sudden mean speed changes between consecutive motorway edges, called Congestion Detection QL Dynamic Position VSL (CD-QL-DPVSL), is proposed and analyzed. The proposed CD-QL-DPVSL is compared to several existing control approaches including the classic Rule-Based VSL (RB-VSL) algorithm, the Speed Transition Matrices-based QL-VSL (STM-QL-VSL), the STM-QL Dynamic VSL (STM-QL-DVSL), previously developed in [
3], and the baseline no-control scenario. This proposed CD-QL-DPVSL control approach is an extension of our previous control approaches [
3]. Thus, this paper presents the following key contributions:
The proposal of a method that detects multiple congested areas on an urban motorway to determine the dynamic position of the VSL;
The proposal of a method that calculates the severity of the congestion in a congested area by utilizing real-time data gathered from CAVs as the input for the QL algorithm for the VSL;
The introduction of a novel approach that incorporates the QL algorithm for VSL control, involving the computation of positioning of speed limit zones and speed limits applied to CAVs:
A performance analysis of the proposed CD-QL-DPVSL control approach under distinct mixed traffic flow scenarios on the simulated urban motorway.
The paper follows a structured organization.
Section 2 offers an overview of previous research concerning the implementation of the VSL on urban motorways.
Section 3 outlines the proposed methodology for the study.
Section 4 provides a description of the utilized simulation model. Moving on,
Section 5 presents the findings, along with an analysis and discourse on the conducted simulations. The paper ends with a conclusion in its final section, where future research possibilities are also explored.
2. Related Work
As previously mentioned, urban motorways face the problem of increased traffic demand during peak hours that often exceeds the operational capacity of the motorway. Implementing VSL control helps to maintain the operational capacity of the congested motorway area by limiting the incoming vehicles’ flow to the congested area by reducing the incoming speed [
4]. By doing so, the flow of vehicles to the congested area is reduced, further capacity drops are eliminated, and the congestion can be relieved promptly [
4]. Appropriately computed VSL speed limits aim to manage the congested area traffic flow close to the maximal operational capacity. Furthermore, the flow of vehicles in the congested area is also affected by applying the speed limits, resulting in a reduced number of incoming vehicles to the congested area. This reduced flow ensures that the maximal operational capacity of the congested area is not exceeded and the congestion is relieved promptly or even averted. Furthermore, the appropriately computed variable speed limits help to homogenize vehicle speeds and, thus, reduce the risk of accidents due to large discrepancies in vehicle speeds before and in the congested area [
5].
Figure 1 shows the relation between traffic flow
q (displayed on the
y-axis) and traffic density
(displayed on the
x-axis) that is commonly referred to as the fundamental traffic flow diagram. According to the fundamental traffic flow diagram, as
q increases to the maximal value
, the traffic density increases to the critical value
. When the traffic flow is below the
value and the density is below
, the traffic flow is stable and runs smoothly with limited interactions among vehicles [
6]. When the traffic density exceeds
, it becomes unstable, and vehicles must interact with each other and travel at lower speeds with an increased traffic density in the segment. Employing the VSL before the congested area helps to reduce the inflow of vehicles to the congested area and increase the outflow in the controlled area section [
7].
The influence of employing CAVs in the mixed traffic flow on the acceleration rate and vehicle speed disparities was analyzed in [
8]. The influence of a gradual increase in the CAV penetration rate from no CAVs to
CAVs showed a reduction in speed deviations between vehicles and abrupt decelerations in the mixed traffic flow. Furthermore, the operational capacity of each lane was examined by employing AVs and CAVs in the mixed traffic flow [
9]. By increasing the CAV penetration rate from 0 to
, the lane capacity was improved by
with a near-linear characteristic. In [
10], the authors analyzed the impact of CAV penetration rates from 0 to
on the fundamental diagram. It was concluded that the presence of CAVs in a mixed traffic flow increases the
and
. For example,
and
increased by
and
, respectively, in the scenario with a
CAV penetration rate in the mixed traffic flow [
10].
Current applications of VSL control are based on traffic flow measurement, which is conducted within the spatially fixed segments of the motorway in the downstream section of a Variable Message Sign (VMS) [
11,
12]. The segment for traffic flow measurement is spatially defined by the positions of fixed road sensors on them. They are usually located at the start of each measurement segment [
13]. The traffic macroscopic parameters for each of those segments are computed based on aggregated raw data from sensors. Thus, the drawback of this approach is the spatial accuracy in detecting congestion on motorways, which heavily depends on the lengths of those segments. Moreover, the length, start, and end point of the congestion are difficult to determine by using fixed measurement segments with longer lengths. Thus, it is possible to conclude that larger segments reduce the accuracy in detecting the spatial parameters of congestion while their implementation is lower in cost since fewer sensors are required.
The limitations in the detection of congestion on motorways are bounded by the technologies used for measuring the behavior of mainstream traffic flow. The most commonly used approach is based on fixed road sensors which are used to compute traffic parameters for the segments of the motorway that they are covering. Those data are passed to the rule-based algorithm which determines the motorway segments with congestion [
14,
15]. The cellular-probe-based motorway congestion detection approach relies on on-call wireless location technologies with signal transition data. The accuracy of those approaches depends on related problems, such as the small sample size, frequent road tests, safety, and privacy issues. Thus, the cellular activity features, the link pseudo speed, and link probe activity are defined and calculated by a rule-based algorithm for the estimation of the traffic congestion state [
16]. The latest approach in congestion detection on motorways concerning the used sensors involves CAVs in interactions with vehicle-to-infrastructure communication environment. They generate floating car data which are used to detect congestion in real-time [
17,
18]. The accuracy when detecting congestion in a spatial context is heavily dependent on the percentage and distribution of CAVs in motorway networks. Due to CAVs’ communication capabilities to send real-time position and speed data, CAVs can be used as moving VSL actuators in the control loop [
3]. These data were aggregated to estimate the traffic state at a fixed position on an urban motorway by applying the Speed Transition Matrices (STMs) to determine the congestion severity. The main drawbacks of the proposed STM methodology lie in the fixed measuring position on an urban motorway and the large amount of computational resources needed to construct the STMs, calculate the congestion probability, and estimate the environment states.
Previously analyzed VSL control approaches applied in mixed traffic flow environments considered the state space based on the occupancy rates reported by the loop detectors mounted on fixed positions [
19], with the loop detectors placed on four measured mainstream lanes [
20], while in [
21], traffic data collected using loop detectors included local speed, occupancy, and traffic flow data, which were used to transmit the environment state to the fuzzy controller that computes speed limits. In [
12], traffic states were obtained at the initial position of each cell by collecting traffic information such as the number of vehicles, vehicle speed, and density of the cell, and the inflow of vehicles was calculated. If the inflow was less than the bottleneck capacity, no control was taken; otherwise, the VSL was activated, and the speed limit was displayed on the VMS. The downside of this approach is using VMSs in a fixed position on an observed motorway. In a recent paper [
22], the authors designed a PID-based VSL controller to mitigate the negative effect of the shock wave forming on a motorway using speed and position data from CAVs as the input to the controller. The downside of this approach is the assumption of the formation of only one bottleneck alongside the observed motorway. In [
23], the VSL input traffic state prediction was based on the data collected by loop detectors during the observed time interval, while in [
13], the traffic state was calculated based on data from 10 loop detectors equally spaced by 1 km on the observed motorway segment. The traffic states in [
24] were based on the density and average speed of HDVs and AVs in each lane for five observed segments and the outflow at the bottleneck area. The main problems for such traffic state measurements are based on the fixed positions of loop detectors and the predetermined observed segment positions and lengths.
The application of intelligent control methods in mixed traffic flows includes a lane-level adaptive speed control method [
25]. The proposed approach uses traffic state estimation based on the traffic density measured per lane and applied the VSL control to one CAV in each lane to harmonize the traffic. The control approach considers the influence of the random mixing of CAVs and HDVs. The downside of the approach proposed in [
25] is based on the known fixed position of a congested area, without considering the detection of possible multiple congested areas. In [
26], an optimal differential VSL control strategy in a mixed traffic flow environment for freeway off-ramp bottlenecks was developed. The proposed optimal differential VSL control method was developed to implement varying speed limits for individual lanes, incorporating a multi-objective approach near the off-ramp. A comprehensive approach to managing traffic flow in the merging area of highways was introduced in [
27], integrating CAVs’ active lane change technology with conventional VSL and RM strategies. Traffic state estimation of the mainline and on-ramp traffic flow was performed by using an upgraded cell transmission model, while the genetic algorithm was used to compute the optimal speed limit of mainline traffic flow, the number of mainline vehicles changing lanes, and RM control to maximize the traffic flow in the merging area. This method only considers the merging area control. In [
28], a framework that devises an integrated action of several control strategies such as RM, lane changing control for CAVs and lane changing recommendations for HDVs, VSL control for CAVs, and VSL recommendations for HDVs with minimal safety gap control measures for lane changing and merging maneuvers was proposed. The proposed method considers three fixed-position VSL zones for VSL and VSL recommendations for HDVs and does not consider the dynamic positioning of VSL zones.
In this paper, a centralized agent-based approach for QL-VSL control is developed by utilizing real-time data sent and received from CAVs. The novelty of the proposed approach is the use of real-time data collected from CAVs to detect multiple congested areas and determine the length of each congested area as an input state to QL-VSL alongside the whole observed urban motorway, as well as calculating the speed limits and speed limit zone placements imposed on CAVs without the need for physical road sensors and VMSs. Mixed traffic flow scenarios containing HDVs and varying CAV penetration rates are analyzed in a synthetic urban motorway model. The shared data are assumed to be transmitted and received by Road Side Units (RSUs) and CAVs equipped with an On-Board Unit (OBU). For the purpose of this paper, the data loss and communication delay are ignored. CAVs also act as actuators to the QL-VSL, which sends speed limit data to each CAV. Therefore, CAVs are utilized as moving sensors and actuators. Using CAVs as moving sensors discards the need for hardware traffic detection, such as induction loops, and the usage of CAVs as actuators discards the need for VMSs. Furthermore, congested areas can be identified more accurately and on a larger scale whilst obtaining real-time data on the positions and lengths of all detected congested areas in the observed urban motorway segment. An in-depth explanation of the congestion detection based traffic state estimation on an urban motorway is provided in
Section 3.2.
4. Simulation Framework
The evaluation of the proposed CD-QL-DPVSL control approach was conducted using a synthetic motorway model, which was previously introduced in our prior paper [
3]. This model, depicted in
Figure 2, should be noted as being unscaled compared to the original model. Within this model, there are two on-ramps denoted as
and
and one off-ramp designated as
, all of which are depicted in
Figure 2. The on-ramps and off-ramp include acceleration and deceleration lanes, each measuring 250 m in length, and the main section of the model has no vertical slopes. The model is subdivided into 160 segmented edges, denoted as
, with each segment measuring 50 m in length.
Figure 2 shows the case of two detected congested areas near two on-ramps. The CD-QL-DPVSL agent is placed before each of the congested areas, as described in
Section 3. The simulations were executed utilizing the microscopic traffic simulator known as Simulation of Urban MObility (SUMO) [
34]. The CD-QL-DPVSL control approach was externally integrated into SUMO via the TraCI interface through a Python script. This interface facilitated the retrieval of essential traffic data and enabled real-time control of the simulation, including dynamic adjustment of the speed limit values and positions of speed limit zones. Each simulated scenario represented a two-hour time frame, spanning 24 control time steps. To simulate the increased peak hour traffic demand, the traffic demand pattern depicted in
Figure 3 was replicated.
Traffic parameters were collected in each one-second time frame throughout every control time step
, which lasted for 5 min, and then the mean values were calculated. These measured traffic parameters encompassed the density (
), quantified in veh/km/ln, speed (
v), expressed in km/h, and
, quantified in seconds. Furthermore, the
was computed in veh·h and was aggregated for the entire simulated motorway. In contrast, measurements of
and
v were specifically taken in the observed merging area of the second on-ramp, as depicted in
Figure 2. Conversely, the
was solely calculated for the mainstream flow of traffic, excluding the on- and off-ramps from consideration.
The SUMO microscopic traffic simulator was utilized to establish car-following models and vehicle class parameters for both CAVs and HDVs, as previously applied in prior research [
3,
35]. The default Krauss car-following model was used for both HDVs and CAVs [
36]. It is worth noting that CAVs were assumed to exhibit reduced time headways, decreased driver imperfections, and a higher propensity of adhering to imposed speed limits when compared to HDVs.
Due to the absence of publicly accessible real-world data for CAVs, which are challenging to obtain through direct measurements in practical experiments, certain parameter values were predefined. Specifically, the parameter representing driving imperfections (
) was assigned a value of 0.7 for HDVs and 0 for CAVs. A value of 0 implies flawless driving behavior, while lower
values indicate more strict acceleration and deceleration actions. The parameter
, which signifies the permissible deviance from the posted speed limit, was configured as 0.2 for HDVs and 0.05 for CAVs. The lane speed limit multiplier (
) remained at 1 for both CAVs and HDVs, as both lanes adhered to an identical speed limit. The minimum desired headway time parameter (
), derived from the net time gap between the rear of the leading vehicle and the front of the following vehicle, was established at 1.1 for HDVs and 0.5 for CAVs. It is worth noting that lower
values have been demonstrated to improve the traffic flow [
8,
37].
Furthermore, the impact analysis of CAVs with varying levels of automation, characterized by the
and
values, indicated that increasing the CAV penetration rate with lower
and
values enhanced the operational capacity of the road network. This resulted in higher
values on individual roads [
37]. In fact, when transitioning from no CAVs to a
CAV penetration rate in mixed traffic flow, the
value increased by nearly
, as demonstrated in a previous simulation study [
37]. The evaluation of the proposed CD-QL-DPVSL method encompassed six distinct simulation scenarios, each characterized by varying CAV penetration rates, spanning from
to
.
5. Results and Discussion
To assess the effectiveness of the proposed CD-QL-DPVSL control approach, its performance was compared against the following other control approaches, namely STM-QL-VSL
and STM-QL-VSL
, STM-QL-DVSL [
3], RB-VSL, and the no-control scenario. The CD-QL-DPVSL control policy in each distinct scenario underwent training through 10,000 simulation epochs for each mixed traffic flow scenario.
Simulations for the scenario without any control employed a constant speed limit of 130 km/h. The implementation of the RB-VSL control approach was based upon prior research efforts [
32], following the principles of the Highway Capacity Manual (HCM) LoS [
38]. The fundamental difference between RB-VSL and CD-QL-DPVSL resides in their methodologies for VSL control. RB-VSL relies on a traditional approach to post speed limits imposed on all vehicles using VMS, whereas CD-QL-DPVSL leverages CAVs that serve as moving VSL actuators and sensors.
The STM-QL-VSL
and STM-QL-VSL
control approaches employ predetermined positions for speed limit zones. The STM-QL-VSL
control approach computes and posts speed limits within a single predetermined speed limit zone closest to the observed merging area shown in
Figure 2. Conversely, the STM-QL-VSL
control approach computes and posts speed limits in two adjacent speed limit zones nearest to the observed merging area shown in
Figure 2. Further details on the configuration of these two control approaches can be found in our referenced prior paper [
3].
In contrast, the STM-QL-DVSL control approach, as described and analyzed in [
3], employs the dynamic speed limit zone positioning of one VSL zone closest to the observed merging area shown in
Figure 2 and does not rely on a predetermined VSL zone location. The key distinction between the proposed CD-QL-DPVSL and STM-QL-DVSL control approaches, as presented in this paper, is that the control approach introduced here dynamically identifies all congested areas on an entire analyzed motorway and selects the appropriate speed limit zone positions and speed limit accordingly. Therefore, this work represents a natural extension of our previous research efforts to create a completely dynamic VSL that primarily includes the detection of congested areas and subsequently includes the setup and application of the needed VSL control to alleviate the detected congestion.
Table 1 demonstrates the fundamental distinctions between CD-QL-DPVSL and all other evaluated control approaches. In summary, the key enhancement of the CD-QL-DPVSL control approach lies in its ability to identify multiple congested areas across the entire motorway and determine speed limits and speed limit zone positions for each identified congested area.
The outcomes for all examined traffic scenarios are detailed in
Table 2. These findings originate from a chosen representative simulation, which exemplifies the average outcome observed over the final 500 simulation epochs for every mixed traffic flow scenario. According to the findings, CD-QL-DPVSL consistently demonstrated a better performance compared to all other control strategies in every simulated scenario. This advantage was particularly pronounced in its ability to reduce both
and
throughout the whole simulated urban motorway.
In contrast, the RB-VSL algorithm demonstrated limited effectiveness and, in some cases, even underperformed when compared to the no-control case. The exception was seen for scenario 2, where predefined speed limit control rules based on HCM LoS density thresholds managed to improve MoEs compared to the no-control case.
STM-QL-VSL and STM-QL-VSL exhibited more significant improvements at lower CAV penetration rates, with their efficacy gradually diminishing at scenarios with higher CAV penetration rates. On the other hand, the STM-QL-DVSL control approach demonstrated the ability to enhance MoEs more prominently at lower penetration rates. This enhancement can be primarily attributed to the advanced driving capabilities of CAVs when compared to HDVs, coupled with the utilization of microscopic-level traffic state measurements (with each CAV acting as a mobile sensor). Nonetheless, as the quantity of CAVs within the mixed traffic flow grew, the advantageous impacts of the STM-QL-DVSL control approach gradually diminished.
The CD-QL-DPVSL approach exhibited a superior performance consistently across all examined scenarios with varying CAV penetration rates. Notably, it demonstrated notable enhancements in traffic MoEs in the CAV penetration rate scenario, a distinction not observed in the performance of the other control approaches being compared.
The results obtained for scenarios 1 and 2, which include measures such as
,
, and
, are displayed in
Figure 4. These outcomes originate from an exemplary simulation based on an average outcome among the final 500 simulation epochs after a series of
simulation epochs for each simulated scenario. In scenario 1, the application of CD-QL-DPVSL demonstrated an improvement of
in the
compared to the no-control case. Conversely, the utilization of RB-VSL resulted in a slight
increase in the
. For scenario 1, the implementations of STM-QL-VSL
, STM-QL-VSL
, and STM-QL-DVSL only brought about marginal improvements in the
of
,
, and
, respectively, compared to the no-control case. In scenario 2, the proposed CD-QL-DPVSL strategy was proven to be better than the rest of the control methods, leading to a significant
reduction in the
. In contrast, RB-VSL, STM-QL-VSL
, STM-QL-VSL
, and STM-QL-DVSL resulted in reductions in the
by
,
,
, and
, respectively. All Reinforcement-Learning-based VSL control approaches exhibited improvements in the mean
, mean
v, and
compared to both the no-control and RB-VSL control cases. Between these control approaches, CD-QL-DPVSL exhibited the most promising performance. Using real-time CAV data for the state estimation and their ability to act as VSL actuators on an urban motorway, the proposed CD-QL-DPVSL approach significantly improved several traffic MoEs (primarily
and
). These enhancements measured in scenario 1 imply that, even with a low CAV penetration rate of
, the evaluated control approach has access to enough input data to estimate the traffic flow state, detect congestion areas, and make the best-computed decisions about speed limit zone placement and the speed limits imposed on CAVs.
A more precise representation of traffic flow conditions enables the agent to learn actions in multiple congested areas concurrently, without requiring knowledge of the specific congestion causes. This enhancement significantly boosts the performance of the proposed CD-QL-DPVSL. Furthermore, the findings suggest that the impact of the growing CAV penetration rate on the performance of the evaluated control approaches becomes less prominent after the penetration rate of CAVs surpasses . Consequently, it can be concluded that the performance of the proposed CD-QL-DPVSL control approach does not increase linearly with the increasing penetration rate of CAVs.
Once sufficient input data from CAVs become obtainable, the quality of the state estimation becomes adequate to ensure that the operating conditions of the modeled VSL control approach are effective. In this study, even at a modest CAV penetration rate of , the state estimation quality was proven to be sufficient to ensure the proper functioning of the VSL control approach. As a result, the improvements observed were more evident in scenarios 1 and 2, where the low penetration rate of CAVs supplied enough data to estimate traffic states, enabling the detection of congestion areas and informed decisions regarding speed limit zone placement and speed limits imposed on CAVs.
The incorporation of CAVs into the mixed traffic flow impacted the metrics of
and
, as illustrated in
Figure 5. The reduced
can be primarily attributed to the more strict and precise driving characteristics of CAVs, which are distinguished by reduced vehicle headways and quicker reaction times. On the other hand, as the CAV penetration rate increased from
to
, the
improvements started to diminish and even worsen in the high-CAV-penetration-rate scenarios 5 and 6. This is mainly attributed to the goal of the control approach to optimize the
in the congested areas, resulting in a reduced
for mainstream vehicles but allowing on-ramp vehicles to merge more easily and, therefore, travel faster. As a result, the
improved, but the
was slightly worse in those scenarios.
Comparing the observed merging area mean
and mean
v, the CD-QL-DPVSL performed better than the second-best STM-QL-DVSL control approach in all scenarios, except scenario 3. This performance is attributed to the proposed CD-QL-DPVSL objective, which optimizes the entire analyzed urban motorway by placing multiple CD-QL-DPVSL agents where it detects congested areas. Previously analyzed control approaches only measure traffic states in the observed merging area and post speed limits accordingly. Consequently, they have the objective of improving the observed merging area MoEs, while CD-QL-DPVSL has the objective of improving MoEs in every congested area at each control time step
. Therefore, the objective is not strictly set to the only observed merging area. This increased performance is due to the more refined control of the entire observed urban motorway, again by detecting multiple congested areas and placing speed limit zones accordingly. This causes the inflow of vehicles to the observed merging area to be more controlled and harmonized, resulting in a better performance in terms of the mean
and mean
v.
Figure 6 illustrates a space–time diagram of the mean speeds for the CD-QL-DPVSL control approach (
Figure 6(a–f)) and a space–time diagram of the mean speeds for the STM-QL-DVSL control approach (
Figure 6(g–l)) on all motorway segments during the simulation in scenarios with CAV penetration rates spanning from
to
. The green rectangles represent the VSL zone positions during the simulation. One key observation is that, in all scenarios, speeds were more harmonized, while the speeds in the observed merging area were generally higher for the CD-QL-DPVSL control case compared to the second-best STM-QL-DVSL control case. Furthermore, the congestion in the observed merging area for the CD-QL-DPVSL control case is less pronounced compared to that in the STM-QL-DVSL control case.
On the other hand, the improved CD-QL-DPVSL performance in scenarios 5 and 6 is mainly attributed to the more refined control, again by detecting multiple congested areas and placing speed limit zones accordingly. In scenario 5, the proposed CD-QL-DPVSL outperformed the second-best STM-QL-DVSL control approach in terms of the measured , mean , and mean v by , , and , respectively. On the other hand, the proposed CD-QL-DPVSL worsened the by compared to the second-best STM-QL-DVSL control approach, mainly due to the goal of optimizing the in the detected congested areas, which resulted in a worsened for the mainstream vehicles, but ensured that the on-ramp vehicles merged more easily and therefore traveled faster. In scenario 6, all other compared VSL approaches did not affect the traffic flow, while CD-QL-DPVSL managed to improve the , , mean , and mean v slightly by , , , and , respectively.
The choice of suitable speed limit zone positions and the specific speed limits adopted in scenario 1 and scenario 2 are visualized in
Figure 7. A noteworthy observation when contrasting the placement of the speed limit zones between these two scenarios is that, as the presence of CAVs increases, the CD-QL-DPVSL control approach appears to identify congested areas more effectively. Consequently, it deploys multiple speed limit zones along the observed urban motorway. This phenomenon can be ascribed to the increased volume of vehicles contributing data to detect congested areas and calculate traffic states. Furthermore, the CD-QL-DPVSL control approach opted for reduced speed limits in scenario 2 when compared to scenario 1. With more input data in scenario 2, the control approach detected more congested areas and placed more speed limit zones with generally lower speed limits. Furthermore, speed limit zones near the observed merging area were placed further downstream between the 50th and 100th minute of the simulation in scenario 2, while in scenario 1, the speed limit zones were placed further upstream of the observed merging area. This concludes that the congested area detected near the observed merging area is more severe in scenario 1.
6. Conclusions
The primary aim of this study was to propose a VSL control approach that utilizes CAVs as mobile actuators and sensors. The proposed CD-QL-DPVSL control approach derives traffic state estimates based on gradient values calculated for mean speeds along each segment of the observed urban motorway. The research also investigates how the detection of the congested areas and the dynamic positioning of CD-QL-DPVSL zones affect traffic flow. The most important conclusions of this paper are as follows:
The gradient values calculated for the mean speeds collected from CAVs along each segment of the observed urban motorway can be used to estimate congested areas;
Real-time CAV data can be used to estimate traffic states, improving the performance of the VSL control approach;
The detection of congested areas and the dynamic positioning of CD-QL-DPVSL zones outperforms other analyzed control approaches for all measured MoEs.
To evaluate the algorithm’s performance under various mixed traffic flow scenarios, a simulation framework was employed. The results indicate that the CD-QL-DPVSL control approach performs better for all MoEs in contrast to other control approaches and the no-control scenario. The most notable improvements with the CD-QL-DPVSL control approach are observed in the scenario with a penetration rate for the CAVs. Remarkably, enhancements in all MoEs were evident even at low CAV numbers, including scenarios with and penetration rates for CAVs. The CD-QL-DPVSL control approach effectively identifies congested areas, primarily near on-ramps and off-ramps, and adjusts speed limit zones accordingly. Notably, in a scenario with a penetration rate for CAVs, CD-QL-DPVSL succeeded in enhancing MoEs, whereas all other analyzed control approaches had no impact on the measured MoEs.
The scope of this paper is limited to personal vehicles, including both CAVs and HDVs, within a mixed traffic flow at different penetration rates. Moreover, CAVs must adhere to the imposed speed limits within designated speed limit zones, in accordance with the limitations imposed by the specific physical attributes governing the maximum acceleration capabilities of each CAV. The simulation model has no physical VMSs, as it becomes obsolete in mixed traffic flows containing CAVs, and virtual VMSs are placed at the start of each of the applicable VSL zones. In this paper, the CD-QL-DPVSL control approach operates under the assumption of error-free data transmission and zero information latency between CAVs and the control agent.
Future research endeavors will examine the multi-agent approach to the CD-QL-DPVSL control approach, incorporating the dynamic lengths of VSL zones. Additionally, the analysis will be extended to scenarios with increased traffic demand to understand the influence of CAV penetration rates on the VSL requirements. The influence of adding heavy-duty vehicles and buses into the mixed traffic flow will also be examined. Dynamic adjustments to the length of VSL zones will be investigated as an extended action selection set and a potential avenue for future research. Moreover, the study will examine urban motorways with more intricate geometric designs, including vertical slopes.