Path-Following Sliding Mode Controller for an Electric Vehicle Considering Actuator Dynamics
Abstract
:1. Introduction
2. Path following for an Automotive Vehicle
3. Overall Control Scheme
3.1. Lateral Sliding Mode Controller
3.2. Actuator Controller
- The motor is not saturated and should be operated with the rated current.
- The resistances of the three stator phase windings are equal.
- The self-inductance and mutual inductance of the motor are constant.
- The switching of the semiconductor devices is ideal.
4. Simulation Results
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BLDC | Brushless direct current motor |
FOC | Field-oriented control |
SVPWM | Space vector pulse-width modulation |
PI | Proportional–integral control |
MPC | Model predictive control |
IMU | Inertial measurement unit |
LIDAR | Light detection and ranging |
SMC | Sliding mode control |
SAE | Society of Automotive Engineers |
HOSM | High-order sliding mode |
LKAS | Lane-keeping assist system |
LDA | Lane departure avoidance |
ELKS | Emergency lane-keeping system |
Appendix A. Configuration of the Closed-Loop System in Simulink
References
- Alcala, E.; Sellart, L.; Puig, V.; Quevedo, J.; Saludes, J.; Vázquez, D.; López, A. Comparison of two non-linear model-based control strategies for autonomous vehicles. In Proceedings of the 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 21–24 June 2016; pp. 846–851. [Google Scholar]
- Ritzer, P.; Winter, C.; Brembeck, J. Advanced path following control of an overactuated robotic vehicle. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Republic of Korea, 28–30 June 2015; pp. 1120–1125. [Google Scholar]
- Yuan, X.; Huang, G.; Shi, K. Improved Adaptive Path Following Control System for Autonomous Vehicle in Different Velocities. IEEE Trans. Intel. Transp. Syst. 2020, 21, 3247–3256. [Google Scholar] [CrossRef]
- Fernandez, B.; Herrera, P.; Cerrada, J. A Simplified Optimal Path Following Controller for an Agricultural Skid-Steering Robot. IEEE Access 2019, 7, 95932–95940. [Google Scholar] [CrossRef]
- Hossain, T.; Habibullah, H.; Islam, R. Steering and Speed Control System Design for Autonomous Vehicles by Developing an Optimal Hybrid Controller to Track Reference Trajectory. Machines 2022, 10, 420. [Google Scholar] [CrossRef]
- Ritschel, R.; Schrödel, F.; Hädrich, J.; Jäkel, J. Nonlinear Model Predictive Path-Following Control for Highly Automated Driving. IFAC-PapersOnLine 2019, 52, 350–355. [Google Scholar] [CrossRef]
- Vu, T.M.; Moezzi, R.; Cyrus, J.; Hlava, J. Model Predictive Control for Autonomous Driving Vehicles. Electronics 2021, 10, 2593. [Google Scholar] [CrossRef]
- Ultsch, J.; Mirwald, J.; Brembeck, J.; De Castro, R. Reinforcement Learning-based Path Following Control for a Vehicle with Variable Delay in the Drivetrain. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19–30 October 2020; pp. 532–539. [Google Scholar]
- Guo, N.; Zhang, X.; Zou, Y.; Lenzo, B.; Zhang, T. A Computationally Efficient Path-Following Control Strategy of Autonomous Electric Vehicles with Yaw Motion Stabilization. IEEE Trans. Transp. Electrif. 2020, 6, 2. [Google Scholar] [CrossRef]
- Liang, J.; Tian, Q.; Feng, J.; Pi, D.; Yin, G. A polytopic model-based robust predictive control scheme for path tracking of autonomous vehicles. IEEE Trans. Intell. Veh. 2023, 1–11. [Google Scholar] [CrossRef]
- Hu, C.; Wang, R.; Yan, F. Integral Sliding Mode-Based Composite Nonlinear Feedback Control for Path Following of Four-Wheel Independently Actuated Autonomous Vehicles. IEEE Trans. Transp. Electrif. 2016, 2, 2. [Google Scholar] [CrossRef]
- De Castro, R.; Tanelli, M.; Esteves, A.R.; Savaresi, S.M. Minimum-Time Path-Following for Highly Redundant Electric Vehicles. IEEE Trans. Control Syst. Technol. 2016, 24, 2. [Google Scholar] [CrossRef]
- Utkin, V.; Guldner, J.; Shi, J. Sliding Mode Control in Electro-Mechanical Systems; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Solea, R.; Nunes, U. Trajectory planning and sliding-mode control based trajectory-tracking for cybercars. Integr. Comput.-Aided Eng. 2007, 14, 33–47. [Google Scholar] [CrossRef]
- Oh, K.; Seo, J. Development of a Sliding-Mode-Control-Based Path-Tracking Algorithm with Model-Free Adaptive Feedback Action for Autonomous Vehicles. Sensors 2023, 23, 405. [Google Scholar] [CrossRef]
- Kim, H.; Kee, S.-C. Neural Network Approach Super-Twisting Sliding Mode Control for Path-Tracking of Autonomous Vehicles. Electronics 2023, 12, 3635. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Li, F.; Zhang, J. Robust sliding mode prediction path tracking control for intelligent vehicle. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2022, 236, 1607–1617. [Google Scholar] [CrossRef]
- Wang, C.; He, R.; Xia, Q. Path following control for 4WID-EV based on extended state observer and sliding mode control considering yaw stability. Adv. Mech. Eng. 2023, 15. [Google Scholar] [CrossRef]
- Ljungqvist, O.; Evestedt, N.; Axehill, D.; Cirillo, M.; Pettersson, H. A path planning and path-following control framework for a general 2-trailer with a car-like tractor. J. Field Robot. 2019, 36, 1345–1377. [Google Scholar] [CrossRef]
- Woo, J.; Yu, C.; Kim, N. Deep reinforcement learning-based controller for path following of an unmanned surface vehicle. Ocean Eng. 2019, 183, 155–166. [Google Scholar] [CrossRef]
- Maurya, P.; Morishita, H.M.; Pascoal, A.; Aguiar, A.P. A Path-Following Controller for Marine Vehicles Using a Two-Scale Inner-Outer Loop Approach. Sensors 2022, 22, 4293. [Google Scholar] [CrossRef] [PubMed]
- Paden, B.; Cap, M.; Yong, S.; Yershov, D.; Frazzoli, E.; Vázquez, D. A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles. IEEE Trans. Intel. Veh. 2016, 1, 33–35. [Google Scholar] [CrossRef]
- Rajamani, R. Vehicle Dynamics and Control; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Springer: New York, NY, USA, 2014. [Google Scholar]
- Bose, B.K. Modern Power Electronics & AC Drives; Prentice Hall: Englewood Cliffs, NJ, USA, 2002. [Google Scholar]
- Bolton, W.C. Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering; Pearson Education: Harlow, UK, 2018. [Google Scholar]
- Mondal, S.; Mitra, A.; Chattopadhyay, M. Mathematical modeling and simulation of brushless DC motor with ideal back emf for a precision speed control. In Proceedings of the 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 5–7 March 2015; pp. 1–5. [Google Scholar]
- Pillay, P.; Krishnan, R. Modeling, simulation, and analysis of permanent-magnet motor drives. IEEE Trans. Ind. App. 1989, 25, 265–273. [Google Scholar] [CrossRef]
- Vehicle Dynamics and Controller Simulink Model. Available online: https://github.com/L-Arturo-Torres-Romero/VehicleModel/tree/master/VehicleModel (accessed on 24 October 2023).
- Torres-Romero, L. L-Arturo-Torres-Romero/VehicleModel: Conventional SMC for Lateral Dynamic 2; Zenodo: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- CARLA: Open-Source Simulator for Autonomous Driving Research. Available online: http://carla.org (accessed on 10 November 2023).
- CarSim: Mechanical Simulation. Available online: https://www.carsim.com/ (accessed on 27 November 2023).
Symbol | Value | Symbol | Value |
---|---|---|---|
1.58 m | R | 0.35 Ω | |
1.1 m | L | 0.001 H | |
2873 Nm | M | 0 H | |
m | 2238.932 kg | J | 0.00018 kgm2 |
80,000 | P | 4 | |
80,000 | b | 0.0034 Nmsrad−1 | |
0.174533 rad | 3.0 Nm | ||
0.0433 Wb | 22 m/s |
Symbol | Value | Symbol | Value |
---|---|---|---|
−0.39820378606854 | |||
−44.4991237925307 | |||
70 | |||
16 | 0.3 | ||
70 | |||
21.2472922845302 | 0.3 | ||
1497.59558537531 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Romero, L.A.; Ruiz-Cruz, R.; González-Jiménez, L.E. Path-Following Sliding Mode Controller for an Electric Vehicle Considering Actuator Dynamics. Machines 2024, 12, 219. https://doi.org/10.3390/machines12040219
Torres-Romero LA, Ruiz-Cruz R, González-Jiménez LE. Path-Following Sliding Mode Controller for an Electric Vehicle Considering Actuator Dynamics. Machines. 2024; 12(4):219. https://doi.org/10.3390/machines12040219
Chicago/Turabian StyleTorres-Romero, Luis Arturo, Riemann Ruiz-Cruz, and Luis Enrique González-Jiménez. 2024. "Path-Following Sliding Mode Controller for an Electric Vehicle Considering Actuator Dynamics" Machines 12, no. 4: 219. https://doi.org/10.3390/machines12040219
APA StyleTorres-Romero, L. A., Ruiz-Cruz, R., & González-Jiménez, L. E. (2024). Path-Following Sliding Mode Controller for an Electric Vehicle Considering Actuator Dynamics. Machines, 12(4), 219. https://doi.org/10.3390/machines12040219