Structural Optimization of an Unmanned Ground Vehicle as Part of a Robotic Grazing System Design
Abstract
:1. Introduction
- Robustness: UGVs used for grazing and herding must be built to withstand rough terrain, varying weather conditions, and potential livestock impacts. A robust chassis is a necessity in this context.
- Agility: UGVs should be designed to easily maneuver through fields and pastures, allowing them to follow livestock herds or avoid obstacles.
- Payload Capacity: This demand is essential for UGVs that carry equipment for distributing feed, monitoring livestock health, or collecting data on grazing patterns.
- Energy Efficiency: Given the potential for UGVs to operate over large areas for extended periods, energy efficiency is crucial. The battery capacity, charging infrastructure, and power management systems should be designed to maximize the operational time of the vehicle.
2. Materials and Methods
2.1. RoboShepherd–Automated Animal Husbandry and Grazing System
2.2. Optimization Method
RoboShepherd UGV Unit Optimization Constraints and Workflow
- Creation of CAD and finite element (FE) models of the UGV unit based on the initial concept.
- Definition of design variables within CAD and FE models and establishment of bidirectional associativity between the two.
- Performance of structural static analyses, RSA, and mathematical optimization to determine UGV unit configurations that can be subjected to the worst loading scenarios.
- Decision on structural optimization approach, based on the stress-strain state of UGV unit components within worst loading scenarios. The choice of whether PO, TO, or both would be employed, depending on whether a part of the structure should be strengthened or whether weight reduction within some of UGV subassemblies is possible.
- Modification of UGV unit design, according to the results of PO, TO, or both.
- Final static structural analysis and RSA to validate the new design.
- An RSA based on nonlinear eigenvalue buckling analyses, to address any concerns about the potential buckling of slender components in the optimized UGV design.
2.3. CAD Model of UGV Assembly
- The angle of wires attached to winding coils, ranging from 45° to 315° (“DV1: Motoreductor angle” in Figure 5).
- The angle of wires attached to sensors, ranging from 45° to 315° (“DV2: Sensor angle” in Figure 5).
- The height of the lowest wires, i.e., of the mid-plane of wires 1 and 2 (“DV3” in Figure 6).
- The height of central wires, i.e., of the mid-plane of wires 3 and 4 (“DV4” in Figure 6).
- The height of the highest wires, i.e., of the mid-plane of wires 5 and 6 (“DV5” in Figure 6).
- The diameter of wires in the winding coil, i.e., the diameter of the circle containing the point at which a wire is leaving the coil (“DV6” in Figure 7).
2.4. Finite Element (FE) Model of UGV Assembly
- tensioning force of 80 N acting on the winding coil (A–F)
- tensioning force of 160 N originating from tensioning of wires from another robotic unit (G–I)
- standard earth gravity (J)
- fixation of four parts representing ground (K–N)
- disk brakes applied on two wheels (O, P)
- acceleration of 0.3 G (Q)
Models Used in Substructuring
3. Results
3.1. FEA of UGV Assembly and Response Surface Analysis (RSA)
3.2. Topology Optimization (TO)
3.3. Validation of the Optimized Model
3.4. Buckling Analysis
3.5. Computational Resources and Analyses Times
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kondoyanni, M.; Loukatos, D.; Maraveas, C.; Drosos, C.; Arvanitis, K.G. Bio-inspired robots and structures toward fostering the modernization of agriculture. Biomimetics 2022, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Gangurde, Y.; Narayanan, S.S.; Rajalakshmi, P.; Mannam, N.P.B. Design of Autonomous Unmanned Ground Vehicles (UGVs) in Smart Agriculture. In Predictive Analytics in Smart Agriculture; CRC Press: Boca Raton, FL, USA, 2023; pp. 275–298. [Google Scholar]
- King, A.J.; Portugal, S.J.; Strömbom, D.; Mann, R.P.; Carrillo, J.A.; Kalise, D.; de Croon, G.; Barnett, H.; Scerri, P.; Groß, R. Biologically inspired herding of animal groups by robots. Methods Ecol. Evol. 2023, 14, 478–486. [Google Scholar] [CrossRef]
- Li, X.; Huang, H.; Savkin, A.; Zhang, J. Robotic Herding of Farm Animals Using a Network of Barking Aerial Drones. Drones 2022, 6, 29. [Google Scholar] [CrossRef]
- Karnovsky, I.A.; Lebed, O. Advanced Methods of Structural Analysis; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Christensen, P.W.; Klarbring, A. An Introduction to Structural Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 153. [Google Scholar]
- Deaton, J.D.; Grandhi, R.V. A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Struct. Multidiscip. Optim. 2014, 49, 1–38. [Google Scholar] [CrossRef]
- Tyflopoulos, E.; Steinert, M. Topology and parametric optimization-based design processes for lightweight structures. Appl. Sci. 2020, 10, 4496. [Google Scholar] [CrossRef]
- Cook, R.D. Concepts and Applications of Finite Element Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Banić, M.; Simonović, M.; Stojanović, L.; Rangelov, D.; Miltenović, A.; Perić, M. Digital twin based lightweighting of robot unmanned ground vehicles. Facta Univ. Ser. Autom. Control Robot. 2022, 1, 187–199. [Google Scholar] [CrossRef]
- Gadekar, A.; Fulsundar, S.; Deshmukh, P.; Aher, J.; Kataria, K.; Patel, V.; Barve, S. Rakshak: A modular unmanned ground vehicle for surveillance and logistics operations. Cogn. Robot. 2023, 3, 23–33. [Google Scholar] [CrossRef]
- Mohebbi, A.; Safaee, S.; Keshmiri, M.; Keshmiri, M.; Mohebbi, S. Design, simulation and manufacturing of a tracked surveillance unmanned ground vehicle. In Proceedings of the 2010 IEEE International Conference on Robotics and Biomimetics, Tianjin, China, 14–18 December 2010; pp. 1268–1275. [Google Scholar]
- Vardin, S.; Demircioğlu, P.; Böğrekci, İ. Development and implementation of an unmanned ground vehicle for off-road applications. Acta Tech. Napoc.-Ser. Appl. Math. Mech. Eng. 2022, 65, 1S. [Google Scholar]
- Wildman, R.; Gaynor, A. Topology optimization for robotics applications. In Robotic Systems and Autonomous Platforms; Elsevier: Amsterdam, The Netherlands, 2019; pp. 251–292. [Google Scholar]
- Demir, N.; Sucuoğlu, H.S.; Böğrekci, İ.; Demircioğlu, P. Topology optimization of mobile transportation robot. Int. J. 3d Print. Technol. Digit. Ind. 2021, 5, 210–219. [Google Scholar] [CrossRef]
- Sha, L.; Lin, A.; Zhao, X.; Kuang, S. A topology optimization method of robot lightweight design based on the finite element model of assembly and its applications. Sci. Prog. 2020, 103, 0036850420936482. [Google Scholar] [CrossRef] [PubMed]
- Kunpeng, N.; Dongbo, L.; Fei, H.; Yifei, T.; Kai, Z. Research on the structural optimization design of ER300 palletizing robot. Open Autom. Control Syst. J. 2015, 7, 1405–1414. [Google Scholar] [CrossRef]
- Junk, S.; Klerch, B.; Nasdala, L.; Hochberg, U. Topology optimization for additive manufacturing using a component of a humanoid robot. Procedia Cirp 2018, 70, 102–107. [Google Scholar] [CrossRef]
- Mantovani, S.; Barbieri, S.G.; Giacopini, M.; Croce, A.; Sola, A.; Bassoli, E. Synergy between topology optimization and additive manufacturing in the automotive field. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 2021, 235, 555–567. [Google Scholar] [CrossRef]
- Kato, J. Material Optimization of Fiber Reinforced Composites Applying a Damage Formulation; Institut für Baustatik und Baudynamik der Universit¨at Stuttgart: Stuttgart, Germany, 2010. [Google Scholar]
- Zhu, J.; Gao, T. Topology Optimization in Engineering Structure Design; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Manfredi, L. Future trends. In Endorobotics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 359–377. [Google Scholar]
- Trapp, M.; Nestorović, T. Non-gradient full waveform inversion approaches for exploration during mechanized tunneling applied to surrogate laboratory measurements. Tunn. Undergr. Space Technol. 2022, 120, 104252. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Nestorović, T. Reconstructing disturbance zones ahead of the tunnel face by elastic waveform inversion supported by a parametric level-set representation. Soil Dyn. Earthq. Eng. 2018, 115, 606–621. [Google Scholar] [CrossRef]
- Ansys, I. Reference Guide, Release 2023R1; ANSYS Inc.: Canonsburg, PA, USA, 2023. [Google Scholar]
- Tyflopoulos, E.; Steinert, M. A comparative study of the application of different commercial software for topology optimization. Appl. Sci. 2022, 12, 611. [Google Scholar] [CrossRef]
- Ismail, A.Y.; Na, G.; Koo, B. Topology and response surface optimization of a bicycle crank arm with multiple load cases. Appl. Sci. 2020, 10, 2201. [Google Scholar] [CrossRef]
- Pavlović, V.D. Development and Control of an Intelligent Connection System Between Physically Connected Robots. Ph.D. Thesis, University of Niš, Faculty of Mechanical Engineering, Niš, Serbia, 2023. Available online: https://eteze.ni.ac.rs/application/showtheses?thesesId=8668 (accessed on 11 March 2024).
- Slavov, S.; Konsulova-Bakalova, M. Optimizing weight of housing elements of two-stage reducer by using the topology management optimization capabilities integrated in SOLIDWORKS: A case study. Machines 2019, 7, 9. [Google Scholar] [CrossRef]
Material | Young’s Modulus [GPa] | Poisson’s Ratio | Density [kg/m3] | Yield Strength [MPa] |
---|---|---|---|---|
Steel S355 | 200 | 0.3 | 7850 | 355 |
Aluminum 5754 H111 | 69 | 0.33 | 2670 | 85 |
Steel C45 | 200 | 0.3 | 7850 | 430 |
PLA | 3.45 | 0.39 | 1250 | 54 |
Tires | 2.3 | 0.37 | 1250 | 25 |
Ground | 3 | 0.33 | 0 | 30 |
Experiment Number | DV1: Motoreductor Angle αm [°] | DV2: Sensor Angle αs [°] | Displacement Max. [mm] | Assembly Stress Max. [MPa] | Frame Stress Max. [MPa] | Assembly Safety Factor Min. | Frame Safety Factor Min. |
---|---|---|---|---|---|---|---|
DP8 | 180 | 315 | 5.26 | 166.24 | 166.24 | 2.14 | 2.14 |
DP2 | 45 | 180 | 4.92 | 166.14 | 166.14 | 2.14 | 2.14 |
DP4 | 315 | 180 | 4.96 | 164.10 | 164.10 | 2.16 | 2.16 |
DP6 | 180 | 45 | 5.46 | 161.56 | 161.56 | 2.20 | 2.20 |
DP15 | 112.5 | 247.5 | 5.53 | 148.22 | 148.22 | 2.40 | 2.40 |
DP13 | 247.5 | 112.5 | 5.46 | 147.56 | 147.56 | 2.41 | 2.41 |
DP14 | 45 | 315 | 4.35 | 124.52 | 124.52 | 2.85 | 2.85 |
DP12 | 315 | 45 | 3.95 | 122.08 | 122.08 | 2.91 | 2.91 |
DP5 | 247.5 | 180 | 3.43 | 120.28 | 120.28 | 2.95 | 2.95 |
DP9 | 180 | 247.5 | 3.40 | 119.71 | 119.71 | 2.97 | 2.97 |
DP10 | 45 | 45 | 1.76 | 76.41 | 64.60 | 3.00 | 5.50 |
DP7 | 180 | 112.5 | 3.68 | 117.68 | 117.68 | 3.00 | 3.02 |
DP11 | 112.5 | 112.5 | 2.69 | 77.41 | 72.17 | 3.00 | 4.92 |
DP3 | 112.5 | 180 | 3.26 | 118.37 | 118.37 | 3.00 | 3.00 |
DP1 | 180 | 180 | 0.95 | 76.58 | 50.87 | 3.00 | 6.98 |
DP17 | 247.5 | 247.5 | 2.47 | 74.88 | 71.22 | 3.00 | 4.98 |
DP16 | 315 | 315 | 1.33 | 91.64 | 59.34 | 3.00 | 5.98 |
Candidate Point 1 | Candidate Point 2 | Candidate Point 3 | |
---|---|---|---|
DV1: Motoreductor αm [°] | 46.06 | 47.22 | 47.04 |
DV2: Sensor angle αs [°] | 181.46 | 181.35 | 187.62 |
Frame stress max. [MPa] | 166.32 | 166.21 | 166.05 |
Experiment Number | DV1: Motoreductor Angle αm [°] | DV2: Sensor Angle αs [°] | Displacement Max. [mm] | Assembly Stress Max. [MPa] | Frame Stress Max. [MPa] | Assembly Safety Factor Min. | Frame Safety Factor Min. |
---|---|---|---|---|---|---|---|
DP2 | 45 | 180 | 5.38 | 181.01 | 181.01 | 1.96 | 1.96 |
DP6 | 180 | 45 | 5.79 | 174.30 | 174.30 | 2.04 | 2.04 |
DP8 | 180 | 315 | 5.67 | 168.16 | 168.16 | 2.11 | 2.11 |
DP4 | 315 | 180 | 5.35 | 165.70 | 165.70 | 2.14 | 2.14 |
DP15 | 112.5 | 247.5 | 5.91 | 159.69 | 159.69 | 2.22 | 2.22 |
DP13 | 247.5 | 112.5 | 5.83 | 147.26 | 147.26 | 2.41 | 2.41 |
DP14 | 45 | 315 | 4.66 | 135.10 | 135.10 | 2.63 | 2.63 |
DP7 | 180 | 112.5 | 3.92 | 127.65 | 127.65 | 2.78 | 2.78 |
DP3 | 112.5 | 180 | 3.46 | 127.60 | 127.60 | 2.78 | 2.78 |
DP12 | 315 | 45 | 4.24 | 121.84 | 121.84 | 2.91 | 2.91 |
DP9 | 180 | 247.5 | 3.62 | 121.65 | 120.73 | 2.92 | 2.94 |
DP5 | 247.5 | 180 | 3.65 | 121.18 | 121.18 | 2.93 | 2.93 |
DP10 | 45 | 45 | 1.78 | 118.51 | 64.40 | 3.00 | 5.51 |
DP11 | 112.5 | 112.5 | 2.72 | 118.49 | 72.27 | 3.00 | 4.91 |
DP1 | 180 | 180 | 0.98 | 118.45 | 52.84 | 3.00 | 6.72 |
DP17 | 247.5 | 247.5 | 2.50 | 118.42 | 67.65 | 3.00 | 5.25 |
DP16 | 315 | 315 | 1.36 | 118.41 | 56.27 | 3.00 | 6.31 |
Experiment Number | DV1: Motoreductor Angle αm [°] | DV2: Sensor Angle αs [°] | Load Multiplier 1 | Load Multiplier 2 | Load Multiplier 3 | Load Multiplier 4 | Load Multiplier 5 | Load Multiplier 6 | Load Multiplier 7 | Load Multiplier 8 |
---|---|---|---|---|---|---|---|---|---|---|
DP2 | 45 | 180 | −127.8 | −95.4 | −86.0 | −74.1 | 79.7 | 83.6 | 121.0 | 121.0 |
DP6 | 180 | 45 | −76.5 | −73.3 | −72.1 | −70.6 | −42.2 | 61.9 | 87.8 | 87.8 |
DP8 | 180 | 315 | −81.8 | −80.0 | −74.0 | −72.4 | −61.8 | −46.1 | 63.5 | 63.5 |
DP4 | 315 | 180 | −103.0 | −89.3 | −74.5 | −63.3 | 58.1 | 89.4 | 93.2 | 93.2 |
DP15 | 112.5 | 247.5 | −156.7 | −154.5 | −99.4 | −98.0 | −55.5 | −52.2 | 164.6 | 164.6 |
DP13 | 247.5 | 112.5 | −174.9 | −159.3 | −120.6 | −104.7 | −65.6 | −56.7 | 161.7 | 161.7 |
DP14 | 45 | 315 | −154.7 | −154.6 | −97.2 | −96.6 | −54.5 | −51.1 | 175.1 | 175.1 |
DP7 | 180 | 112.5 | −183.7 | −177.2 | −123.2 | −93.6 | −68.5 | 137.9 | 162.5 | 162.5 |
DP3 | 112.5 | 180 | −191.4 | −157.4 | −151.4 | −118.2 | −80.5 | −64.9 | 188.5 | 188.5 |
DP12 | 315 | 45 | −188.7 | −176.2 | −128.4 | −115.2 | −69.9 | −62.2 | 180.7 | 180.7 |
DP9 | 180 | 247.5 | −166.8 | −131.6 | −121.0 | −100.9 | −69.5 | −56.3 | 129.9 | 129.9 |
DP5 | 247.5 | 180 | −181.3 | −166.9 | −141.0 | −88.3 | −77.6 | 131.1 | 175.7 | 175.7 |
DP10 | 45 | 45 | −223.3 | −201.4 | −186.4 | −131.6 | −119.7 | −108.6 | −100.5 | −100.5 |
DP11 | 112.5 | 112.5 | −266.0 | −236.6 | −204.5 | −163.2 | −141.6 | −128.5 | 198.5 | 198.5 |
DP1 | 180 | 180 | −210.8 | −196.1 | −181.8 | −116.3 | −113.0 | −106.1 | −98.6 | −98.6 |
DP17 | 247.5 | 247.5 | −255.4 | −254.7 | −194.7 | −154.9 | −142.2 | −133.3 | 201.8 | 201.8 |
DP16 | 315 | 315 | −280.2 | −244.5 | −238.7 | −175.5 | −149.2 | −135.3 | −125.7 | −125.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korunović, N.; Banić, M.; Pavlović, V.; Nestorović, T. Structural Optimization of an Unmanned Ground Vehicle as Part of a Robotic Grazing System Design. Machines 2024, 12, 323. https://doi.org/10.3390/machines12050323
Korunović N, Banić M, Pavlović V, Nestorović T. Structural Optimization of an Unmanned Ground Vehicle as Part of a Robotic Grazing System Design. Machines. 2024; 12(5):323. https://doi.org/10.3390/machines12050323
Chicago/Turabian StyleKorunović, Nikola, Milan Banić, Vukašin Pavlović, and Tamara Nestorović. 2024. "Structural Optimization of an Unmanned Ground Vehicle as Part of a Robotic Grazing System Design" Machines 12, no. 5: 323. https://doi.org/10.3390/machines12050323
APA StyleKorunović, N., Banić, M., Pavlović, V., & Nestorović, T. (2024). Structural Optimization of an Unmanned Ground Vehicle as Part of a Robotic Grazing System Design. Machines, 12(5), 323. https://doi.org/10.3390/machines12050323