BLUE SABINO: Development of a BiLateral Upper-Limb Exoskeleton for Simultaneous Assessment of Biomechanical and Neuromuscular Output
Abstract
:1. Introduction
1.1. Impairment Prevalence and Societal Impact
1.2. The Assessment Gap
1.3. Key Design Considerations
1.3.1. Exoskeleton vs. End Effector
1.3.2. Bilateral vs. Unilateral
1.3.3. Importance of Lateral Arm Attachment
1.4. State-of-the-Art Review
1.4.1. Exoskeletons for Rehabilitation
1.4.2. Sensor-Based Assessment
1.5. Project Overview
2. Materials and Methods
2.1. System Requirements
- Measures that would be of use to characterize patient performance and any change in performance over time.
- Aspects of instrument design that would make the BLUE SABINO clinically useful.
- Short setup time (<10 min for set up, leaving >35 min for assessment).
- Providing instant feedback for the patient and therapist (motivation and insights).
- Detecting active muscle groups (to differentiate sources of deficit).
- System sensitivity to detect incremental change throughout recovery (helps to justify the continuation of care).
2.2. Mechanical Systems Design
2.2.1. Human Arm Joints: Seven DOF vs. Nine DOF
2.2.2. Exoskeleton Arm Design
2.2.3. Exoskeleton Hand Design
2.2.4. Human–Robot Attachment Design
2.3. Manipulator Kinematic and Dynamic Modeling
2.3.1. Forward Kinematics
2.3.2. Body Manipulator Jacobians and Human–Robot Interaction Applied Force
2.4. Electromechanical Systems Design
- Operator Console: the primary interface for the experimenter/therapist. It includes a “Host PC” from which the control mode and therapy task can be configured. It also includes an emergency-stop button for the operator.
- Main Electronics Box: a modular vertical server-rack structure that houses stationary system components, including power supplies, motor drivers, EtherCAT networking, and the real-time target PC, which serves as the primary processing unit for the system.
- ATI Electronics Boxes: these mount to the base structure and contain interface boards that convert analog force/torque signals to digital EtherCAT signals. These components are external to the main electronics box because A/D conversion is performed near the transducers to minimize measurement noise.
- Human Interfaces: these allow the user and the robot to interact. They include the HRAs, the two robotic exoskeleton arms, an emergency-stop switch for the user, a foot pedal switch that turns control throughput on/off, and a display for presenting a digital virtual environment.
- Bio-Measurement System: this collects EMG and EEG signals. It includes an EEG skullcap, EMG sticker electrodes, and an amplification system for simultaneous real-time data collection.
2.4.1. System Components and Layout
2.4.2. Power and Communication
2.5. System Safety
2.5.1. System Startup Sequence
2.5.2. Regular Operation “Enable” vs. “E-Stop” Switches
2.5.3. Hardware and Software Safety System
2.5.4. Soft and Safe Range of Motion Limits
2.6. Controller Design
2.6.1. Control Overview
2.6.2. Combined Human and Robot Dynamics Control Law
2.6.3. Mapping Human–Applied Forces/Torques to Joint Torques
2.6.4. Admittance Force Control
2.6.5. Inner-Loop PD Control
2.6.6. Friction Compensation
2.6.7. Gravity Compensation
2.6.8. Soft Limits: Joint Range of Motion and Boundary Torques
2.7. Biosignal Acquisition System Selection
2.7.1. Biosignal System Specifications
- -
- A multichannel system capable of synchronously recording different types of bio-signals: EEG (unipolar signals referenced to a common location), EOG and EMG (bipolar signals).
- -
- Compatibility with active electrodes to minimize the incidence of electromagnetic noise.
- -
- Flexible EEG montages, allowing for layout customization to address various research questions. The minimum number of electrodes should encompass 19 locations as per the 10–20 standard.
- -
- Multiple digital inputs to facilitate synchronization with other devices in different experimental protocols.
2.7.2. Component Selection and Layout
2.8. System Integration and Validation Methods
2.8.1. Kinematic Validation Methods
2.8.2. Spatial Measurement Validation Methods
2.8.3. Anthropometric Validation Methods
2.8.4. Safety Validation Methods
2.8.5. Controller Validation Methods
2.8.6. Biosignal Acquisition Validation Methods
3. Results
3.1. Kinematic Validation
3.2. Spatial Measurement Validation
3.3. Anthropometric Validation
3.4. Safety Validation
3.4.1. Manual E-Stops Human/Electromechanical Response Time
3.4.2. Range of Motion Hardstop Limits
3.4.3. Software and Safe Limits
3.5. Controller Validation
3.5.1. Sinusoidal Input Tracking Experiment
3.5.2. Chirp-Trajectory Tracking Experiment
3.6. Biosignal Acquisition Validation
4. Discussion
4.1. The Importance of Bilateral Kinematics
4.2. Kinematics and Spatial Accuracy
4.3. Anthropometric Adjustability
4.4. Safety Systems
4.5. Admittance/Impedance Control
4.6. Biosignal Acquisition
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Parallel Mechanism Design for Axial Rotation about the Arm
Appendix B. Friction Modeling and Compensation of Harmonic Drive Motors
Motor | FMINCON Best Fit | Relaxed Coulombic Friction | ||||||
---|---|---|---|---|---|---|---|---|
(Nm) | (s/rad) | (Nm) | (s/rad) | (Nm) | (s/rad) | (Nm) | (s/rad) | |
SHA25-81 | 21.92 | 75,646.25 | 38.53 | 1.32 | 22 | 40 | 39 | 1.3 |
SHA20-51 | 9.23 | 1924.76 | 17.24 | 0.71 | 9 | 30 | 17 | 0.8 |
FHA11-50 | 1.63 | 4450.5 | 2.05 | 0.95 | 1.6 | 40 | 2 | 0.9 |
Appendix C. Biosignal Acquisition Signal Quality Factors
References
- Cirstea, M.C.; Ptito, A.; Levin, M.F. Arm reaching improvements with short-term practice depend on the severity of the motor deficit in stroke. Exp. Brain Res. 2003, 152, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Dewald, J.P.; Pope, P.S.; Given, J.D.; Buchanan, T.S.; Rymer, W.Z. Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain 1995, 118, 495–510. [Google Scholar] [CrossRef] [PubMed]
- Beer, R.F.; Ellis, M.D.; Holubar, B.G.; Dewald, J. Impact of gravity loading on post-stroke reaching and its relationship to weakness. Muscle Nerve 2007, 36, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Lum, P.S.; Burgar, C.G.; Shor, P.C.; Majmundar, M.; Van der Loos, M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 2002, 83, 952–959. [Google Scholar] [CrossRef]
- Reinkensmeyer, D.J.; Kahn, L.E.; Averbuch, M.; McKenna-Cole, A.; Schmit, B.D.; Rymer, W.Z. Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM guide. J. Rehabil. Res. Dev. 2000, 37, 653–662. [Google Scholar]
- Sommerfeld, D.K.; Eek, E.U.B.; Svensson, A.K.; Holmqvist, L.W.; von Arbin, M.H. Spasticity after stroke its occurrence and association with motor impairments and activity Limitations. Stroke 2004, 35, 134–139. [Google Scholar] [CrossRef]
- Gowland, C.; Basmajian, J.V.; Plews, N.; Burcea, I. Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke. Phys. Ther. 1992, 72, 624–633. [Google Scholar] [CrossRef]
- Maura, R.M.; Rueda Parra, S.; Stevens, R.E.; Weeks, D.L.; Wolbrecht, E.T.; Perry, J.C. Literature review of stroke assessment for upper-extremity physical function via EEG, EMG, kinematic, and kinetic measurements and their reliability. J. NeuroEng. Rehabil. 2023, 20, 21. [Google Scholar] [CrossRef]
- Sullivan, K.J.; Tilson, J.K.; Cen, S.Y.; Rose, D.K.; Hershberg, J.; Correa, A.; Gallichio, J.; McLeod, M.; Moore, C.; Wu, S.S.; et al. Fugl-Meyer assessment of sensorimotor function after stroke: Standardized training procedure for clinical practice and clinical trials. Stroke 2011, 42, 427–432. [Google Scholar] [CrossRef]
- Molteni, F.; Gasperini, G.; Cannaviello, G.; Guanziroli, E. Exoskeleton and end-effector robots for upper and lower limbs rehabilitation: Narrative review. PMR 2018, 10, S174–S188. [Google Scholar] [CrossRef]
- Nef, T.; Guidali, M.; Klamroth-Marganska, V.; Riener, R. ARMin-exoskeleton robot for stroke rehabilitation. In World Congress on Medical Physics and Biomedical Engineering, 7–12 September 2009, Munich, Germany: Vol. 25/9 Neuroengineering, Neural Systems, Rehabilitation and Prosthetics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 127–130. [Google Scholar]
- Lee, S.H.; Park, G.; Cho, D.Y.; Kim, H.Y.; Lee, J.-Y.; Kim, S.; Park, S.-B.; Shin, J.-H. Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Sci. Rep. 2020, 10, 1806. [Google Scholar] [CrossRef] [PubMed]
- Moggio, L.; de Sire, A.; Marotta, N.; Demeco, A.; Ammendolia, A. Exoskeleton versus end-effector robot-assisted therapy for finger-hand motor recovery in stroke survivors: Systematic review and meta-analysis. Top. Stroke Rehabil. 2022, 29, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Schiele, A.; Visentin, G. The ESA human arm exoskeleton for space robotics telepresence. In Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics and Automation in Space, Nara, Japan, 19–23 May 2003; pp. 19–23. [Google Scholar]
- Marcheschi, S.; Salsedo, F.; Fontana, M.; Bergamasco, M. Body Extender: Whole body exoskeleton for human power augmentation. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 611–616. [Google Scholar]
- Zimmermann, Y.; Song, J.; Deguelle, C.; Läderach, J.; Zhou, L.; Hutter, M.; Riener, R.; Wolf, P. Human–Robot Attachment System for Exoskeletons: Design and Performance Analysis. IEEE Trans. Robot. 2023, 39, 3087–3105. [Google Scholar] [CrossRef]
- Kim, B.; Deshpande, A.D. An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation. Int. J. Robot. Res. 2017, 36, 414–435. [Google Scholar] [CrossRef]
- Mosher, R.S. Handyman to hardiman. SAE Trans. 1968, 76, 588–597. [Google Scholar]
- Kazerooni, H. Human-robot interaction via the transfer of power and information signals. IEEE Trans. Syst. Man Cybern. 1990, 20, 450–463. [Google Scholar] [CrossRef]
- Khalid, S.; Alnajjar, F.; Gochoo, M.; Renawi, A.; Shimoda, S. Robotic assistive and rehabilitation devices leading to motor recovery in upper limb: A systematic review. Disabil. Rehabil. Assist. Technol. 2023, 18, 658–672. [Google Scholar] [CrossRef]
- Jayaraman, A.; Marinov, B.; Singh, Y.; Burt, S.; Rymer, W.Z. Current evidence for use of robotic exoskeletons in rehabilitation. In Wearable Robotics; Academic Press: Cambridge, MA, USA, 2020; pp. 301–310. [Google Scholar]
- Lee, B.O.; Saragih, I.D.; Batubara, S.O. Robotic arm use for upper limb rehabilitation after stroke: A systematic review and meta-analysis. Kaohsiung J. Med. Sci. 2023, 39, 435–445. [Google Scholar] [CrossRef]
- Carnevale, A.; Longo, U.G.; Schena, E.; Massaroni, C.; Presti, D.L.; Berton, A.; Candela, V.; Denaro, V. Wearable systems for shoulder kinematics assessment: A systematic review. BMC Musculoskelet. Disord. 2019, 20, 546. [Google Scholar] [CrossRef]
- Huamanchahua, D.; Castañeda-Vásquez, C.; Vásquez-Espinoza, A.; Muñoz-Zevallos, A. Robotic Devices Types Exoskeletons for Elbow Rehabilitation: A Technological Review. In Proceedings of the 2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 1–4 December 2021; pp. 791–796. [Google Scholar]
- Hussain, S.; Jamwal, P.K.; Van Vliet, P.; Ghayesh, M.H. State-of-the-art robotic devices for wrist rehabilitation: Design and control aspects. IEEE Trans. Hum. Mach. Syst. 2020, 50, 361–372. [Google Scholar] [CrossRef]
- Du Plessis, T.; Djouani, K.; Oosthuizen, C. A review of active hand exoskeletons for rehabilitation and assistance. Robotics 2021, 10, 40. [Google Scholar] [CrossRef]
- Tran, P.; Jeong, S.; Herrin, K.R.; Desai, J.P. Hand exoskeleton systems, clinical rehabilitation practices, and future prospects. IEEE Trans. Med. Robot. Bionics 2021, 3, 606–622. [Google Scholar] [CrossRef]
- Gull, M.A.; Bai, S.; Bak, T. A review on design of upper limb exoskeletons. Robotics 2020, 9, 16. [Google Scholar] [CrossRef]
- Islam, M.R.; Brahmi, B.; Ahmed, T.; Assad-Uz-Zaman, M.; Rahman, M.H. Exoskeletons in upper limb rehabilitation: A review to find key challenges to improve functionality. In Control Theory in Biomedical Engineering; Academic Press: Cambridge, MA, USA, 2020; pp. 235–265. [Google Scholar]
- Shen, Y.; Ferguson, P.W.; Rosen, J. Upper limb exoskeleton systems—Overview. In Wearable Robotics; Academic Press: Cambridge, MA, USA, 2020; pp. 1–22. [Google Scholar]
- Cornejo, J.; Huamanchahua, D.; Huaman-Vizconde, S.; Terrazas-Rodas, D.; Sierra-Huertas, J.; Janampa-Espinoza, A.; Gonzales, J.; Cardona, M. Mechatronic exoskeleton systems for supporting the biomechanics of shoulder-elbow-wrist: An innovative review. In Proceedings of the 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 21–24 April 2021; pp. 1–9. [Google Scholar]
- Gupta, A.; Singh, A.; Verma, V.; Mondal, A.K.; Gupta, M.K. Developments and clinical evaluations of robotic exoskeleton technology for human upper-limb rehabilitation. Adv. Robot. 2020, 34, 1023–1040. [Google Scholar] [CrossRef]
- Qassim, H.M.; Wan Hasan, W.Z. A review on upper limb rehabilitation robots. Appl. Sci. 2020, 10, 6976. [Google Scholar] [CrossRef]
- Narayan, J.; Kalita, B.; Dwivedy, S.K. Development of robot-based upper limb devices for rehabilitation purposes: A systematic review. Augment. Hum. Res. 2021, 6, 4. [Google Scholar] [CrossRef]
- Barbosa, I.M.; Alves, P.R.; Silveira, Z.D.C. Upper limbs’ assistive devices for stroke rehabilitation: A systematic review on design engineering solutions. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 236. [Google Scholar] [CrossRef]
- Noronha, B.; Accoto, D. Exoskeletal devices for hand assistance and rehabilitation: A comprehensive analysis of state-of-the-art technologies. IEEE Trans. Med. Robot. Bionics 2021, 3, 525–538. [Google Scholar] [CrossRef]
- Sirawattanakul, S.; Sanngoen, W. Review of upper limb exoskeleton for rehabilitation assistive application. Int. J. Mech. Eng. Robot. Res. 2020, 9, 752–758. [Google Scholar] [CrossRef]
- Bao, G.; Pan, L.; Fang, H.; Wu, X.; Yu, H.; Cai, S.; Yu, B.; Wan, Y. Academic review and perspectives on robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2294–2304. [Google Scholar] [CrossRef]
- Nam, H.S.; Seo, H.G.; Leigh, J.H.; Kim, Y.J.; Kim, S.; Bang, M.S. External robotic arm vs. upper limb exoskeleton: What do potential users need? Appl. Sci. 2019, 9, 2471. [Google Scholar] [CrossRef]
- Bhujel, S.; Hasan, S.K. A comparative study of end-effector and exoskeleton type rehabilitation robots in human upper extremity rehabilitation. Hum. Intell. Syst. Integr. 2023, 5, 11–42. [Google Scholar] [CrossRef]
- Bauer, G.; Pan, Y.J. Review of control methods for upper limb telerehabilitation with robotic exoskeletons. IEEE Access 2020, 8, 203382–203397. [Google Scholar] [CrossRef]
- Nguiadem, C.; Raison, M.; Achiche, S. Motion planning of upper-limb exoskeleton robots: A review. Appl. Sci. 2020, 10, 7626. [Google Scholar] [CrossRef]
- Nazari, F.; Mohajer, N.; Nahavandi, D.; Khosravi, A.; Nahavandi, S. Applied Exoskeleton Technology: A Comprehensive Review of Physical and Cognitive Human–Robot Interaction. IEEE Trans. Cogn. Dev. Syst. 2023, 15, 1102–1122. [Google Scholar] [CrossRef]
- Mohebbi, A. Human-robot interaction in rehabilitation and assistance: A review. Curr. Robot. Rep. 2020, 1, 131–144. [Google Scholar] [CrossRef]
- Massardi, S.; Rodriguez-Cianca, D.; Pinto-Fernandez, D.; Moreno, J.C.; Lancini, M.; Torricelli, D. Characterization and evaluation of human–exoskeleton interaction dynamics: A review. Sensors 2022, 22, 3993. [Google Scholar] [CrossRef]
- Briouza, S.; Gritli, H.; Khraief, N.; Belghith, S.; Singh, D. A brief overview on machine learning in rehabilitation of the human arm via an exoskeleton robot. In Proceedings of the 2021 International Conference on Data Analytics for Business and Industry (ICDABI), Sakheer, Bahrain, 25–26 October 2021; pp. 129–134. [Google Scholar]
- Vélez-Guerrero, M.A.; Callejas-Cuervo, M.; Mazzoleni, S. Artificial intelligence-based wearable robotic exoskeletons for upper limb rehabilitation: A review. Sensors 2021, 21, 2146. [Google Scholar] [CrossRef]
- Shen, Y.; Ferguson, P.W.; Ma, J.; Rosen, J.; Tong, R. Upper limb wearable exoskeleton systems for rehabilitation: State of the art review and a case study of the EXO-UL8—Dual-arm exoskeleton system. In Wearable Technology in Medicine and Health Care; Academic Press: Cambridge, MA, USA, 2018; pp. 71–90. [Google Scholar]
- Nef, T.; Klamroth-Marganska, V.; Keller, U.; Riener, R. Three-Dimensional Multi-Degree-of-Freedom Arm Therapy Robot (ARMin). In Neurorehabilitation Technology; Reinkensmeyer, D.J., Marchal-Crespo, L., Dietz, V., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Zimmermann, Y.; Sommerhalder, M.; Wolf, P.; Riener, R.; Hutter, M. ANYexo 2.0: A Fully Actuated Upper-Limb Exoskeleton for Manipulation and Joint-Oriented Training in All Stages of Rehabilitation. IEEE Trans. Robot. 2023, 39, 2131–2150. [Google Scholar] [CrossRef]
- Rosen, J.; Perry, J.C.; Manning, N.; Burns, S.; Hannaford, B. The human arm kinematics and dynamics during daily activities-toward a 7 DOF upper limb powered exoskeleton. In Proceedings of the ICAR’05. Proceedings., 12th International Conference on Advanced Robotics, Seattle, WA, USA, 18–20 July 2005; pp. 532–539. [Google Scholar]
- Gomez-Rodriguez, M.; Peters, J.; Hill, J.; Schölkopf, B.; Gharabaghi, A.; Grosse-Wentrup, M. Closing the sensorimotor loop: Haptic feedback facilitates decoding of motor imagery. J. Neural Eng. 2011, 8, 036005. [Google Scholar] [CrossRef]
- Blank, A.A.; French, J.A.; Pehlivan, A.U.; O’Malley, M.K. Current trends in robot-assisted upper-limb stroke rehabilitation: Promoting patient engagement in therapy. Curr. Phys. Med. Rehabil. Rep. 2014, 2, 184–195. [Google Scholar] [CrossRef]
- Ramos-Murguialday, A.; Broetz, D.; Rea, M.; Läer, L.; Yilmaz, Ö.; Brasil, F.L.; Liberati, G.; Curado, M.R.; Garcia-Cossio, E.; Vyziotis, A.; et al. Brain–machine interface in chronic stroke rehabilitation: A controlled study. Ann. Neurol. 2013, 74, 100–108. [Google Scholar] [CrossRef]
- Gancet, J.; Ilzkovitz, M.; Motard, E.; Nevatia, Y.; Letier, P.; de Weerdt, D.; Cheron, G.; Hoellinger, T.; Seetharaman, K.; Petieau, M.; et al. MINDWALKER: Going one step further with assistive lower limbs exoskeleton for SCI condition subjects. In Proceedings of the B2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy, 24–27 June 2012; pp. 1794–1800. [Google Scholar]
- Veneman, J.F.; Kruidhof, R.; Hekman, E.E.; Ekkelenkamp, R.; Van Asseldonk, E.H.; Van Der Kooij, H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 379–386. [Google Scholar] [CrossRef]
- Rohrer, B.; Fasoli, S.; Krebs, H.I.; Hughes, R.; Volpe, B.; Frontera, W.R.; Stein, J.; Hogan, N. Movement smoothness changes during stroke recovery. J. Neurosci. 2002, 22, 8297–8304. [Google Scholar] [CrossRef]
- Krebs, H.I.; Aisen, M.L.; Volpe, B.T.; Hogan, N. Quantization of continuous arm movements in humans with brain injury. Proc. Natl. Acad. Sci. USA 1999, 96, 4645–4649. [Google Scholar] [CrossRef]
- Perry, J.C.; Rosen, J.; Burns, S. Upper-limb powered exoskeleton design. IEEE/ASME Trans. Mechatron. 2007, 12, 408–417. [Google Scholar] [CrossRef]
- Brunnstrom, S. Motor testing procedures in hemiplegia: Based on sequential recovery stages. Phys. Ther. 1966, 46, 357–375. [Google Scholar] [CrossRef]
- Perry, J.C.; Maura, R.; Bitikofer, C.K.; Wolbrecht, E.T. Blue Sabino: Development of a bilateral exoskeleton instrument for comprehensive upper-extremity neuromuscular assessment. In Proceedings of the Converging Clinical and Engineering Research on Neurorehabilitation III: Proceedings of the 4th International Conference on NeuroRehabilitation (ICNR2018), Pisa, Italy, 16–20 October 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 493–497. [Google Scholar]
- Perry, J.C.; Rosen, J. Isotropy of an Upper Limb Exoskeleton and the Kinematics and Dynamics of the Human Arm. Appl. Bionics Biomech. I 2009, 6, 175–191. [Google Scholar] [CrossRef]
- Tilley, A.R. The Measure of Man and Woman: Human Factors in Design; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Nasa Man-Systems Integration Standards, Volume I, Section 3 Antrhopometry and Biomechanics. Available online: https://msis.jsc.nasa.gov/sections/section03.htm (accessed on 18 August 2024).
- Ludewig, P.M.; Phadke, V.; Braman, J.P.; Hassett, D.R.; Cieminski, C.J.; LaPrade, R.F. Motion of the shoulder complex during multiplanar humeral elevation. J. Bone Jt. Surg. Am. 2009, 91, 378–389. [Google Scholar] [CrossRef]
- Ludewig, P.M.; Behrens, S.A.; Meyer, S.M.; Spoden, S.M.; Wilson, L.A. Three-dimensional clavicular motion during arm elevation: Reliability descriptive, data. J. Orthop. Sports Phys. Ther. 2004, 34, 140–149. [Google Scholar] [CrossRef]
- Perry, J.C.; Bitikofer, C.K.; Hill, P.W.; Trimble, S.T.; Wolbrecht, E.T. PRISM: Development of a 2-DOF Dual-Four-Bar Exoskeleton Shoulder Mechanism to Support Elevation, Depression, Protraction, and Retraction. In Wearable Robotics; Academic Press: Cambridge, MA, USA, 2020; pp. 105–132. [Google Scholar]
- Robertson, J.V.; Roche, N.; Roby-Brami, A. Influence of the side of brain damage on postural upper-limb control including the scapula in stroke patients. Exp. Brain Res. 2012, 218, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Roby-Brami, A.; Feydy, A.; Combeaud, M.; Biryukova, E.V.; Bussel, B.; Levin, M.F. Motor compensation and recovery for reaching in stroke patients. Acta Neurol. Scand. 2003, 107, 369–381. [Google Scholar] [CrossRef]
- Sclater, N.; Chironis, N.P. Mechanisms and Mechanical Devices Sourcebook; Mcgraw-Hill: New York, NY, USA, 2001; Volume 3. [Google Scholar]
- Otten, A.; Voort, C.; Stienen, A.; Aarts, R.; van Asseldonk, E.; van der Kooij, H. LIMPACT: A Hydraulically Powered Self-Aligning Upper Limb Exoskeleton. IEEEASME Trans. Mechatron 2015, 20, 2285–2298. [Google Scholar] [CrossRef]
- Perry, J.C.; Brower, J.R.; Carne, R.H.; Bogert, M.A. 3D Scanning of the Forearm for Orthosis and HMI Applications. Front. Robot. AI 2021, 8, 576783. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.M.; Li, Z.; Sastry, S.S. A Mathematical Introduction to Robotic Manipulation; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Spong, M.W. Robot Modeling and controlRobot Modeling and Control; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bitikofer, C.K. Design and Control of an Upper-Limb Exoskeleton (BLUE SABINO) for Stroke Rehabilitation and Assessment. Ph.D. Dissertation, University of Idaho, Moscow, ID, USA, 2023. [Google Scholar]
- Stevens, R.; Maura, R.; Wolbrecht, E.; Perry, J. Scalability and Function of Lithium Thionyl Chloride Batteries for Encoders in High-Degree-of-Freedom Robotic Systems. Bull. Am. Phys. Soc. 2019, 64, 9. [Google Scholar]
- The MathWorks Inc. MATLAB. Version: 9.6 (R2019a); The MathWorks Inc.: Natick, MA, USA, 2019; Available online: https://www.mathworks.com (accessed on 1 July 2022).
- Wolbrecht, E.T.; Chan, V.; Reinkensmeyer, D.J.; Bobrow, J.E. Optimizing Compliant, Model-Based Robotic Assistance to Promote Neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Perrusquía, A.; Yu, W.; Soria, A.; Lozano, R. Stable admittance control without inverse kinematics. IFAC-PapersOnLine 2017, 50, 15835–15840. [Google Scholar] [CrossRef]
- Maura, R. Development of a Safe Force-Based Controller to Obtain Reliable Stroke Metrics from an Exoskeleton. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 2023. [Google Scholar]
- Topini, A.; Sansom, W.; Secciani, N.; Bartalucci, L.; Ridolfi, A.; Allotta, B. Variable Admittance Control of a Hand Exoskeleton for Virtual Reality-Based Rehabilitation Tasks. Front. Neurorobotics 2022, 15, 789743. [Google Scholar] [CrossRef]
- Yu, W.; Rosen, J.; Li, X. PID admittance control for an upper limb exoskeleton. In Proceedings of the 2011 American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 1124–1129. [Google Scholar] [CrossRef]
- Bae, J.; Kim, K.; Huh, J.; Hong, D. Variable Admittance Control With Virtual Stiffness Guidance for Human–Robot Collaboration. IEEE Access 2020, 8, 117335–117346. [Google Scholar] [CrossRef]
- Aguirre-Ollinger, G.; Nagarajan, U.; Goswami, A. An admittance shaping controller for exoskeleton assistance of the lower extremities. Auton. Robot. 2016, 40, 701–728. [Google Scholar] [CrossRef]
- Bitikofer, C.K.; Wolbrecht, E.T.; Maura, R.M.; Perry, J.C. Comparison of Admittance Control Dynamic Models for Transparent Free-Motion Human-Robot Interaction. In Proceedings of the 2023 International Conference on Rehabilitation Robotics (ICORR), Singapore, 24–28 September 2023; pp. 1–6. [Google Scholar]
- Keemink, A.Q.; van der Kooij, H.; Stienen, A.H. Admittance control for physical human–robot interaction. Int. J. Robot. Res. 2018, 37, 1421–1444. [Google Scholar] [CrossRef]
- Slotine, J.-J.E.; Li, W. Applied Nonlinear Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1991. [Google Scholar]
- Gandhi, P.S.; Ghorbel, F.H.; Dabney, J. Modeling, identification, and compensation of friction in harmonic drives. In Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, 10–13 December 2002; pp. 160–166. [Google Scholar] [CrossRef]
- Hauschild, J.P.; Heppler, G.; McPhee, J.J. Friction Compensation of Harmonic Drive Actuators. In Proceedings of the 6th International Conference on Dynamics and Control of Systems and Structures in Space, Liguria, Italy, 2004; Cranfield Univ. Press: Cranfield, UK, 2004; pp. 683–692. Available online: https://uwaterloo.ca/motion-research-group/publications/friction-compensation-harmonic-drive-actuators (accessed on 20 June 2024).
- Malik, A.S.; Amin, H.U. Designing EEG Experiments for Studying the Brain, 1st ed.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Cohen, M.X. Analyzing Neural Time Series Data: Theory and Practice; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Buzsáki, G. Rhythms of the Brain; Oxford University Press: Oxford, UK, 2006. [Google Scholar] [CrossRef]
- Cohen, M.X. Cycles in Mind: How Brain Rhythms Control Perception and Action; Sinc (x) Press, E-Book: Bucharest, Romania, 2015. [Google Scholar]
- McGill Physiology Virtual Lab. EEG Signal Acquisition. Biomedical Signals Acquisition. Available online: https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm (accessed on 20 June 2024).
- Schalk, G.; Mcfarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A General-Purpose Brain-Computer Interface (BCI) System. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.J.; Mooney, S.W.J.; Prusky, G.T. audiomath: A neuroscientist’s sound toolkit. Heliyon Internet 2021, 7, e06236. [Google Scholar] [CrossRef] [PubMed]
- Rueda Parra, S.; Perry, J.C.; Wolbrecht, E.T.; Gupta, D. Neural correlates of bilateral proprioception and adaptation with training. PLoS ONE 2024, 19, e0299873. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Lopes da Silva, F.H. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef] [PubMed]
- Kilavik, B.E.; Zaepffel, M.; Brovelli, A.; MacKay, W.A.; Riehle, A. The ups and downs of beta oscillations in sensorimotor cortex. Exp. Neurol. 2013, 245, 15–26. [Google Scholar] [CrossRef]
- Barone, J.; Rossiter, H.E. Understanding the role of sensorimotor beta oscillations. Front. Syst. Neurosci. 2021, 15, 655886. [Google Scholar] [CrossRef]
- Clancy, E.A.; Bouchard, S.; Rancourt, D. Estimation and application of EMG amplitude during dynamic contractions. IEEE Eng. Med. Biol. Mag. 2001, 20, 47–54. [Google Scholar] [CrossRef]
- Ferguson, P.W.; Dimapasoc, B.; Rosen, J. Optimal Kinematic Design of the Link Lengths of a Hand Exoskeleton. In Wearable Robotics; Academic Press: Cambridge, MA, USA, 2020; pp. 193–206. [Google Scholar]
- Rettig, O.; Krautwurst, B.; Maier, M.W.; Wolf, S.I. Definition of anatomical zero positions for assessing shoulder pose with 3D motion capture during bilateral abduction of the arms. BMC Musculoskelet. Disord. 2015, 16, 383. [Google Scholar] [CrossRef]
- Hallaceli, H.; Günal, I. Normal range of scapular elevation and depression in healthy subjects. Arch. Orthop. Trauma Surg. 2002, 122, 99–101. [Google Scholar]
- Taylor, C.L. The Biomechanics of Control in Upper-Extremity Prostheses; National Academy of Sciences: Washington, DC, USA, 1955. [Google Scholar]
- Bitikofer, C.K.; Wolbrecht, E.T.; Perry, J.C. Mapping ADL Motion Capture Data to BLUE SABINO Exoskeleton Kinematics and Dynamics. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 4914–4919. [Google Scholar] [CrossRef]
- Hill, P.W.; Wolbrecht, E.T.; Perry, J.C. Gravity Compensation of an Exoskeleton Joint Using Constant-Force Springs. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 311–316. [Google Scholar] [CrossRef]
- Taghirad, H.D.; Belanger, P.R. An experimental study on modeling and identification of harmonic drive systems. In Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, 13 December 1996; pp. 4725–4730. [Google Scholar] [CrossRef]
- Tuttle, T.D.; Seering, W.P. A nonlinear model of a harmonic drive gear transmission. IEEE Trans. Robot. Autom. 1996, 12, 368–374. [Google Scholar] [CrossRef]
- Lu, Y.-S.; Lin, S.-M. Disturbance-observer-based adaptive feedforward cancellation of torque ripples in harmonic drive systems. Electr. Eng. 2007, 90, 95–106. [Google Scholar] [CrossRef]
- Liu, J.; Sheng, Y.; Liu, H. Corticomuscular coherence and its applications: A review. Front. Hum. Neurosci. 2019, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Shiller, D.M.; Gribble, P.L.; Ostry, D.J. Relationship between cocontraction, movement kinematics and phasic muscle activity in single-joint arm movement. Exp. Brain Res. 2001, 140, 171–181. [Google Scholar] [CrossRef]
- Stančák, A.; Riml, A.; Pfurtscheller, G. The effects of external load on movement-related changes of the sensorimotor EEG rhythms. Electroencephalogr. Clin. Neurophysiol. 1997, 102, 495–504. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Neuper, C.; Pichler-Zalaudek, K.; Edlinger, G.; Lopes da Silva, F.H. Do brain oscillations of different frequencies indicate interaction between cortical areas in humans? Neurosci. Lett. 2000, 286, 66–68. [Google Scholar] [CrossRef] [PubMed]
System Attribute | Ranking * | Weighted Rank | ||
---|---|---|---|---|
Extremely Important (3) | Important (2) | Not Very Important (1) | ||
| 10 | 3 | ||
| 10 | 3 | ||
| 9 | 1 | 2.9 | |
| 9 | 1 | 2.9 | |
| 9 | 1 | 2.9 | |
| 9 | 1 | 2.8 | |
| 8 | 2 | 2.8 | |
| 8 | 2 | 2.8 | |
| 8 | 2 | 2.8 | |
| 8 | 2 | 2.8 | |
| 8 | 2 | 2.8 | |
| 7 | 2 | 2.8 | |
| 7 | 3 | 2.7 | |
| 7 | 3 | 2.7 | |
| 7 | 2 | 1 | 2.6 |
| 7 | 2 | 1 | 2.6 |
| 6 | 4 | 2.6 | |
| 6 | 4 | 2.6 | |
| 5 | 5 | 2.5 | |
| 4 | 4 | 2.5 | |
| 5 | 4 | 1 | 2.4 |
| 5 | 4 | 1 | 2.4 |
| 4 | 6 | 2.4 | |
| 3 | 6 | 2.3 | |
| 2 | 8 | 2.2 | |
| 1 | 8 | 2.1 | |
| 3 | 3 | 4 | 1.9 |
| 2 | 5 | 3 | 1.9 |
| 2 | 4 | 3 | 1.9 |
| 7 | 3 | 1.7 | |
| 1 | 1 | 3 | 1.6 |
| 1 | 5 | 0.7 |
Anthropometric Measure * | 5th Percentile Female (cm) | 95th Percentile Male (cm) | Range (cm) |
---|---|---|---|
Seat-Shoulder Height (HS-SH), seat to join center | 46.4 | 59.7 | 13.2 |
Shoulder Width (WSH), center to center | 29.4 | 39.2 | 9.8 |
Upper Arm Length (LUA), center to center Upper Arm Circumference (CUA), muscles relaxed | 25.3 | 30.3 | 4.9 |
21.8 | 35.1 | 13.3 | |
Forearm Length (LFA), center to center Forearm Circumference (CFA), muscles relaxed | 22.5 19.9 | 26.9 32.7 | 4.4 12.8 |
Hand Length (LHD), crease to fingertip Hand Grip Length (LHD-GR), crease to grip center Hand Circumference (CHD), around grip center Hand Width (WHD), across grip center Hand Thickness (THD), across middle MCP joint | 15.9 6.7 | 20.7 8.3 | 4.8 1.6 |
17.5 7.0 2.5 | 23.0 9.6 3.7 | 5.5 2.6 1.1 |
Joint | 95% of ADL ROM (deg) * | Anthropometric M/F ROM (deg) ** | |
---|---|---|---|
Minimum | Maximum | ||
Shoulder Protraction/Retraction Shoulder Elevation/Depression | 55.9 42.1 | 35.0 † 40.0 † | |
Shoulder Abduction/Adduction Shoulder Flexion/Extension Shoulder Internal/External Rotation | 164.3 | 142.0 | 207.5 |
110.7 | 202.5 | 284.5 | |
108.9 | 84.5 | 181.5 | |
Elbow Flexion/Extension | 120.5 | 122.0 | 160.5 |
Forearm Pronation/Supination | 215.7 | 161.6 ‡ | 258.4 ‡ |
Wrist Flexion/Extension Wrist Radial Ulnar Deviation | 131.4 35.9 | 100.5 33.0 | 177.0 76.5 |
Joints | Motor/Gear Combination | Cont. Torque (Nm) | Peak Torque (Nm) | Max Speed (RPM) |
---|---|---|---|---|
J2, J3, J4 | SHA25A/81:1 | 67 | 178 | 69.1 |
J1, J5, J6 | SHA20A/51:1 | 21 | 73 | 117.6 |
J7, J8, J9 | FHA11C/50:1 | 3 | 8.3 | 120 |
Term | Unit | Joint | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
J1 * | J2 * | J3 | J4 | J5 | J6 | J7 | J8 | J9 | ||
0.6 | 0.6 | 0.5 | 0.5 | 0.3 | 0.1 | 0.01 | 0.01 | 0.01 | ||
0.5 | 0.5 | 0.5 | 0.5 | 0.3 | 0.3 | 0.05 | 0.05 | 0.05 | ||
15 | 15 | 15 | 15 | 9 | 9 | 3 | 3 | 3 |
Motor | Term | Value (Nm/rad) | Term | Value (Nms/rad) |
---|---|---|---|---|
SHA25A | 4000 | 200 | ||
SHA20A | 3000 | 40 | ||
FHA11C | 320 | 1 |
Motor | Term | Value (Nm/rad) | Term | Value (Nms/rad) |
---|---|---|---|---|
SHA25A | 4000 | 500 | ||
SHA20A | 3000 | 300 | ||
FHA11C | 100 | 10 |
Measure | BLUE SABINO Adjustability | Anthropometric Reference [62] | |||
---|---|---|---|---|---|
Min | Max | Range | 5th-95th M/F Pctl. | M/F Range | |
Seat-to-Shoulder Height | 425 | 805 | 380 | 519–651 | 132 |
Foot-to-Seat Height | 80 | 530 | 410 | 377–470 | 93 |
Shoulder Width | 126 | 761 | 635 | 368–508 | 140 |
Upper-Arm Length | 229 | 330 | 121 | 256–302 | 46 |
Forearm Length | 222 | 330 | 109 | 221–271 | 50 |
Upper-Arm Circumference | 304 | 440 | 136 | 244–351 | 107 |
Forearm Circumference | 251 | 327 | 76 | 225–327 | 102 |
Hand Width | 25 | 45 | 20 | 25–36 | 11 |
Protraction/ Retraction | Depression Elevation | Adduction Abduction | Horizontal Abduction Horizontal Adduction | Flexion Extension | Internal Rotation External Rotation | Extension Flexion | Supination Pronation | Flexion Extension | Radial Deviation Ulnar Deviation | Total Coverage | |
---|---|---|---|---|---|---|---|---|---|---|---|
Perry ADL | 97.0% | 82.0% | 99.2% | 96.4% | 98.7% | 99.0% | 96.8% | 98.1% | 89.6% | 99.8% | 95.6% |
50th Percentile Male | 100.0% | 82.8% | 86.5% | 97.7% | 80.5% | 100.0% | 100.0% | 86.9% | 75.9% | 79.2% | 88.6% |
50th Percentile Female | 98.0% | 75.8% | 95.9% | 94.6% | 65.2% | 69.0% | 85.3% | 82.9% |
Human Response Time (s) | System Response Time * (s) | Total Response Time (s) |
---|---|---|
1.3196 | 0.110 | 1.4296 |
0.8621 | 0.110 | 0.9712 |
0.9680 | 0.110 | 1.0780 |
1.4159 | 0.110 | 1.5259 |
2.0883 | 0.110 | 2.1983 |
1.3580 | 0.110 | 1.4680 |
1.6250 | 0.110 | 1.7350 |
Average: 1.377 s | Average: 1.487 s |
Robot Joint | Pos CCW Limit (deg) | Corresponding Anthropometric Motion | Neg CW Limit (deg) | Corresponding Anthropometric Motion | Total Joint ROM (deg) |
---|---|---|---|---|---|
J1 | 25 * | SH. Prot. | 20 * | SH. Retr. | 45 * |
J2 | 20 * | SH. Elev. | 20 * | SH. Depr. | 60 * |
J3 | 10 | SH. Add./Flex. | 170 | SH. Abd./Ext. | 180 |
J4 | 55 (No Insert) | SH. Abd./Ext. | 187.5 | SH. Add./Flex. | 242.5 |
31 (45° Insert) | 218.5 | ||||
10 (24° Insert) | 197.5 | ||||
J5 | 31 | SH. Ext. Rot. | 132 | SH. Int. Rot. | 163 |
J6 | 20 (110° Front Plate) | EL. Flex. | 90 | EL. Ext. | 110 |
50 (140° Front Plate) | 140 | ||||
J7 | 65 | FA. Pron. | 85 | FA. Sup. | 150 |
J8 | 30 | WR. Ext. | 70 | WR. Flex. | 95 |
J9 | 20 | WR. Uln. Dev. | 30 | WR. Rad. Dev. | 50 |
Joint | Position | Velocity | |||||
---|---|---|---|---|---|---|---|
(deg) | (s) | (deg) | (deg/s) | ||||
Metrics | J3 | 1.056 | 2.526 | 0.007 | 0.509 | 0.956 | 3.125 |
J4 | 0.999 | 2.367 | 0.007 | 0.187 | 0.946 | 3.261 | |
J5 | 1.002 | 3.240 | 0.009 | 0.254 | 1.000 | 2.692 | |
J6 | 1.004 | 1.800 | 0.005 | 0.128 | 1.000 | 1.616 | |
J7 | 0.997 | 3.246 | 0.009 | 0.255 | 0.992 | 3.286 | |
Joints Avg. | 1.012 | 2.636 | 0.007 | 0.267 | 0.979 | 2.796 | |
Joints Std. Dev. | 0.025 | 0.616 | 0.002 | 0.145 | 0.026 | 0.701 |
Pearson’s Correlation Coefficients | |||||||||
---|---|---|---|---|---|---|---|---|---|
EEG Contra. Beta | EEG Contra. Low Beta | EEG Contra. Mu | EMG_Trap. | EMG Med. Delt. | EMG Pect. | Hand Disp. | Hand Vel. | Shld. Torq. | |
EEG Contra. Beta | 1.00 | ||||||||
EEG Contra. Low Beta | 0.92 | 1.00 | Color Scale | ||||||
EEG Contra. Mu | 0.82 | 0.72 | 1.00 | 1.00 | |||||
EMG Trap. | 0.00 | 0.12 | 0.06 | 1.00 | 0.00 | ||||
EMG Med. Delt. | −0.23 | −0.33 | −0.07 | 0.40 | 1.00 | −1.00 | |||
EMG Pect. | 0.07 | 0.14 | −0.09 | −0.16 | −0.58 | 1.00 | |||
Hand Disp. | −0.02 | −0.17 | 0.13 | 0.02 | 0.65 | −0.89 | 1.00 | ||
Hand Vel. | 0.32 | 0.13 | 0.43 | −0.03 | 0.47 | 0.04 | 0.26 | 1.00 | |
Shld. Torq. | 0.73 | 0.62 | 0.74 | 0.20 | 0.18 | −0.22 | 0.41 | 0.56 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bitikofer, C.K.; Rueda Parra, S.; Maura, R.; Wolbrecht, E.T.; Perry, J.C. BLUE SABINO: Development of a BiLateral Upper-Limb Exoskeleton for Simultaneous Assessment of Biomechanical and Neuromuscular Output. Machines 2024, 12, 617. https://doi.org/10.3390/machines12090617
Bitikofer CK, Rueda Parra S, Maura R, Wolbrecht ET, Perry JC. BLUE SABINO: Development of a BiLateral Upper-Limb Exoskeleton for Simultaneous Assessment of Biomechanical and Neuromuscular Output. Machines. 2024; 12(9):617. https://doi.org/10.3390/machines12090617
Chicago/Turabian StyleBitikofer, Christopher K., Sebastian Rueda Parra, Rene Maura, Eric T. Wolbrecht, and Joel C. Perry. 2024. "BLUE SABINO: Development of a BiLateral Upper-Limb Exoskeleton for Simultaneous Assessment of Biomechanical and Neuromuscular Output" Machines 12, no. 9: 617. https://doi.org/10.3390/machines12090617
APA StyleBitikofer, C. K., Rueda Parra, S., Maura, R., Wolbrecht, E. T., & Perry, J. C. (2024). BLUE SABINO: Development of a BiLateral Upper-Limb Exoskeleton for Simultaneous Assessment of Biomechanical and Neuromuscular Output. Machines, 12(9), 617. https://doi.org/10.3390/machines12090617