Performance Comparison of Recent Population-Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components
Abstract
1. Introduction
2. Optimisation Algorithms
2.1. African Vultures Optimisation Algorithm (AVOA)
2.2. Crystal Structure Algorithm (CryStAl)
2.3. Human Behavior-Based Optimisation Algorithm (HBBO)
2.4. Gradient-Based Optimiser (GBO)
2.5. Gorilla Troops Optimiser (GTO)
2.6. Runge–Kutta Optimisation (RUN)
2.7. Social Network Search (SNS)
2.8. Sparrow Search Algorithm (SSA)
3. Computer Experiments
3.1. Parameter Settings
3.2. Tension/Compression Spring Design
3.3. Crane Hook Design
3.4. Reduction Gear Design
3.5. Cylindrical Pressure Vessel Design
3.6. Hydrostatic Thrust Bearing Design
4. Discussion
4.1. Observations from the Benchmark Study
4.2. A Comparison with Traditional Optimisation Techniques
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AVOA | African Vultures Optimisation Algorithm |
CryStAl | Cyrstal Structure Algorithm |
FE | Function Evolution |
HBBO | Human-Behaviour Based Optimisation |
GA | Genetic Algorithm |
GBO | Gradient Based Optimiser |
GP | Genetic Programming |
GTO | Gorilla Troops Optimiser |
NP | The population size |
PSO | Particle Swarm Optimisation |
RUN | RUNge Kutta Optimiser |
SNS | Social Network Search |
SSA | Sparrow Search Algorithm |
Appendix A
Appendix A.1. Tension/Compression Spring Design Problem
Appendix A.2. Crane Hook Design Problem
Appendix A.3. Reduction Gear Design Problem
Appendix A.4. Pressure Vessel Design Problem
Appendix A.5. Hydrostatic Thrust Bearing Design Problem
References
- Ahmad, M.; Ahmad, B.; Harrison, R.; Alkan, B.; Vera, D.; Meredith, J.; Bindel, A. A framework for automatically realizing assembly sequence changes in a virtual manufacturing environment. Procedia CIRP 2016, 50, 129–134. [Google Scholar] [CrossRef][Green Version]
- Alkan, B.; Vera, D.; Ahmad, B.; Harrison, R. A method to assess assembly complexity of industrial products in early design phase. IEEE Access 2017, 6, 989–999. [Google Scholar] [CrossRef]
- Wang, L.; Ng, A.H.; Deb, K. Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Alavi, A.H. Metaheuristic algorithms in modeling and optimization. In Metaheuristic Applications in Structures and Infrastructures; Elsevier: London, UK, 2013. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the North American Fuzzy Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523. [Google Scholar]
- Koza, J.R.; Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992; Volume 1. [Google Scholar]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef]
- Rechenberg, I. Evolutionsstrategien. In Simulationsmethoden in der Medizin und Biologie; Springer: Berlin/Heidelberg, Germany, 1978; pp. 83–114. [Google Scholar]
- Van Laarhoven, P.J.; Aarts, E.H. Simulated annealing. In Simulated Annealing: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1987; pp. 7–15. [Google Scholar]
- Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl.-Based Syst. 2019, 163, 283–304. [Google Scholar] [CrossRef]
- Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [Google Scholar] [CrossRef]
- Kaveh, A.; Mahdavi, V.R. Colliding bodies optimization: A novel meta-heuristic method. Comput. Struct. 2014, 139, 18–27. [Google Scholar] [CrossRef]
- Yang, X.S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconventional Computing and Natural Computation, Orléans, France, 3–7 September 2012; pp. 240–249. [Google Scholar]
- Mehrabian, A.R.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform. 2006, 1, 355–366. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95. Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Colorni, A.; Dorigo, M.; Maniezzo, V. Distributed optimization by ant colonies. In Proceedings of the First European Conference on Artificial Life, Paris, France, 11–13 December 1991; Volume 142, pp. 134–142. [Google Scholar]
- Kaur, S.; Awasthi, L.K.; Sangal, A.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Wang, L. Manta ray foraging optimization: An effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 2020, 87, 103300. [Google Scholar] [CrossRef]
- Shadravan, S.; Naji, H.; Bardsiri, V.K. The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng. Appl. Artif. Intell. 2019, 80, 20–34. [Google Scholar] [CrossRef]
- Sulaiman, M.H.; Mustaffa, Z.; Saari, M.M.; Daniyal, H. Barnacles mating optimizer: A new bio-inspired algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103330. [Google Scholar] [CrossRef]
- Yang, X.S. Engineering Optimization: An Introduction with Metaheuristic Applications; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Kaveh, A.; Farhoudi, N. A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 2013, 59, 53–70. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Zhang, J.; Xiao, M.; Gao, L.; Pan, Q. Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems. Appl. Math. Model. 2018, 63, 464–490. [Google Scholar] [CrossRef]
- Jaddi, N.S.; Alvankarian, J.; Abdullah, S. Kidney-inspired algorithm for optimization problems. Commun. Nonlinear Sci. Numer. Simul. 2017, 42, 358–369. [Google Scholar] [CrossRef]
- Kaveh, A. Advances in Metaheuristic Algorithms for Optimal Design of Structures; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Talatahari, S.; Azizi, M.; Tolouei, M.; Talatahari, B.; Sareh, P. Crystal Structure Algorithm (CryStAl): A Metaheuristic Optimization Method. IEEE Access 2021, 9, 71244–71261. [Google Scholar] [CrossRef]
- Ahmadi, S.A. Human behavior-based optimization: A novel metaheuristic approach to solve complex optimization problems. Neural Comput. Appl. 2017, 28, 233–244. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Bozorg-Haddad, O.; Chu, X. Gradient-based optimizer: A new metaheuristic optimization algorithm. Inf. Sci. 2020, 540, 131–159. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Soleimanian Gharehchopogh, F.; Mirjalili, S. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 2021, 36, 5887–5958. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 2021, 181, 115079. [Google Scholar] [CrossRef]
- Talatahari, S.; Bayzidi, H.; Saraee, M. Social Network Search for Global Optimization. IEEE Access 2021, 9, 92815–92863. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control. Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Soto, R.; Crawford, B.; González, F.; Vega, E.; Castro, C.; Paredes, F. Solving the manufacturing cell design problem using human behavior-based algorithm supported by autonomous search. IEEE Access 2019, 7, 132228–132239. [Google Scholar] [CrossRef]
- Soto, R.; Crawford, B.; González, F.; Olivares, R. Human behaviour based optimization supported with self-organizing maps for solving the S-box design Problem. IEEE Access 2021, 9, 84605–84618. [Google Scholar] [CrossRef]
- Deb, S.; Abdelminaam, D.S.; Said, M.; Houssein, E.H. Recent methodology-based gradient-based optimizer for economic load dispatch problem. IEEE Access 2021, 9, 44322–44338. [Google Scholar] [CrossRef]
- Ismaeel, A.A.; Houssein, E.H.; Oliva, D.; Said, M. Gradient-based optimizer for parameter extraction in photovoltaic models. IEEE Access 2021, 9, 13403–13416. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, Q.; Wei, Y.; Abualigah, L.; Zhou, Y. An efficient binary Gradient-based optimizer for feature selection. Math. Biosci. Eng. MBE 2021, 18, 3813–3854. [Google Scholar] [CrossRef]
- Zhu, Y.; Yousefi, N. Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm. Int. J. Hydrog. Energy 2021, 46, 9541–9552. [Google Scholar] [CrossRef]
- Liu, T.; Yuan, Z.; Wu, L.; Badami, B. An optimal brain tumor detection by convolutional neural network and Enhanced Sparrow Search Algorithm. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 459–469. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, K.; He, Z.; Yin, Z.; Wang, S. Semi-Supervised Ensemble Classifier with Improved Sparrow Search Algorithm and Its Application in Pulmonary Nodule Detection. Math. Probl. Eng. 2021, 2021. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, D. Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm. Sustainability 2021, 13, 4896. [Google Scholar] [CrossRef]
- Liu, G.; Shu, C.; Liang, Z.; Peng, B.; Cheng, L. A modified sparrow search algorithm with application in 3d route planning for UAV. Sensors 2021, 21, 1224. [Google Scholar] [CrossRef]
- Golinski, J. Optimal synthesis problems solved by means of nonlinear programming and random methods. J. Mech. 1970, 5, 287–309. [Google Scholar] [CrossRef]
- Kannan, B.; Kramer, S.N. An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 1994, 116, 405–411. [Google Scholar] [CrossRef]
- Siddall, J.N. Optimal Engineering Design: Principles and Applications; CRC Press: Boca Raton, FL, USA, 1982. [Google Scholar]
Algorithm | Parameter Settings |
---|---|
AVOA | = 0.6, = 0.4, = 0.6, = 0.8, = 0.2, |
w = 2.5, | |
CryStAl | Global parameters (FEs and NP) |
HBBO | = 30, = 0, = 2.5, = 0.2 |
GBO | = 0.2, = 1.2, = 0.5 |
GTO | p = 0.03, = 3, w = 0.8 |
RUN | Global parameters (FEs and NP) |
SNS | Global parameters (FEs and NP) |
SSA | = 20%, = 10%, = 0.8 |
Problem | NP | FEs | |
---|---|---|---|
Tension/compression spring design | 35 | 500 | 17,500 |
Crane hook design | 35 | 850 | 29,750 |
Reduction gear design | 50 | 1250 | 62,500 |
Pressure vessel design | 50 | 1000 | 50,000 |
Hydrostatic thrust bearing design | 100 | 2000 | 200,000 |
Var. | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
AVOA | CryStAl | HBBO | GBO | GTO | RUN | SNS | SSA | |
0.012669 | 0.012718 | 0.012665 | 0.012665 | 0.012665 | 0.012665 | 0.012665 | 0.012666 | |
0.052157 | 0.050431 | 0.051688 | 0.051617 | 0.051673 | 0.051789 | 0.051699 | 0.051454 | |
0.368082 | 0.327152 | 0.356695 | 0.354992 | 0.356338 | 0.359122 | 0.356956 | 0.351091 | |
10.652547 | 13.285471 | 11.290315 | 11.390874 | 11.311287 | 11.149446 | 11.275058 | 11.626627 |
Algorithm | Best | Mean | Worst | Std | CPU Time (s) |
---|---|---|---|---|---|
AVOA | 0.012669196719 | 0.013560633588 | 0.015508926159 | 0.000828257932 | 0.00298611 |
CryStAl | 0.012718059192 | 0.012857705948 | 0.013166450230 | 0.000099876120 | 0.0427 |
HBBO | 0.012665232805 | 0.012983204879 | 0.015342442232 | 0.000546532591 | 0.03068571 |
GBO | 0.012665327053 | 0.012725601218 | 0.013046308894 | 0.000082488889 | 0.00758664 |
GTO | 0.012665237347 | 0.012736771587 | 0.013274672049 | 0.000114193785 | 0.00583106 |
RUN | 0.012665468642 | 0.013161559938 | 0.017773399457 | 0.001091488094 | 0.01252020 |
SNS | 0.012665308324 | 0.012700310221 | 0.012908393770 | 0.000053324273 | 0.00449754 |
SSA | 0.01266624413 | 0.013359346602 | 0.017773159421 | 0.001336305394 | 0.00506082 |
Var. | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
AVOA | CryStAl | HBBO | GBO | GTO | RUN | SNS | SSA | |
37.501763 | 37.505239 | 37.502003 | 37.501763 | 37.501764 | 37.501770 | 37.501765 | 37.501763 | |
3.389569 | 3.393468 | 3.380692 | 3.389197 | 3.389747 | 3.390378 | 3.389217 | 3.389350 | |
1.500000 | 1.500000 | 1.500000 | 1.500000 | 1.500000 | 1.500000 | 1.500000 | 1.500000 | |
1.292017 | 1.288449 | 1.300485 | 1.292370 | 1.291849 | 1.291252 | 1.292352 | 1.292226 |
Algorithm | Best | Mean | Worst | Std | CPU Time (s) |
---|---|---|---|---|---|
AVOA | 37.501768304530 | 37.509521006356 | 37.567143974448 | 0.012437419152 | 0.00475095 |
CryStAl | 37.502652718785 | 37.528776144364 | 37.614401549196 | 0.021833637274 | 0.02640220 |
HBBO | 37.501773097093 | 37.573060310021 | 37.976041870924 | 0.122369512361 | 0.03530030 |
GBO | 37.501763283040 | 37.501857914596 | 37.504126932995 | 0.000349234645 | 0.01275198 |
GTO | 37.501763262652 | 37.503112132524 | 37.509524542183 | 0.001892413110 | 0.00894737 |
RUN | 37.501775668620 | 37.508273179197 | 37.546955429412 | 0.010504431267 | 0.02143182 |
SNS | 37.501763577814 | 37.501955818081 | 37.502840983287 | 0.000297921175 | 0.00738974 |
SSA | 37.501763937287 | 37.502795252003 | 37.509275937416 | 0.001709946677 | 0.00797318 |
Var. | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
AVOA | CryStAl | HBBO | GBO | GTO | RUN | SNS | SSA | |
2994.355035 | 2999.199820 | 2994.355026 | 2994.355026 | 2994.355026 | 2994.360057 | 2994.355026 | 2994.355026 | |
3.500000 | 3.502645 | 3.500000 | 3.500000 | 3.500000 | 3.500004 | 3.500000 | 3.500000 | |
0.700000 | 0.700000 | 0.700000 | 0.700000 | 0.700000 | 0.700000 | 0.700000 | 0.700000 | |
17.000000 | 17.000000 | 17.000000 | 17.000000 | 17.000000 | 17.000000 | 17.000000 | 17.000000 | |
7.300000 | 7.300000 | 7.300000 | 7.300000 | 7.300000 | 7.300001 | 7.300000 | 7.300000 | |
7.715320 | 7.776127 | 7.715320 | 7.715320 | 7.715320 | 7.715415 | 7.715320 | 7.715320 | |
3.350215 | 3.355539 | 3.350215 | 3.350215 | 3.350215 | 3.350216 | 3.350215 | 3.350215 | |
5.286654 | 5.288404 | 5.286654 | 5.286654 | 5.286654 | 5.286656 | 5.286654 | 5.286654 |
Algorithm | Best | Mean | Worst | Std | CPU Time (s) |
---|---|---|---|---|---|
AVOA | 2994.355035177460 | 2996.948906023790 | 3010.205238324880 | 3.050912549282 | 0.00199605 |
CryStAl | 2999.199820220130 | 3025.816152450150 | 3167.006692311780 | 23.589811855532 | 0.00682740 |
HBBO | 2994.355026112020 | 2995.873515410200 | 3033.632877394140 | 7.534482000137 | 0.00670371 |
GBO | 2994.355026112020 | 2994.355026112010 | 2994.355026112020 | 0.000000000004 | 0.00293696 |
GTO | 2994.355026112020 | 2996.909938595160 | 3016.654294988220 | 5.793856810156 | 0.00263637 |
RUN | 2994.360057223500 | 2996.941885889620 | 3005.175063824030 | 2.571268627965 | 0.00529230 |
SNS | 2994.355026112020 | 2994.355026112010 | 2994.355026112020 | 0.000000000004 | 0.00225359 |
SSA | 2994.355026112020 | 2994.355026112010 | 2994.355026112020 | 0.000000000004 | 0.00206693 |
Var. | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
AVOA | CryStAl | HBBO | GBO | GTO | RUN | SNS | SSA | |
5885.373899 | 5974.379050 | 5885.331251 | 5885.331290 | 5885.331251 | 5885.358639 | 5885.331259 | 5885.334152 | |
0.778193 | 0.782667 | 0.778168 | 0.778168 | 0.778168 | 0.778170 | 0.778168 | 0.778170 | |
0.384661 | 0.393180 | 0.384649 | 0.384649 | 0.384649 | 0.384655 | 0.384649 | 0.384650 | |
40.320911 | 40.525039 | 40.319619 | 40.319619 | 40.319619 | 40.319678 | 40.319619 | 40.319705 | |
199.982005 | 199.890718 | 200.000000 | 199.999998 | 200.000000 | 199.999554 | 200.000000 | 199.998801 |
Algorithm | Best | Mean | Worst | Std | CPU Time (s) |
---|---|---|---|---|---|
AVOA | 5885.3738987482 | 6435.3490970377 | 7318.9955182938 | 495.3062860591 | 0.00205490 |
CryStAl | 5974.3790500167 | 6470.6393698594 | 7102.3066251881 | 256.7609412380 | 0.01141518 |
HBBO | 5885.3312508567 | 6184.9051478586 | 7318.9989210708 | 347.8356798794 | 0.01408385 |
GBO | 5885.3312900824 | 5912.3347543230 | 6309.3266189585 | 68.5231352046 | 0.00535753 |
GTO | 5885.3312508567 | 6209.8831784614 | 7318.9989210708 | 433.7313628757 | 0.00415526 |
RUN | 5885.3586393254 | 6889.2020918829 | 7319.1357489398 | 628.5456318607 | 0.00902184 |
SNS | 5885.3312588460 | 5967.6346717171 | 7318.2220337882 | 250.1319816538 | 0.00297717 |
SSA | 5885.3341524728 | 6411.1266934476 | 7318.9989210708 | 479.2420166123 | 0.00303397 |
Var. | Algorithm | |||||||
---|---|---|---|---|---|---|---|---|
AVOA | CryStAl | HBBO | GBO | GTO | RUN | SNS | SSA | |
19,544.66481 | 20,551.94918 | 23,183.54393 | 19,505.31331 | 19,505.76493 | 19,505.85672 | 19,515.50557 | 20,459.41775 | |
5.959052191 | 6.038211653 | 6.398078596 | 5.955780499 | 5.955888118 | 5.955827384 | 5.956719465 | 6.042305703 | |
5.3926286 | 5.452684743 | 5.874142492 | 5.38901305 | 5.389131987 | 5.38905445 | 5.389912069 | 5.4780081 | |
5.38 × | 5.57 × | 6.73 × | 5.36 × | 5.36 × | 5.36 × | 5.36 × | 5.74 × | |
2.286644923 | 2.539761897 | 4.066687785 | 2.269656072 | 2.269723697 | 2.269807988 | 2.272161645 | 2.647407856 |
Algorithm | Best | Mean | Worst | Std | CPU Time (s) |
---|---|---|---|---|---|
AVOA | 19,544.6648069058 | 23,956.5558577224 | 42,889.0448729199 | 3127.6848031821 | 0.021506546 |
CryStAl | 20,551.9491788596 | 22,834.6295959337 | 24,761.4009721265 | 1016.4245763020 | 0.103373525 |
HBBO | 23,183.5439311853 | 31,259.1001178412 | 48,556.9957076442 | 4573.4127562409 | 0.094215091 |
GBO | 19,505.3133077224 | 20,886.4642416408 | 26,025.4186699601 | 1481.9044873111 | 0.044018051 |
GTO | 19,505.7649269808 | 22,182.0691330824 | 28,734.8082159540 | 1890.1924714863 | 0.038249415 |
RUN | 19,505.8567225382 | 20,680.5525292687 | 33,034.8218788356 | 3044.6733188831 | 0.085310708 |
SNS | 19,515.5055737337 | 19,536.7881264808 | 19,600.1259774218 | 16.5978846836 | 0.027272087 |
SSA | 20,459.4177472381 | 31,040.7176967004 | 78,295.6327390864 | 8912.0581928620 | 0.025494880 |
GA | ||||
---|---|---|---|---|
Problem | Best | Mean | Worst | Std |
Tension/compression spring | 0.0127 | 0.0147 | 0.0194 | 0.0018 |
Crane hook | 37.5020 | 37.5097 | 37.5534 | 0.0092 |
Reduction gear | 2997.7740 | 3006.4162 | 3017.4886 | 4.7139 |
Pressure vessel | 6188.2862 | 8392.3701 | 12,661.0607 | 1003.2803 |
Hydrostatic thrust bearing | 20,569.5064 | 26,767.7566 | 51,065.2918 | 5032.2942 |
PSO | ||||
Tension/compression spring | 0.0127 | 0.0133 | 0.0164 | 0.0009 |
Crane hook | 37.5018 | 37.5109 | 37.5918 | 0.0172 |
Reduction gear | 2994.3550 | 2994.3550 | 2994.3550 | 0.0000 |
Pressure vessel | 5909.6257 | 6277.7288 | 7182.9114 | 307.6918 |
Hydrostatic thrust bearing | 19,819.4262 | 26,077.9339 | 36,586.4885 | 4305.7754 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkan, B.; Kaniappan Chinnathai, M. Performance Comparison of Recent Population-Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components. Machines 2021, 9, 341. https://doi.org/10.3390/machines9120341
Alkan B, Kaniappan Chinnathai M. Performance Comparison of Recent Population-Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components. Machines. 2021; 9(12):341. https://doi.org/10.3390/machines9120341
Chicago/Turabian StyleAlkan, Bugra, and Malarvizhi Kaniappan Chinnathai. 2021. "Performance Comparison of Recent Population-Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components" Machines 9, no. 12: 341. https://doi.org/10.3390/machines9120341
APA StyleAlkan, B., & Kaniappan Chinnathai, M. (2021). Performance Comparison of Recent Population-Based Metaheuristic Optimisation Algorithms in Mechanical Design Problems of Machinery Components. Machines, 9(12), 341. https://doi.org/10.3390/machines9120341