The Association of 3-Hydroxy-3-Methylglutaryl-CoA Reductase, Apolipoprotein E, and Solute Carrier Organic Anion Genetic Variants with Atorvastatin Response among Jordanian Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Patients
2.3. Data Collection
2.4. Calculation of Atorvastatin Response
2.5. Blood Collection and DNA Extraction
2.6. Polymerase Chain Reaction
2.7. DNA Sequencing
2.8. Statistical Analyses
3. Results
3.1. Demographics of Patients
3.2. The Frequency of HMGCR rs17244841, APOE rs7412 and rs429357, SLCO1B1 rs2306283 and rs11045818 Genotype among Diabetic Patients
3.3. The Effect of Genetic Variants on Atorvastatin Response
3.4. SLCO1B1 rs2306283 and rs11045818 Haplotype Frequency and Its Effects on Atorvastatin Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Stancu, C.; Sima, A. Statins: Mechanism of action and effects. J. Cell. Mol. Med. 2001, 5, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.J.; Fazio, S.; Linton, M.F. Current perspectives on statins. Circulation 2000, 101, 207–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buse, J.B.; Ginsberg, H.N.; Bakris, G.L.; Clark, N.G.; Costa, F.; Eckel, R.; Fonseca, V.; Gerstein, H.C.; Grundy, S.; Nesto, R.W.; et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: A scientific statement from the American Heart Association and the American Diabetes Association. Circulation 2007, 115, 114–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jose, J. Statins and its hepatic effects: Newer data, implications, and changing recommendations. J. Pharm. Bioallied Sci. 2016, 8, 23–28. [Google Scholar] [CrossRef]
- Roden, D.M.; Wilke, R.A.; Kroemer, H.K.; Stein, C.M. Pharmacogenomics: The genetics of variable drug responses. Circulation 2011, 123, 1661–1670. [Google Scholar] [CrossRef] [Green Version]
- Mangravite, L.M.; Thorn, C.F.; Krauss, R.M. Clinical implications of pharmacogenomics of statin treatment. Pharm. J. 2006, 6, 360–374. [Google Scholar] [CrossRef] [Green Version]
- Vildhede, A.; Karlgren, M.; Svedberg, E.K.; Wisniewski, J.R.; Lai, Y.; Noren, A.; Artursson, P. Hepatic uptake of atorvastatin: Influence of variability in transporter expression on uptake clearance and drug-drug interactions. Drug Metab. Dispos. 2014, 42, 1210–1218. [Google Scholar] [CrossRef] [Green Version]
- Guan, Z.W.; Wu, K.R.; Li, R.; Yin, Y.; Li, X.L.; Zhang, S.F.; Li, Y. Pharmacogenetics of statins treatment: Efficacy and safety. J. Clin. Pharm. Ther. 2019, 44, 858–867. [Google Scholar] [CrossRef]
- Zineh, I. Pharmacogenetics of response to statins. Curr. Atheroscler. Rep. 2007, 9, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Maitland-van der Zee, A.H.; Boerwinkle, E. Pharmacogenetics of response to statins: Where do we stand? Curr. Atheroscler. Rep. 2005, 7, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Latif, A.; Osman, G. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods 2017, 13, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oria, R.B.; Patrick, P.D.; Zhang, H.; Lorntz, B.; de Castro Costa, C.M.; Brito, G.A.; Barrett, L.J.; Lima, A.A.; Guerrant, R.L. APOE4 protects the cognitive development in children with heavy diarrhea burdens in Northeast Brazil. Pediatr. Res. 2005, 57, 310–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.Y.; He, Y.J.; Zhang, W.; Deng, S.; Li, Q.; Zhang, W.X.; Liu, Z.Q.; Wang, D.; Huang, Y.F.; Zhou, H.H.; et al. Organic anion transporting polypeptide-1B1 haplotypes in Chinese patients. Acta Pharmacol. Sin. 2007, 28, 1693–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Biotechnology 1992, 24, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988, 16, 10881–10890. [Google Scholar] [CrossRef]
- Benson, D.A.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2014, 42, D32–D37. [Google Scholar] [CrossRef] [Green Version]
- Maningat, P.; Gordon, B.R.; Breslow, J.L. How do we improve patient compliance and adherence to long-term statin therapy? Curr. Atheroscler. Rep. 2013, 15, 291. [Google Scholar] [CrossRef]
- Abdullah, S.; Jarrar, Y.; Alhawari, H.; Hneet, E.; Zihlif, M. The Influence Of Endothelial Nitric Oxide Synthase (Enos) Genetic Polymorphisms On Cholesterol Blood Levels Among Type 2 Diabetic Patients On Atorvastatin Therapy. Endocr. Metab. Immune Disord. Drug Targets 2020. [Google Scholar] [CrossRef]
- Hneet, E.J.Y.; Alhawari, H.; Abdullah, S.; Zihlif, M. How the cytochrome 7a1 (CYP7A1) and ATP-binding cassette G8 (ABCG8) genetic variants affect atorvastatin response among type 2 diabetic patients attending the University of Jordan Hospital. Int. J. Clin. Pharmacol. Ther. 2020, in press. [Google Scholar]
- Medina, M.W. The relationship between HMGCR genetic variation, alternative splicing, and statin efficacy. Discov. Med. 2010, 9, 495–499. [Google Scholar]
- Kirac, D.; Bayam, E.; Dagdelen, M.; Gezmis, H.; Sarikaya, S.; Pala, S.; Altunok, E.C.; Genc, E. HMGCR and ApoE mutations may cause different responses to lipid lowering statin therapy. Cell. Mol. Biol. 2017, 63, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Jarrar, Y.B.; Al-Essa, L.; Kilani, A.; Hasan, M.; Al-Qerem, W. Alterations in the gene expression of drug and arachidonic acid-metabolizing Cyp450 in the livers of controlled and uncontrolled insulin-dependent diabetic mice. Diabetes Metab. Syndr. Obes. 2018, 11, 483–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorn, C.F.; Klein, T.E.; Altman, R.B. PharmGKB: The Pharmacogenomics Knowledge Base. Methods Mol. Biol. 2013, 1015, 311–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, I.J.; Hone, E.; Foster, J.K.; Sunram-Lea, S.I.; Gnjec, A.; Fuller, S.J.; Nolan, D.; Gandy, S.E.; Martins, R.N. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol. Psychiatry 2006, 11, 721–736. [Google Scholar] [CrossRef] [PubMed]
- Lagos, J.; Zambrano, T.; Rosales, A.; Salazar, L.A. APOE polymorphisms contribute to reduced atorvastatin response in Chilean Amerindian subjects. Int. J. Mol. Sci. 2015, 16, 7890–7899. [Google Scholar] [CrossRef]
- Thompson, J.F.; Man, M.; Johnson, K.J.; Wood, L.S.; Lira, M.E.; Lloyd, D.B.; Banerjee, P.; Milos, P.M.; Myrand, S.P.; Paulauskis, J.; et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharm. J. 2005, 5, 352–358. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e563–e595. [Google Scholar] [CrossRef]
- Ho, R.H.; Tirona, R.G.; Leake, B.F.; Glaeser, H.; Lee, W.; Lemke, C.J.; Wang, Y.; Kim, R.B. Drug and bile acid transporters in rosuvastatin hepatic uptake: Function, expression, and pharmacogenetics. Gastroenterology 2006, 130, 1793–1806. [Google Scholar] [CrossRef]
- Group, S.C.; Link, E.; Parish, S.; Armitage, J.; Bowman, L.; Heath, S.; Matsuda, F.; Gut, I.; Lathrop, M.; Collins, R. SLCO1B1 variants and statin-induced myopathy—A genomewide study. N. Engl. J. Med. 2008, 359, 789–799. [Google Scholar] [CrossRef]
- Kim, W.R.; Flamm, S.L.; Di Bisceglie, A.M.; Bodenheimer, H.C. Public Policy Committee of the American Association for the Study of Liver, D. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology 2008, 47, 1363–1370. [Google Scholar] [CrossRef]
- Sun, Q.; Liu, H.P.; Zheng, R.J.; Wang, P.; Liu, Z.B.; Sha, W.; Xiao, H.P. Genetic Polymorphisms of SLCO1B1, CYP2E1 and UGT1A1 and Susceptibility to Anti-Tuberculosis Drug-Induced Hepatotoxicity: A Chinese Population-Based Prospective Case-Control Study. Clin. Drug Investig. 2017, 37, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Russmann, S.; Jetter, A.; Kullak-Ublick, G.A. Pharmacogenetics of drug-induced liver injury. Hepatology 2010, 52, 748–761. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lipid, Glycemic and Hepatic Enzyme in the Blood | ||||||||
---|---|---|---|---|---|---|---|---|
Time of Recording | TC (mg/dl) | LDL (mg/dl) | HDL (mg/dl) | TGs (mg/dl) | ALT (IU/L) | AST (IU/L) | HbA1c | FBG |
Before Atorvastatin Treatment | 190.42 ± 46.94 | 133.59 ± 42.71 | 44.73 ± 11.58 | 183.81 ± 91.58 | 18.05 ± 6.60 | 21.37 ± 10.57 | 8.62 ± 1.88 | 221 ± 52 |
After 3 Months of Atorvastatin Treatment | 151.16 ± 30.98 * | 93.54 ± 28.81 * | 43.09 ± 14.85 | 165.07 ± 74.05 | 19.27 ± 7.96 | 22.37 ± 11.60 | 7.57 ± 1.45 * | 182 ± 47 * |
HMGCR RS17244841 GENOTYPE | Δ TC (MG/DL)% | Δ LDL (MG/DL)% | Δ HDL (MG/DL)% | Δ TGS (MG/DL)% | Δ ALT (IU/L)% | Δ AST (IU/L)% | Δ HbA1c |
---|---|---|---|---|---|---|---|
A/A | −19.81 ± 18.68 | −28.17 ± 22.53 | 1.48 ± 4.02 | −4.08 ± 41.44 | 6.13 ± 36.74 | −1.61 ± 39.75 | −11.88 ± 9.464 |
A/T | −27.66 ± 11.71 | −39.49 ± 15.67 | −9.76 ± 22.78 | −7.69 ± 53.03 | −13.94 ± 28.65 | −3.93 ± 36.22 | 13.98 ± 29.24 |
P VALUE | 0.53 | 0.39 | 0.85 | 0.58 | 0.36 | 0.91 | 0.06 |
APO RS7412 GENOTYPE | Δ TC (MG/DL)% | Δ LDL (MG/DL)% | Δ HDL (MG/DL)% | Δ TGS (MG/DL)% | Δ ALT (IU/L)% | Δ AST (IU/L)% | Δ HbA1 |
---|---|---|---|---|---|---|---|
C/C | −21.85 ± 18.18 | −30.98 ± 21.76 | 1.43 ± 54.6 | −5.92 ± 42.72 | 5.92 ± 42.74 | −0.39 ± 36.1 | −10.37 ± 21.99 |
C/T | −7.57 ± 13.16 | −10.22 ± 17.49 | −6.08 ± 15.27 | 4.42 ± 37.52 | −3.07 ± 48.60 | −14.17 ± 64.56 | −7.37 ± 11.98 |
P VALUE | 0.03 * | 0.01 * | 0.68 | 0.49 | 0.61 | 0.42 | 0.67 |
SLCO1B1 RS2306283 GENOTYPE | Δ TC (MG/DL)% | Δ LDL (MG/DL)% | Δ HDL (MG/DL)% | Δ TGS (MG/DL)% | Δ ALT (IU/L)% | Δ AST (IU/L)% | Δ HbA1c |
---|---|---|---|---|---|---|---|
A/A | −28.81 ± 13.06 | −37.02 ± 17.28 | −5.18 ± 13.04 | −17.14 ± 38.61 | −13.43 ± 26.81 | −16.30 ± 28.71 | −15.24 ± 22.23 |
A/G | −18.49 ± 21.18 | −27.62 ± 25.38 | −6.75 ± 15.31 | 3.33 ± 41.7 | 9.27 ± 39.9 | 4.74 ± 36.9 | −6.84 ± 21.54 |
G/G | −14.39 ± 18.19 | −28.96 ± 22.11 | 0.67 ± 51.9 | −4.87 ± 42.17 | 15.97 ± 36.41 | −1.77 ± 39.24 | −1.77 ± 39.24 |
P VALUE | 0.04 * | 0.12 | 0.17 | 0.19 | 0.02 * | 0.27 | 0.30 |
SLCO1B1 RS11045818 GENOTYPE | Δ TC (MG/DL)% | Δ LDL (MG/DL)% | Δ HDL (MG/DL)% | Δ TGS (MG/DL)% | Δ ALT (IU/L)% | Δ AST (IU/L)% | Δ HbA1c |
---|---|---|---|---|---|---|---|
G/G | −19.86 ± 19.28 | −28.29 ± 23.12 | −5.80 ± 15.53 | −2.81 ± 42.98 | 0.94 ± 36.67 | −2.29 ± 33.83 | −2.29 ± 33.83 |
G/A | −22.07 ± 14.48 | −31.21 ± 18.61 | 9.6 ± 22.3 | −11.43 ± 39.62 | 27.14 ± 27.05 | 0.11 ± 56.4 | −9.08 ± 18.40 |
P VALUE | 0.63 | 0.61 | 0.32 | 0.41 | 0.01 * | 0.85 | 0.84 |
SLCO1B1 HAPLOTYPE | N (%) | Δ TC (MG/DL)% | Δ LDL (MG/DL)% | Δ HDL (MG/DL)% | Δ TGS (MG/DL)% | Δ ALT (IU/L)% | Δ AST (IU/L)% | Δ HbA1c | |
---|---|---|---|---|---|---|---|---|---|
rs2306283 | rs11045818 | ||||||||
A | G | 33 (23.7) | −28.81 ± 13.83 | −37.02 ± 17.28 | −5.18 ± 13.04 | −17.41 ± 38.61 | −13.43 ± 26.82 | −16.30 ± 28.71 | −15.24 ± 22.69 |
G | G | 75 (54) | −15.48 ± 17.41 | −24.12 ± 24.52 | −6.09 ± 16.72 | 4.20 ± 43.66 | 6.32 ± 38.73 | 3.07 ± 34.5 | −7.90 ± 21.63 |
G | A | 31 (22.3) | −22.07 ± 14.17 | −29.21 ± 18.61 | 11.62 ± 62.3 | −11.43 ± 39.63 | 27.14 ± 27.05 | 0.11 ± 56.38 | −9.65 ± 18.16 |
P VALUE | 0.02 * | 0.07 | 0.13 | 0.41 | 0.04 * | 0.32 | 0.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhawari, H.; Jarrar, Y.; AlKhatib, M.A.; Alhawari, H.; Momani, M.; Zayed, A.; Alkamhawi, R.; Zihlif, M. The Association of 3-Hydroxy-3-Methylglutaryl-CoA Reductase, Apolipoprotein E, and Solute Carrier Organic Anion Genetic Variants with Atorvastatin Response among Jordanian Patients with Type 2 Diabetes. Life 2020, 10, 232. https://doi.org/10.3390/life10100232
Alhawari H, Jarrar Y, AlKhatib MA, Alhawari H, Momani M, Zayed A, Alkamhawi R, Zihlif M. The Association of 3-Hydroxy-3-Methylglutaryl-CoA Reductase, Apolipoprotein E, and Solute Carrier Organic Anion Genetic Variants with Atorvastatin Response among Jordanian Patients with Type 2 Diabetes. Life. 2020; 10(10):232. https://doi.org/10.3390/life10100232
Chicago/Turabian StyleAlhawari, Hussam, Yazun Jarrar, Mohammad Ahmad AlKhatib, Hussein Alhawari, Munther Momani, Ayman Zayed, Ruba Alkamhawi, and Malek Zihlif. 2020. "The Association of 3-Hydroxy-3-Methylglutaryl-CoA Reductase, Apolipoprotein E, and Solute Carrier Organic Anion Genetic Variants with Atorvastatin Response among Jordanian Patients with Type 2 Diabetes" Life 10, no. 10: 232. https://doi.org/10.3390/life10100232
APA StyleAlhawari, H., Jarrar, Y., AlKhatib, M. A., Alhawari, H., Momani, M., Zayed, A., Alkamhawi, R., & Zihlif, M. (2020). The Association of 3-Hydroxy-3-Methylglutaryl-CoA Reductase, Apolipoprotein E, and Solute Carrier Organic Anion Genetic Variants with Atorvastatin Response among Jordanian Patients with Type 2 Diabetes. Life, 10(10), 232. https://doi.org/10.3390/life10100232