Connexin Genes Variants Associated with Non-Syndromic Hearing Impairment: A Systematic Review of the Global Burden
Abstract
:1. Introduction
2. Results
2.1. Connexin 26 (GJB2)
2.2. Connexin 30 Gene (GJB6)
2.3. Connexin 31 Gene (GJB3)
2.4. Connexin 30.3 Gene (GJB4)
2.5. Connexin 29 Gene (GJC3)
2.6. Connexin 43 Gene (GJA1)
2.7. Connexin 45 (GJC1)
2.8. Summary of the Global Allele Frequencies of the Common Connexin Genes Pathogenic (PLP) Variants Associated to Hearing Impairment (HI)
3. Discussion
4. Materials and Methods
4.1. Search Terms
4.2. Data Extraction
- Publications on human hearing impairment;
- Publications on the genetics of non-syndromic hearing impairment;
- Publications reporting on connexins association with NSHI.
- Studies that are not on human hearing impairment;
- Review or meta-analysis publications;
- Policy papers;
- Publications that are not on connexin hearing impairment;
- Publications on environmental and/or syndromic hearing impairment;
- Publications focusing on in silico analysis.
4.3. Quality Assessment
4.4. Clinical Significance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GJB2 | Gap junction beta-2 |
GJB6 | Gap junction beta-6 |
GJB3 | Gap junction beta-3 |
GJB3 | Gap junction beta-4 |
GJC3 | Gap junction gamma-3 |
GJA1 | Gap Junction Alpha 1 |
GJC1 | Gap junction gamma 1 |
References
- Bitner-Glindzicz, M. Hereditary deafness and phenotyping in humans. Br. Med. Bull. 2002, 63, 73–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, M.; Kumar, P.; Ninan, P. A study on prevalence and risk factors of hearing impairment among newborns. Int. J. Contemp. Pediatr 2018, 5, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Olusanya, B.O.; Neumann, K.J.; Saunders, J.E. The global burden of disabling hearing impairment: A call to action. Bull. World Health Organ. 2014, 92, 367–373. [Google Scholar] [CrossRef] [PubMed]
- WHO. Prevention of Blindness and Deafness. Available online: https://www.who.int/pbd/deafness/hearing_impairment_grades/en/ (accessed on 30 March 2019).
- Bayazit, Y.A.; Yılmaz, M. An overview of hereditary hearing loss. ORL 2006, 68, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Hilgert, N.; Smith, R.J.; Van Camp, G. Forty-six genes causing nonsyndromic hearing impairment: Which ones should be analyzed in DNA diagnostics? Mutat. Res. Rev. Mutat. Res. 2009, 681, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Shearer, A.E.; Hildebrand, M.S.; Smith, R.J. Hereditary hearing loss and deafness overview. In GeneReviews®[Internet]; University of Washington: Seattle, WA, USA, 2017. [Google Scholar]
- Van Camp, G.; Smith, R. Hereditary Hearing Loss Homepage. Available online: https://hereditaryhearingloss.org/ (accessed on 31 March 2020).
- Del Castillo, F.J.; Del Castillo, I. DFNB1 Non-syndromic Hearing Impairment: Diversity of Mutations and Associated Phenotypes. Front. Mol. Neurosci. 2017, 10, 428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, D.K.; Chang, K.W. GJB2-associated hearing loss: Systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 2014, 124, E34–E53. [Google Scholar] [CrossRef] [PubMed]
- Pfenniger, A.; Wohlwend, A.; Kwak, B.R. Mutations in connexin genes and disease. Eur. J. Clin. Investig. 2011, 41, 103–116. [Google Scholar] [CrossRef]
- Srinivas, M.; Verselis, V.K.; White, T.W. Human diseases associated with connexin mutations. Biochim. Biophys. Acta Biomembr. 2018, 1860, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo, F.J.; del Castillo, I. Genetics of isolated auditory neuropathies. Front. Biosci. Landmark 2012, 17, 1251–1265. [Google Scholar] [CrossRef]
- Mikstiene, V.; Jakaitiene, A.; Byckova, J.; Gradauskiene, E.; Preiksaitiene, E.; Burnyte, B.; Tumiene, B.; Matuleviciene, A.; Ambrozaityte, L.; Uktveryte, I.; et al. The high frequency of GJB2 gene mutation c.313_326del14 suggests its possible origin in ancestors of Lithuanian population. Bmc Genet. 2016, 17, 45. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Wang, B.; Liu, D.; Wang, T.; Li, Q.; Wang, W.; Li, H. SNPscan as a high-performance screening tool for mutation hotspots of hearing loss-associated genes. Genomics 2015, 106, 83–87. [Google Scholar] [CrossRef]
- Xu, J.; Nicholson, B.J. The role of connexins in ear and skin physiology—Functional insights from disease-associated mutations. Biochim. Biophys. Acta 2013, 1828, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Wonkam, A.; Noubiap, J.J.N.; Djomou, F.; Fieggen, K.; Njock, R.; Toure, G.B. Aetiology of childhood hearing loss in Cameroon (sub-Saharan Africa). Eur. J. Med. Genet. 2013, 56, 20–25. [Google Scholar] [CrossRef]
- Richard, G.; Brown, N.; Ishida-Yamamoto, A.; Krol, A. Expanding the phenotypic spectrum of Cx26 disorders: Bart–Pumphrey syndrome is caused by a novel missense mutation in GJB2. J. Investig. Dermatol. 2004, 123, 856–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barruet, K.; Saka, B.; Kombate, K.; Mouhari-Toure, A.; Nguepmeni, N.J.; Akakpo, S.; Tchangai-Walla, K.; Pitche, P. Keratitis-ichthyosis-deafness (KID) syndrome: An observation in a child in sub-Saharan Africa. In Proceedings of the Annales de Dermatologie et de Venereologie, Chamonix, France, 2–5 February 2011; p. 453. [Google Scholar]
- DiStefano, M.T.; Hemphill, S.E.; Oza, A.M.; Siegert, R.K.; Grant, A.R.; Hughes, M.Y.; Cushman, B.J.; Azaiez, H.; Booth, K.T.; Chapin, A. ClinGen expert clinical validity curation of 164 hearing loss gene–disease pairs. Genet. Med. 2019, 21, 2239–2247. [Google Scholar] [CrossRef] [PubMed]
- Adadey, S.M.; Esoh, K.K.; Quaye, O.; Amedofu, G.K.; Awandare, G.A.; Wonkam, A. GJB4 and GJC3 variants in non-syndromic hearing impairment in Ghana. Exp. Biol. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. Icwsm 2009, 8, 361–362. [Google Scholar]
- Yang, J.J.; Huang, S.H.; Chou, K.H.; Liao, P.J.; Su, C.C.; Li, S.Y. Identification of mutations in members of the connexin gene family as a cause of nonsyndromic deafness in Taiwan. Audiol. Neuro Otol. 2007, 12, 198–208. [Google Scholar] [CrossRef]
- Grifa, A.; Wagner, C.A.; D’Ambrosio, L.; Melchionda, S.; Bernardi, F.; Lopez-Bigas, N.; Rabionet, R.; Arbones, M.; Della Monica, M.; Estivill, X.; et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat. Genet. 1999, 23, 16–18. [Google Scholar] [CrossRef]
- Ghasemnejad, T.; Shekari Khaniani, M.; Zarei, F.; Farbodnia, M.; Mansoori Derakhsahan, S. An update of common autosomal recessive non-syndromic hearing loss genes in Iranian population. Int. J. Pediatric Otorhinolaryngol. 2017, 97, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Asma, A.; Ashwaq, A.; Norzana, A.G.; Atmadini, A.M.; Ruszymah, B.H.; Saim, L.; Wahida, I.F. The association between GJB2 mutation and GJB6 gene in non syndromic hearing loss school children. Med. J. Malays. 2011, 66, 124–128. [Google Scholar]
- Beck, C.; Perez-Alvarez, J.C.; Sigruener, A.; Haubner, F.; Seidler, T.; Aslanidis, C.; Strutz, J.; Schmitz, G. Identification and genotype/phenotype correlation of mutations in a large German cohort with hearing loss. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 2765–2776. [Google Scholar] [CrossRef] [PubMed]
- Javidnia, H.; Carson, N.; Awubwa, M.; Byaruhanga, R.; Mack, D.; Vaccani, J.P. Connexin Gene Mutations Among Ugandan Patients With Nonsyndromic Sensorineural Hearing Loss. Laryngoscope 2014, 124, E373–E376. [Google Scholar] [CrossRef]
- Battelino, S.; Repic Lampret, B.; Zargi, M.; Podkrajsek, K.T. Novel connexin 30 and connexin 26 mutational spectrum in patients with progressive sensorineural hearing loss. J. Laryngol. Otol. 2012, 126, 763–769. [Google Scholar] [CrossRef]
- Oh, S.K.; Choi, S.Y.; Yu, S.H.; Lee, K.Y.; Hong, J.H.; Hur, S.W.; Kim, S.J.; Jeon, C.J.; Kim, U.K. Evaluation of the pathogenicity of GJB3 and GJB6 variants associated with nonsyndromic hearing loss. Biochim. Biophys. Acta 2013, 1832, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Alkowari, M.K.; Vozzi, D.; Bhagat, S.; Krishnamoorthy, N.; Morgan, A.; Hayder, Y.; Logendra, B.; Najjar, N.; Gandin, I.; Gasparini, P.; et al. Targeted sequencing identifies novel variants involved in autosomal recessive hereditary hearing loss in Qatari families. Mutat. Res. 2017, 800, 29–36. [Google Scholar] [CrossRef]
- Belguith, H.; Tlili, A.; Dhouib, H.; Ben Rebeh, I.; Lahmar, I.; Charfeddine, I.; Driss, N.; Ghorbel, A.; Ayadi, H.; Masmoudi, S. Mutation in gap and tight junctions in patients with non-syndromic hearing loss. Biochem. Biophys. Res. Commun. 2009, 385, 1–5. [Google Scholar] [CrossRef]
- Frei, K.; Ramsebner, R.; Hamader, G.; Lucas, T.; Schoefer, C.; Baumgartner, W.D.; Wachtler, F.J.; Kirschhofer, K. Lack of association between Connexin 31 (GJB3) alterations and sensorineural deafness in Austria. Hear. Res. 2004, 194, 81–86. [Google Scholar] [CrossRef]
- Mhatre, A.N.; Weld, E.; Lalwani, A.K. Mutation analysis of Connexin 31 (GJB3) in sporadic non-syndromic hearing impairment. Clin. Genet. 2003, 63, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Alexandrino, F.; Oliveira, C.A.; Reis, F.C.; Maciel-Guerra, A.T.; Sartorato, E.L. Screening for mutations in the GJB3 gene in Brazilian patients with nonsyndromic deafness. J. Appl. Genet. 2004, 45, 249–254. [Google Scholar] [PubMed]
- Li, Y.H.; Jiang, H.; Yang, L.J.; Xu, H.X.; Li, H.; Li, H.W.; Luo, Y.H.; Wang, C.W.; Zou, G.H. Study of mtDNA 12S rRNA A1555G, GJB2, GJB3 gene mutation in Uighur and Han people with hereditary nonsyndromic hearing loss in Xinjiang. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2010, 45, 645–651. [Google Scholar] [PubMed]
- Nahili, H.; Ridal, M.; Boulouiz, R.; Abidi, O.; Imken, L.; Rouba, H.; Alami, M.N.; Chafik, A.; Hassar, M.; Barakat, A. Absence of GJB3 and GJB6 mutations in Moroccan familial and sporadic patients with autosomal recessive non-syndromic deafness. Int. J. Pediatric Otorhinolaryngol. 2008, 72, 1633–1636. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Z.; Yuan, Y.; Yan, D.; Ding, E.H.; Ouyang, X.M.; Fei, Y.; Tang, W.; Yuan, H.; Chang, Q.; Du, L.L.; et al. Digenic inheritance of non-syndromic deafness caused by mutations at the gap junction proteins Cx26 and Cx31. Hum. Genet. 2009, 125, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Kim, A.R.; Kim, N.K.; Lee, C.; Kim, M.Y.; Jeon, E.H.; Park, W.Y.; Choi, B.Y. Unraveling of Enigmatic Hearing-Impaired GJB2 Single Heterozygotes by Massive Parallel Sequencing: DFNB1 or Not? Medicine 2016, 95, e3029. [Google Scholar] [CrossRef]
- Yang, J.J.; Wang, W.H.; Lin, Y.C.; Weng, H.H.; Yang, J.T.; Hwang, C.F.; Wu, C.M.; Li, S.Y. Prospective variants screening of connexin genes in children with hearing impairment: Genotype/phenotype correlation. Hum. Genet. 2010, 128, 303–313. [Google Scholar] [CrossRef]
- Gao, W.H.; Ke, X.M.; Liu, Y.H.; Zhu, P.; Pan, K.F. Study of the relation between Cx31 gene and hereditary hearing impairment. Zhonghua Er Bi Yan Hou Ke Za Zhi 2004, 39, 344–348. [Google Scholar]
- Chen, K.; Wu, X.; Zong, L.; Jiang, H. GJB3/GJB6 screening in GJB2 carriers with idiopathic hearing loss: Is it necessary? J. Clin. Lab. Anal. 2018, 32, e22592. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.Y.; Park, G.; Gim, J.; Kim, A.R.; Kim, B.J.; Kim, H.S.; Park, J.H.; Park, T.; Oh, S.H.; Han, K.H.; et al. Diagnostic application of targeted resequencing for familial nonsyndromic hearing loss. PLoS ONE 2013, 8, e68692. [Google Scholar] [CrossRef]
- Xia, J.H.; Liu, C.Y.; Tang, B.S.; Pan, Q.; Huang, L.; Dai, H.P.; Zhang, B.R.; Xie, W.; Hu, D.X.; Zheng, D. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat. Genet. 1998, 20, 370–373. [Google Scholar] [CrossRef]
- de Oliveira, C.A.; Alexandrino, F.; Christiani, T.V.; Steiner, C.E.; Cunha, J.L.; Guerra, A.T.; Sartorato, E.L. Molecular genetics study of deafness in Brazil: 8-year experience. Am. J. Med. Genet. Part A 2007, 143, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Laleh, M.A.; Naseri, M.; Zonouzi, A.A.P.; Zonouzi, A.P.; Masoudi, M.; Ahangari, N.; Shams, L.; Nejatizadeh, A. Diverse pattern of gap junction beta-2 and gap junction beta-4 genes mutations and lack of contribution of DFNB21, DFNB24, DFNB29, and DFNB42 loci in autosomal recessive nonsyndromic hearing loss patients in Hormozgan, Iran. J. Res. Med. Sci. 2017, 22, 1–11. [Google Scholar] [CrossRef]
- Ramchander, P.V.; Panda, K.C.; Panda, A.K. Mutations in the connexin 29 gene are not a major cause of nonsyndromic hearing impairment in India. Genet. Test. Mol. Biomark. 2010, 14, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Yang, J.J.; Lin, Y.C.; Yang, J.T.; Chan, C.H.; Li, S.Y. Identification of novel variants in the Cx29 gene of nonsyndromic hearing loss patients using buccal cells and restriction fragment length polymorphism method. Audiol. Neuro Otol. 2010, 15, 81–87. [Google Scholar] [CrossRef]
- Bosch, J.; Lebeko, K.; Nziale, J.J.; Dandara, C.; Makubalo, N.; Wonkam, A. In search of genetic markers for nonsyndromic deafness in Africa: A study in Cameroonians and Black South Africans with the GJB6 and GJA1 candidate genes. OMICS 2014, 18, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Z.; Xia, X.J.; Adams, J.; Chen, Z.Y.; Welch, K.O.; Tekin, M.; Ouyang, X.M.; Kristiansen, A.; Pandya, A.; Balkany, T.; et al. Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum. Mol. Genet. 2001, 10, 2945–2951. [Google Scholar] [CrossRef] [Green Version]
- HGNC. Symbol Report for GJC1. Available online: https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:4280 (accessed on 1 June 2020).
- Ouyang, X.M.; Yan, D.; Aslan, I.; Du, L.L.; Tekin, M.; Liu, X.Z. Mutation screening of the GJA7 (Cx45) gene in a large international series of probands with nonsyndromic hearing impairment. Genet. Test. Mol. Biomark. 2011, 15, 333–336. [Google Scholar] [CrossRef]
- Srinivas, M.; Jannace, T.F.; Cocozzelli, A.G.; Li, L.; Slavi, N.; Sellitto, C.; White, T.W. Connexin43 mutations linked to skin disease have augmented hemichannel activity. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rehm, H.L. Disease-targeted sequencing: A cornerstone in the clinic. Nat. Rev. Genet. 2013, 14, 295–300. [Google Scholar] [CrossRef]
- Liu, W. Journal of Translational Medicine Advances in Translational Genomics and Genetics Era; BioMed Central: London, UK, 2019. [Google Scholar]
- Kumar, K.R.; Cowley, M.J.; Davis, R.L. Next-Generation Sequencing and Emerging Technologies. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers, Inc.: New York, NY, USA, 2019; pp. 661–673. [Google Scholar]
- Kelsell, D.P.; Dunlop, J.; Stevens, H.P.; Lench, N.J.; Liang, J.; Parry, G.; Mueller, R.F.; Leigh, I.M. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 1997, 387, 80–83. [Google Scholar] [CrossRef]
- Rabionet, R.; Gasparini, P.; Estivill, X. Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum. Mutat. 2000, 16, 190–202. [Google Scholar] [CrossRef]
- Adadey, S.M.; Manyisa, N.; Mnika, K.; de Kock, C.; Nembaware, V.; Quaye, O.; Amedofu, G.K.; Awandare, G.A.; Wonkam, A. GJB2 and GJB6 Mutations in Non-Syndromic Childhood Hearing Impairment in Ghana. Front. Genet. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, H.; Kupsch, P.; Sudendey, J.; Winterhager, E.; Jahnke, K.; Lautermann, J. Mutations in the connexin26/GJB2 gene are the most common event in non-syndromic hearing loss among the German population. Hum. Mutat. 2001, 17, 521–522. [Google Scholar] [CrossRef] [PubMed]
- Samanich, J.; Lowes, C.; Burk, R.; Shanske, S.; Lu, J.; Shanske, A.; Morrow, B.E. Mutations in GJB2, GJB6, and mitochondrial DNA are rare in African American and Caribbean Hispanic individuals with hearing impairment. Am. J. Med. Genet. Part A 2007, 143, 830–838. [Google Scholar] [CrossRef]
- Tsukada, K.; Nishio, S.-Y.; Hattori, M.; Usami, S.-I. Ethnic-specific spectrum of GJB2 and SLC26A4 mutations: Their origin and a literature review. Ann. Otol. Rhinol. Laryngol. 2015, 124, 61S–76S. [Google Scholar] [CrossRef]
- Hamelmann, C.; Amedofu, G.K.; Albrecht, K.; Muntau, B.; Gelhaus, A.; Brobby, G.W.; Horstmann, R.D. Pattern of connexin 26 (GJB2) mutations causing sensorineural hearing impairment in Ghana. Hum. Mutat. 2001, 18, 84–85. [Google Scholar] [CrossRef]
- Bosch, J.; Noubiap, J.J.; Dandara, C.; Makubalo, N.; Wright, G.; Entfellner, J.B.; Tiffin, N.; Wonkam, A. Sequencing of GJB2 in Cameroonians and Black South Africans and comparison to 1000 Genomes Project Data Support Need to Revise Strategy for Discovery of Nonsyndromic Deafness Genes in Africans. OMICS 2014, 18, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Tingang Wonkam, E.; Chimusa, E.; Noubiap, J.J.; Adadey, S.M.; F Fokouo, J.V.; Wonkam, A. GJB2 and GJB6 Mutations in Hereditary Recessive Non-Syndromic Hearing Impairment in Cameroon. Genes 2019, 10, 844. [Google Scholar] [CrossRef] [Green Version]
- Abidi, O.; Boulouiz, R.; Nahili, H.; Ridal, M.; Alami, M.N.; Tlili, A.; Rouba, H.; Masmoudi, S.; Chafik, A.; Hassar, M. GJB2 (connexin 26) gene mutations in Moroccan patients with autosomal recessive non-syndromic hearing loss and carrier frequency of the common GJB2–35delG mutation. Int. J. Pediatric Otorhinolaryngol. 2007, 71, 1239–1245. [Google Scholar] [CrossRef]
- Bakhchane, A.; Bousfiha, A.; Charoute, H.; Salime, S.; Detsouli, M.; Snoussi, K.; Nadifi, S.; Kabine, M.; Rouba, H.; Dehbi, H.; et al. Update of the spectrum of GJB2 gene mutations in 152 Moroccan families with autosomal recessive nonsyndromic hearing loss. Eur. J. Med. Genet. 2016, 59, 325–329. [Google Scholar] [CrossRef]
- Gazzaz, B.; Weil, D.; Rais, L.; Akhyat, O.; Azeddoug, H.; Nadifi, S. Autosomal recessive and sporadic deafness in Morocco: High frequency of the 35delG GJB2 mutation and absence of the 342-kb GJB6 variant. Hear. Res. 2005, 210, 80–84. [Google Scholar] [CrossRef]
- Moctar, E.C.; Riahi, Z.; El Hachmi, H.; Veten, F.; Meiloud, G.; Bonnet, C.; Abdelhak, S.; Errami, M.; Houmeida, A. Etiology and associated GJB2 mutations in Mauritanian children with non-syndromic hearing loss. Eur. Arch. Oto-Rhino-Laryngol. 2016, 273, 3693–3698. [Google Scholar] [CrossRef]
- Ratbi, I.; Hajji, S.; Ouldim, K.; Aboussair, N.; Feldmann, D.; Sefiani, A. The mutation 35delG of the gene of the connexin 26 is a frequent cause of autosomal-recessive non-syndromic hearing loss in Morocco. Arch. Pediatrie 2007, 14, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Green, G.E.; Scott, D.A.; McDonald, J.M.; Woodworth, G.G.; Sheffield, V.C.; Smith, R.J. Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA 1999, 281, 2211–2216. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.; Pembrey, M.; Lutman, M.; Steer, C.; Bitner-Glindzicz, M. Prevalence and audiological features in carriers of GJB2 mutations, c.35delG and c.101T>C (p.M34T), in a UK population study. BMJ Open 2012, 2, e001238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.Y.; Fang, P.; Ward, P.A.; Schmitt, E.; Darilek, S.; Manolidis, S.; Oghalai, J.S.; Roa, B.B.; Alford, R.L. DNA sequence analysis of GJB2, encoding connexin 26: Observations from a population of hearing impaired cases and variable carrier rates, complex genotypes, and ethnic stratification of alleles among controls. Am. J. Med. Genet. Part A 2006, 140, 2401–2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, P.; Yu, F.; Han, B.; Yuan, Y.; Li, Q.; Wang, G.; Liu, X.; He, J.; Huang, D.; Kang, D.; et al. The prevalence of the 235delC GJB2 mutation in a Chinese deaf population. Genet. Med. 2007, 9, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Ohtsuka, A.; Yuge, I.; Kimura, S.; Namba, A.; Abe, S.; Van Laer, L.; Van Camp, G.; Usami, S. GJB2 deafness gene shows a specific spectrum of mutations in Japan, including a frequent founder mutation. Hum. Genet. 2003, 112, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Usami, S.; Shinkawa, H.; Kelley, P.M.; Kimberling, W.J. Prevalent connexin 26 gene (GJB2) mutations in Japanese. J. Med. Genet. 2000, 37, 41–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.J.; Hahn, S.H.; Chun, Y.M.; Park, K.; Kim, H.N. Connexin26 mutations associated with nonsyndromic hearing loss. Laryngoscope 2000, 110, 1535–1538. [Google Scholar] [CrossRef]
- Hwa, H.L.; Ko, T.M.; Hsu, C.J.; Huang, C.H.; Chiang, Y.L.; Oong, J.L.; Chen, C.C.; Hsu, C.K. Mutation spectrum of the connexin 26 (GJB2) gene in Taiwanese patients with prelingual deafness. Genet. Med. 2003, 5, 161–165. [Google Scholar] [CrossRef]
- Bason, L.; Dudley, T.; Lewis, K.; Shah, U.; Potsic, W.; Ferraris, A.; Fortina, P.; Rappaport, E.; Krantz, I.D. Homozygosity for the V37I Connexin 26 mutation in three unrelated children with sensorineural hearing loss. Clin. Genet. 2002, 61, 459–464. [Google Scholar] [CrossRef]
- Wattanasirichaigoon, D.; Limwongse, C.; Jariengprasert, C.; Yenchitsomanus, P.T.; Tocharoenthanaphol, C.; Thongnoppakhun, W.; Thawil, C.; Charoenpipop, D.; Pho-iam, T.; Thongpradit, S.; et al. High prevalence of V37I genetic variant in the connexin-26 (GJB2) gene among non-syndromic hearing-impaired and control Thai individuals. Clin. Genet. 2004, 66, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.S.; Huang, B.Q.; Wang, G.J.; Yuan, Y.Y.; Dai, P. The Relationship between the p.V37I Mutation in GJB2 and Hearing Phenotypes in Chinese Individuals. PLoS ONE 2015, 10, e0129662. [Google Scholar] [CrossRef] [PubMed]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The human genomic variant search engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, K. InterVar: Clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am. J. Hum. Genet. 2017, 100, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-W.; Wang, J.-C.; Wang, S.-Y.; Li, S.-J.; Zhu, Y.-M.; Ding, W.-J.; Xu, C.-Y.; Duan, L.; Xu, B.-C.; Guo, Y.-F. The mutation frequencies of GJB2, GJB3, SLC26A4 and MT-RNR1 of patients with severe to profound sensorineural hearing loss in northwest China. Int. J. Pediatric Otorhinolaryngol. 2020, 110143. [Google Scholar] [CrossRef]
- Liu, Y.; Ke, X.; Qi, Y.; Li, W.; Zhu, P. Connexin26 gene (GJB2): Prevalence of mutations in the Chinese population. J. Hum. Genet. 2002, 47, 0688–0690. [Google Scholar] [CrossRef]
- Alvarez, A.; del Castillo, I.; Villamar, M.; Aguirre, L.A.; Gonzalez-Neira, A.; Lopez-Nevot, A.; Moreno-Pelayo, M.A.; Moreno, F. High prevalence of the W24X mutation in the gene encoding connexin-26 (GJB2) in Spanish Romani (gypsies) with autosomal recessive non-syndromic hearing loss. Am. J. Med. Genet. Part A 2005, 137, 255–258. [Google Scholar] [CrossRef]
- Radulescu, L.; Martu, C.; Birkenhager, R.; Cozma, S.; Ungureanu, L.; Laszig, R. Prevalence of mutations located at the dfnb1 locus in a population of cochlear implanted children in eastern Romania. Int. J. Pediatric Otorhinolaryngol. 2012, 76, 90–94. [Google Scholar] [CrossRef]
- RamShankar, M.; Girirajan, S.; Dagan, O.; Ravi Shankar, H.M.; Jalvi, R.; Rangasayee, R.; Avraham, K.B.; Anand, A. Contribution of connexin26 (GJB2) mutations and founder effect to non-syndromic hearing loss in India. J. Med. Genet. 2003, 40, e68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzhemileva, L.U.; Barashkov, N.A.; Posukh, O.L.; Khusainova, R.I.; Akhmetova, V.L.; Kutuev, I.A.; Gilyazova, I.R.; Tadinova, V.N.; Fedorova, S.A.; Khidiyatova, I.M.; et al. Carrier frequency of GJB2 gene mutations c.35delG, c.235delC and c.167delT among the populations of Eurasia. J. Hum. Genet. 2010, 55, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Mahasneh, A.; Battah, R. Prevalence of connexin 26 mutations in patients from Jordan with non syndromic hearing loss. Int. J. Hum. Genet. 2006, 6, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Niceta, M.; Fabiano, C.; Sammarco, P.; Piccione, M.; Antona, V.; Giuffre, M.; Corsello, G. Epidemiological study of nonsyndromic hearing loss in Sicilian newborns. Am. J. Med. Genet. Part A 2007, 143, 1666–1670. [Google Scholar] [CrossRef]
- Putcha, G.V.; Bejjani, B.A.; Bleoo, S.; Booker, J.K.; Carey, J.C.; Carson, N.; Das, S.; Dempsey, M.A.; Gastier-Foster, J.M.; Greinwald, J.H., Jr.; et al. A multicenter study of the frequency and distribution of GJB2 and GJB6 mutations in a large North American cohort. Genet. Med. 2007, 9, 413–426. [Google Scholar] [CrossRef]
- Adadey, S.M.; Tingang Wonkam, E.; Twumasi Aboagye, E.; Quansah, D.; Asante-Poku, A.; Quaye, O.; Amedofu, G.K.; Awandare, G.A.; Wonkam, A. Enhancing Genetic Medicine: Rapid and Cost-Effective Molecular Diagnosis for a GJB2 Founder Mutation for Hearing Impairment in Ghana. Genes 2020, 11, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brobby, G.W.; Muller-Myhsok, B.; Horstmann, R.D. Connexin 26 R143W mutation associated with recessive nonsyndromic sensorineural deafness in Africa. N. Engl. J. Med. 1998, 338, 548–550. [Google Scholar] [CrossRef] [PubMed]
- Gallego-Martinez, A.; Requena, T.; Roman-Naranjo, P.; Lopez-Escamez, J.A. Excess of rare missense variants in hearing loss genes in sporadic Meniere disease. Front. Genet. 2019, 10, 76. [Google Scholar] [CrossRef]
- Oosterveld, W. Meniere’s disease, signs and symptoms. J. Laryngol. Otol. 1980, 94, 885–892. [Google Scholar] [CrossRef]
- Patel, V.; Oberman, B.; Zacharia, T.; Isildak, H. Magnetic resonance imaging findings in Ménière’s disease. J. Laryngol. Otol. 2017, 131, 602. [Google Scholar] [CrossRef]
- Romanov, G.; Barashkov, N.; Teryutin, F.; Lashin, S.; Solovyev, A.; Pshennikova, V.; Bondar, A.; Morozov, I.; Sazonov, N.; Tomsky, M. Marital Structure, Genetic Fitness, and the GJB2 Gene Mutations among Deaf People in Yakutia (Eastern Siberia, Russia). Russ. J. Genet. 2018, 54, 554–561. [Google Scholar] [CrossRef]
- Barashkov, N.A.; Pshennikova, V.G.; Posukh, O.L.; Teryutin, F.M.; Solovyev, A.V.; Klarov, L.A.; Romanov, G.P.; Gotovtsev, N.N.; Kozhevnikov, A.A.; Kirillina, E.V. Spectrum and frequency of the GJB2 gene pathogenic variants in a large cohort of patients with hearing impairment living in a subarctic region of Russia (the Sakha Republic). PLoS ONE 2016, 11, e0156300. [Google Scholar] [CrossRef] [PubMed]
- Posukh, O.L.; Zytsar, M.V.; Bady-Khoo, M.S.; Danilchenko, V.Y.; Maslova, E.A.; Barashkov, N.A.; Bondar, A.A.; Morozov, I.V.; Maximov, V.N.; Voevoda, M.I. Unique mutational spectrum of the GJB2 gene and its pathogenic contribution to deafness in tuvinians (Southern siberia, russia): A high prevalence of rare variant c. 516G>C (p. trp172Cys). Genes 2019, 10, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carranza, C.; Menendez, I.; Herrera, M.; Castellanos, P.; Amado, C.; Maldonado, F.; Rosales, L.; Escobar, N.; Guerra, M.; Alvarez, D.; et al. A Mayan founder mutation is a common cause of deafness in Guatemala. Clin. Genet. 2016, 89, 461–465. [Google Scholar] [CrossRef]
- Paz-y-Miño, C.; Beaty, D.; López-Cortés, A.; Proaño, I. Frequency of GJB2 and del(GJB6-D13S1830) mutations among an Ecuadorian mestizo population. Int. J. Pediatric Otorhinolaryngol. 2014, 78, 1648–1654. [Google Scholar] [CrossRef]
- Tamayo, M.; Olarte, M.; Gelvez, N.; Gómez, M.; Frías, J.; Bernal, J.; Florez, S.; Medina, D. Molecular studies in the GJB2 gene (Cx26) among a deaf population from Bogotá, Colombia: Results of a screening program. Int. J. Pediatric Otorhinolaryngol. 2009, 73, 97–101. [Google Scholar] [CrossRef]
- Azadegan-Dehkordi, F.; Bahrami, T.; Shirzad, M.; Karbasi, G.; Yazdanpanahi, N.; Farrokhi, E.; Koohiyan, M.; Tabatabaiefar, M.A.; Hashemzadeh-Chaleshtori, M. Mutations in GJB2 as Major Causes of Autosomal Recessive Non-Syndromic Hearing Loss: First Report of c.299-300delAT Mutation in Kurdish Population of Iran. J. Audiol. Otol. 2019, 23, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Khalifa Alkowari, M.; Girotto, G.; Abdulhadi, K.; Dipresa, S.; Siam, R.; Najjar, N.; Badii, R.; Gasparini, P. GJB2 and GJB6 genes and the A1555G mitochondrial mutation are only minor causes of nonsyndromic hearing loss in the Qatari population. Int. J. Audiol. 2012, 51, 181–185. [Google Scholar] [CrossRef]
- Posukh, O.; Pallares-Ruiz, N.; Tadinova, V.; Osipova, L.; Claustres, M.; Roux, A.F. First molecular screening of deafness in the Altai Republic population. BMC Med. Genet. 2005, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Bliznetz, E.A.; Galkina, V.A.; Matyushchenko, G.N.; Kisina, A.G.; Markova, T.G.; Polyakov, A.V. Changes in the connexin 26 gene (GJB2) in Russian patients with hearing loss: Results of long-term molecular diagnostics of hereditary nonsyndromic hearing loss. Russ. J. Genet. 2012, 48, 101–112. [Google Scholar] [CrossRef]
- Pollak, A.; Skorka, A.; Mueller-Malesinska, M.; Kostrzewa, G.; Kisiel, B.; Waligora, J.; Krajewski, P.; Oldak, M.; Korniszewski, L.; Skarzynski, H.; et al. M34T and V37I mutations in GJB2 associated hearing impairment: Evidence for pathogenicity and reduced penetrance. Am. J. Med. Genet. Part A 2007, 143, 2534–2543. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Yu, F.; Wang, G.; Huang, S.; Yu, R.; Zhang, X.; Huang, D.; Han, D.; Dai, P. Prevalence of the GJB2 IVS1+1G>A mutation in Chinese hearing loss patients with monoallelic pathogenic mutation in the coding region of GJB2. J. Transl. Med. 2010, 8, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirmaci, A.; Akcayoz-Duman, D.; Tekin, M. The c. IVS1+ 1G> A mutation inthe GJB2 gene is prevalent and large deletions involving the GJB6 gene are not present in the Turkish population. J. Genet. 2006, 85, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Hennemann, H.; Suchyna, T.; Lichtenberg-Fraté, H.; Jungbluth, S.; Dahl, E.; Schwarz, J.; Nicholson, B.J.; Willecke, K. Molecular cloning and functional expression of mouse connexin40, a second gap junction gene preferentially expressed in lung. J. Cell Biol. 1992, 117, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Söhl, G.; Eiberger, J.; Jung, Y.T.; Kozak, C.A.; Willecke, K. The mouse gap junction gene connexin29 is highly expressed in sciatic nerve and regulated during brain development. Biol. Chem. 2001, 382, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Lautermann, J.; Frank, H.G.; Jahnke, K.; Traub, O.; Winterhager, E. Developmental expression patterns of connexin26 and-30 in the rat cochlea. Dev. Genet. 1999, 25, 306–311. [Google Scholar] [CrossRef]
- Feldmann, D.; Le Maréchal, C.; Jonard, L.; Thierry, P.; Czajka, C.; Couderc, R.; Ferec, C.; Denoyelle, F.; Marlin, S.; Fellmann, F. A new large deletion in the DFNB1 locus causes nonsyndromic hearing loss. Eur. J. Med. Genet. 2009, 52, 195–200. [Google Scholar] [CrossRef]
- Tayoun, A.N.A.; Mason-Suares, H.; Frisella, A.L.; Bowser, M.; Duffy, E.; Mahanta, L.; Funke, B.; Rehm, H.L.; Amr, S.S. Targeted droplet-digital PCR as a tool for novel deletion discovery at the DFNB1 locus. Hum. Mutat. 2016, 37, 119–126. [Google Scholar] [CrossRef]
- Wilch, E.; Azaiez, H.; Fisher, R.A.; Elfenbein, J.; Murgia, A.; Birkenhäger, R.; Bolz, H.; Da Silva-Costa, S.; Del Castillo, I.; Haaf, T. A novel DFNB1 deletion allele supports the existence of a distant cis-regulatory region that controls GJB2 and GJB6 expression. Clin. Genet. 2010, 78, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Bliznetz, E.A.; Lalayants, M.R.; Markova, T.G.; Balanovsky, O.P.; Balanovska, E.V.; Skhalyakho, R.A.; Pocheshkhova, E.A.; Nikitina, N.V.; Voronin, S.V.; Kudryashova, E.K.; et al. Update of the GJB2/DFNB1 mutation spectrum in Russia: A founder Ingush mutation del(GJB2-D13S175) is the most frequent among other large deletions. J. Hum. Genet. 2017, 62, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Pandya, A.; O’Brien, A.; Kovasala, M.; Bademci, G.; Tekin, M.; Arnos, K.S. Analyses of del (GJB6-D13S1830) and del (GJB6-D13S1834) deletions in a large cohort with hearing loss: Caveats to interpretation of molecular test results in multiplex families. Mol. Genet. Genom. Med. 2020, 8, e1171. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Paris, J.; Schrijver, I. The digenic hypothesis unraveled: The GJB6 del (GJB6-D13S1830) mutation causes allele-specific loss of GJB2 expression in cis. Biochem. Biophys. Res. Commun. 2009, 389, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Tang, W.; Chang, Q.; Qu, Y.; Hibshman, J.; Li, Y.; Söhl, G.; Willecke, K.; Chen, P.; Lin, X. Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafness. Proc. Natl. Acad. Sci. USA 2007, 104, 1337–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teubner, B.; Michel, V.; Pesch, J.; Lautermann, J.; Cohen-Salmon, M.; Söhl, G.; Jahnke, K.; Winterhager, E.; Herberhold, C.; Hardelin, J.-P. Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum. Mol. Genet. 2003, 12, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo, I.; Moreno-Pelayo, M.A.; Del Castillo, F.J.; Brownstein, Z.; Marlin, S.; Adina, Q.; Cockburn, D.J.; Pandya, A.; Siemering, K.R.; Chamberlin, G.P.; et al. Prevalence and evolutionary origins of the del(GJB6-D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: A multicenter study. Am. J. Hum. Genet. 2003, 73, 1452–1458. [Google Scholar] [CrossRef] [Green Version]
- Kabahuma, R.I.; Ouyang, X.; Du, L.L.; Yan, D.; Hutchin, T.; Ramsay, M.; Penn, C.; Liu, X.-Z. Absence of GJB2 gene mutations, the GJB6 deletion (GJB6-D13S1830) and four common mitochondrial mutations in nonsyndromic genetic hearing loss in a South African population. Int. J. Pediatric Otorhinolaryngol. 2011, 75, 611–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumminelli, G.; Di Donato, I.; Guida, V.; Rufa, A.; De Luca, A.; Federico, A. Oculodentodigital dysplasia with massive brain calcification and a new mutation of GJA1 gene. J. Alzheimer’s Dis. 2016, 49, 27–30. [Google Scholar] [CrossRef] [Green Version]
- Kjaer, K.W.; Hansen, L.; Eiberg, H.; Leicht, P.; Opitz, J.M.; Tommerup, N. Novel Connexin 43 (GJA1) mutation causes oculo–dento–digital dysplasia with curly hair. Am. J. Med. Genet. Part A 2004, 127, 152–157. [Google Scholar] [CrossRef]
- Paznekas, W.A.; Karczeski, B.; Vermeer, S.; Lowry, R.B.; Delatycki, M.; Laurence, F.; Koivisto, P.A.; Van Maldergem, L.; Boyadjiev, S.A.; Bodurtha, J.N. GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype. Hum. Mutat. 2009, 30, 724–733. [Google Scholar] [CrossRef]
- Paznekas, W.A.; Boyadjiev, S.A.; Shapiro, R.E.; Daniels, O.; Wollnik, B.; Keegan, C.E.; Innis, J.W.; Dinulos, M.B.; Christian, C.; Hannibal, M.C. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 2003, 72, 408–418. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.-M.; Yang, J.-J.; Shieh, J.-C.; Li, M.-L.; Li, S.-Y. Novel mutations in the connexin43 (GJA1) and GJA1 pseudogene may contribute to nonsyndromic hearing loss. Hum. Genet. 2010, 127, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Kandouz, M.; Bier, A.; Carystinos, G.D.; Alaoui-Jamali, M.A.; Batist, G. Connexin43 pseudogene is expressed in tumor cells and inhibits growth. Oncogene 2004, 23, 4763–4770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bock, M.; Kerrebrouck, M.; Wang, N.; Leybaert, L. Neurological manifestations of oculodentodigital dysplasia: A Cx43 channelopathy of the central nervous system? Front. Pharmacol. 2013, 4, 120. [Google Scholar] [CrossRef] [Green Version]
- Bult, C.J.; Blake, J.A.; Smith, C.L.; Kadin, J.A.; Richardson, J.E. Mouse genome database (MGD) 2019. Nucleic Acids Res. 2019, 47, D801–D806. [Google Scholar] [CrossRef] [Green Version]
- Vozzi, C.; Dupont, E.; Coppen, S.R.; Yeh, H.-I.; Severs, N.J. Chamber-related differences in connexin expression in the human heart. J. Mol. Cell. Cardiol. 1999, 31, 991–1003. [Google Scholar] [CrossRef]
- National_Library_of_Medicine (US). Genetics Home Reference [Internet] Bethesda (MD): The Library. 16 September 2013. Available online: https://ghr.nlm.nih.gov/ (accessed on 11 August 2020).
- Huang, S.; Huang, B.; Wang, G.; Kang, D.Y.; Zhang, X.; Meng, X.; Dai, P. The relationship between the GJB3 c.538C>T variant and hearing phenotype in the Chinese population. Int. J. Pediatric Otorhinolaryngol. 2017, 102, 67–70. [Google Scholar] [CrossRef]
- Landrum, M.J.; Chitipiralla, S.; Brown, G.R.; Chen, C.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; Kaur, K.; Liu, C. ClinVar: Improvements to accessing data. Nucleic Acids Res. 2020, 48, D835–D844. [Google Scholar] [CrossRef]
- Zheng-Fischhöfer, Q.; Schnichels, M.; Dere, E.; Strotmann, J.; Loscher, N.; McCulloch, F.; Kretz, M.; Degen, J.; Reucher, H.; Nagy, J.I. Characterization of connexin30. 3-deficient mice suggests a possible role of connexin30. 3 in olfaction. Eur. J. Cell Biol. 2007, 86, 683–700. [Google Scholar]
- Wang, W.-H.; Yang, J.-J.; Lin, Y.-C.; Yang, J.-T.; Li, S.-Y. Novel expression patterns of connexin 30.3 in adult rat cochlea. Hear. Res. 2010, 265, 77–82. [Google Scholar] [CrossRef]
- Eiberger, J.; Kibschull, M.; Strenzke, N.; Schober, A.; Büssow, H.; Wessig, C.; Djahed, S.; Reucher, H.; Koch, D.A.; Lautermann, J. Expression pattern and functional characterization of connexin29 in transgenic mice. GLIA 2006, 53, 601–611. [Google Scholar] [CrossRef]
- Sohani, Z.; Sarma, S.; Alyass, A.; De Souza, R.; Robiou-du-Pont, S.; Li, A.; Mayhew, A.; Yazdi, F.; Reddon, H.; Lamri, A. Empirical evaluation of the Q-Genie tool: A protocol for assessment of effectiveness. BMJ Open 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoy, D.; Brooks, P.; Woolf, A.; Blyth, F.; March, L.; Bain, C.; Baker, P.; Smith, E.; Buchbinder, R. Assessing risk of bias in prevalence studies: Modification of an existing tool and evidence of interrater agreement. J. Clin. Epidemiol. 2012, 65, 934–939. [Google Scholar] [CrossRef] [PubMed]
Country/Territory | Number of Alleles * | Protein Change | Nucleotide Change | Reference Number | Clinical Significance | Reference | |||
---|---|---|---|---|---|---|---|---|---|
Intervar | Varsome | ClinVar | Verdict | ||||||
Taiwan | 1/520 | p.A40V | c.119C > T | rs780320724 | Likely Pathogenic | Likely Pathogenic | Pathogenic | Pathogenic | [23] |
Malaysia | 3/NA | - | 366delT | - | - | - | - | - | [26] |
Germany | 1/376 | - | 682insA | - | - | - | - | - | [27] |
Uganda | 2/230 | p.N113K | c.339T > A | rs143766955 | Benign | Likely Benign | Benign | Benign | [28] |
Uganda | 1/230 | c.476A > G | p.N159S | rs35277762 | Benign | Likely Benign | Benign | Benign | [28] |
Malaysia | 2 | p.E101K | c.301G > A | rs571454176 | Likely Benign | Uncertain Significance | Uncertain Significance | Uncertain Significance | [26] |
Malaysia | 1/NA | p.A148D | c.443_444 delC AinsAC | - | - | Uncertain Significance | - | Uncertain Significance | [26] |
Malaysia | 1/NA | p.Q124H | - | - | Uncertain Significance | Uncertain Significance | - | Uncertain Significance | [26] |
Slovenia | 1/144 | p.M203V | c.607A > G | rs200674715 | Uncertain Significance | Likely Benign | Benign | Benign | [29] |
Germany | 1/376 | [27] | |||||||
Korea | 1/394 | p.I248V | c.742A > G | rs747371119 | Uncertain Significance | Uncertain Significance | Uncertain Significance | Uncertain Significance | [30] |
Qatar | 1/NA | p.P70L | c.209C > T | rs727505123 | Uncertain Significance | Uncertain Significance | Uncertain Significance | Uncertain Significance | [31] |
Korea | 1/394 | p.P87P | c.261A > T | rs777309137 | Likely Benign | Likely Benign | - | Benign | [30] |
Germany | 6/396 | p.T5M | c.14C > T | rs104894414 | Likely Pathogenic | Uncertain Significance | Pathogenic | Pathogenic | [24] |
Malaysia | 1/NA | p.R32Q | c.95G > A | rs766604251 | Uncertain Significance | Uncertain Significance | - | Uncertain Significance | [26] |
Germany | 1/376 | p.V190A | c.569 T > C | rs780513857 | Uncertain Significance | Uncertain Significance | Uncertain Significance | Uncertain Significance | [26,27] |
Malaysia | 1/NA | p.I145H | c.433_434 delA TinsCA | - | Uncertain Significance | - | Uncertain Significance | [26] |
Country/Territory | Number of Alleles | Protein | Nucleotide Change | rs Number | Clinical Significance | Reference | |||
---|---|---|---|---|---|---|---|---|---|
Intervar | Varsome | ClinVar | Verdit | ||||||
Germany | 2/376 | p.K56Q | c.166 A > C | rs746219527 | Uncertain Significance | Likely Benign | Uncertain Significance | Uncertain Significance | [27] |
Germany | 1/376 | p.R101Q | c.302G > A | rs765605645 | Uncertain Significance | Likely Benign | - | Conflicting Interpretations | [27] |
Germany | 1/376 | p.R106H | c.317 G > A | rs369979083 | Uncertain Significance | Uncertain Significance | Likely Benign | Uncertain Significance | [27] |
Tunisia | 1/NA | p.R32W | c.94C > T | rs1805063 | Benign | Benign | Likely Benign | Benign | [32] |
Austria | 2/90 | [33] | |||||||
USA | 2/126 | [34] | |||||||
Brazil | 2/NA | [35] | |||||||
Tunisia | 4/NA | p.N119N | c.357C > T | rs41310442 | Benign | Benign | Benign | Benign | [32] |
Austria | 4/90 | [33] | |||||||
China | 7/186 | [36] | |||||||
USA | 1/126 | [34] | |||||||
Morocco | 1/390 | [37] | |||||||
Korea | 36/424 | [30] | |||||||
China | 1/216 | p.N166S | c.497A > G | rs121908851 | Uncertain Significance | Likely Benign | Pathogenic | Conflicting Interpretations | [38] |
Korea | 1/20 | p.A194T | c.580G > A | rs117385606 | Benign | Benign | Benign | Benign | [39] |
China | 2/216 | [38] | |||||||
Korea | 7/430 | [30] | |||||||
Taiwan | 4/506 | [40] | |||||||
China | 2/NA | [41] | |||||||
China | 3/206 | p.V84I | c.250G > A | rs145751680 | Benign | Benign | Benign | Benign | [42] |
Korea | 7/424 | [30] | |||||||
Taiwan | 1/506 | [40] | |||||||
Korea | 1/40 | [43] | |||||||
China | 1/NA | [41] | |||||||
Austria | 11/90 | p.N266N | c.798C > T | rs35983826 | Benign | Benign | Benign | Benign | [33] |
USA | 10/126 | [34] | |||||||
China | 4/186 | [36] | |||||||
China | 12/170 | [41] | |||||||
China | 2/186 | p.S11S | c.33C > T | rs112499125 | Likely Benign | Benign | Likely Benign | Benign | [36] |
USA | 2/126 | p.N67N | c.201C > T | - | Likely Benign | Uncertain Significance | - | Conflicting Interpretations | [34] |
Korea | 1/424 | pV27M | c.79G > A | rs775072109 | Uncertain Significance | Benign | - | Conflicting Interpretations | [30] |
Korea | 1/424 | p.V43M | c.127G > A | rs761320902 | Uncertain Significance | Likely Benign | - | Conflicting Interpretations | [30] |
Korea | 415/430 | c.813+43C > A | rs41266429 | - | Benign | Benign | Benign | [30] | |
Korea | 351/430 | c.813+53G > A | rs476220 | - | Benign | Benign | Benign | [30] | |
China | 2/4 | p.E183K | c.547G > A | rs74315318 | Likely Pathogenic | Benign | Conflicting Interpretations | Conflicting Interpretations | [44] |
Taiwan | 1/506 | [40] | |||||||
China | 2/4 | p.R180 * | c.538C > T | rs74315319 | Uncertain Significance | Benign | Uncertain Significance | Uncertain Significance | [44] |
Taiwan | 2/506 | p.L10R | c.29T > G | - | Uncertain Significance | Uncertain Significance | - | Uncertain Significance | [40] |
Taiwan | 1/506 | p.T18I | c.53C > T | rs755025684 | Uncertain Significance | Benign | - | Conflicting Interpretations | [40] |
Brazil | 1/NA | p.49delK | c.1227C > T | - | - | - | - | - | [35] |
Australia | 3/520 | p.V174M | c.520G > A | rs749431664 | Uncertain Significance | Uncertain Significance | - | Uncertain Significance | [40] |
Brazil | 2/414 | p.Y177D | c.529T > G | rs80297119 | Benign | Benign | Benign | Benign | [45] |
Brazil | 2/4 | [35] | |||||||
China | 2/186 | p.G256S | c.766G > A | - | Likely benign | Uncertain significance | Conflicting Interpretations | [36] |
Clinical Significance | Ghana | Australia | Iran | China | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Protein Change | Nucleotide Change | rs Number | Intervar | Varsome | InterVar | Verdit | [21] | [23] | [46] | [15] |
p.C169 * | c.507C > A | rs79193415 | Uncertain Significance | Pathogenic | - | Conflicting Interpretations | - | 2/NA | - | 1/506 |
p.C169C | c.507C > T | rs79193416 | Likely Benign | Uncertain Significance | - | Conflicting Interpretations | - | - | 2/144 | |
p.E67L | c.199G > A | rs368331423 | Uncertain Significance | Benign | - | Conflicting Interpretations | - | - | - | 1/506 |
p.G126T | c.376G > A | rs146979528 | Likely Pathogenic | Benign | - | Conflicting Interpretations | - | - | - | 2/506 |
p.H221Y | c.661C > T | rs1223189096 | Uncertain Significance | Likely Benign | - | Conflicting Interpretations | - | - | - | 1/506 |
p.R101H | c.302G > A | rs375702737 | Likely Pathogenic | Likely Benign | - | Conflicting Interpretations | - | 1/520 | - | - |
p.R103C | c.307C > T | rs9426009 | Benign | Benign | - | Benign | - | - | 1/144 | - |
p.R124W | c.370C > T | rs373126632 | Likely Pathogenic | Benign | - | Conflicting Interpretations | - | 1/520 | - | 1/506 |
p.R227W | c.679C > T | rs185327282 | Uncertain Significance | Likely Benign | - | Conflicting Interpretations | - | - | 1/144 | - |
p.R22C | c.64C > T | rs776245625 | Likely Pathogenic | Likely Benign | - | Conflicting Interpretations | - | 1/520 | - | 1/506 |
p.R98C | c.292C > T | rs200602523 | Likely Pathogenic | Benign | - | Conflicting Interpretations | - | 2/520 | - | 1/506 |
p.T233L | c.698C > A | - | Uncertain Significance | Likely Benign | Conflicting Interpretations | - | - | - | 1/506 | |
p.V37M | c.109G > A | rs146378222 | Benign | Benign | Uncertain Significance | Benign | - | 2/520 | - | 2/506 |
p.V74M | c.220G > A | rs771048190 | Likely Pathogenic | Likely Benign | - | Conflicting Interpretations | - | 1/520 | - | - |
p.N119T | c.356A > C | rs190460237 | Likely Pathogenic | Uncertain Significance | - | Conflicting Interpretations | 2/400 | - | - | - |
p.E204A | 611A > C | rs3738346 | Benign | Benign | Benign | Benign | 70/400 | - | - | - |
p.R151S | c.451C > A | rs78499418 | Benign | Benign | - | Benign | 58/400 | - | - | - |
p.T172T | c.516T > C | rs111693060 | Benign | Benign | Benign | Benign | 13/400 | - | - | - |
p.K123K | c.369G > A | rs142843509 | Likely Benign | Benign | Likely Benign | Benign | 2/400 | - | - | - |
p.R101R | c.303C > G | rs138184343 | Likely Benign | Benign | Benign | Benign | 15/400 | - | - | - |
p.Q80* | c.238C > T | rs114429815 | Benign | Benign | Benign | Benign | 3/400 | - | - | - |
* Number of Alleles | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ghana | Taiwan | India | China | ||||||||
Protein Change | Nucleotide Change | rs Number | Intervar | Varsome | ClinVar | Verdict | [21,47] | [40] | [47] | [48] | |
p.I190N | c.569T > A | rs121908693 | Uncertain Significance | Uncertain Significance | - | Uncertain Significance | 1/246 | ||||
p.R15G | c.43C > G | - | Uncertain Significance | Uncertain Significance | - | Uncertain Significance | 1/506 | ||||
p.W77S | c.230G > C | - | Uncertain Significance | Uncertain Significance | - | Uncertain Significance | 1/506 | ||||
p.L17S | c.525T > G | rs752804324 | Likely benign | Likely benign | Likely benign | 2/506 | |||||
- | c.781 + 62G > A | rs116853822 | - | Likely Benign | - | Likely Benign | 10/520 | 8/506 | |||
p.M1R | c.2T > G | - | Uncertain Significance | Uncertain Significance | - | Uncertain Significance | 3/520 | 3/506 | |||
p.E269D | c.807A > T | rs763649019 | Uncertain Significance | Likely Benign | Uncertain Significance | Uncertain Significance | 1/520 | ||||
p.P164S | c.490C > T | rs73405465 | Benign | Benign | - | Benign | 53/400 |
Country/Territory | * Number of Alleles | Protein | Nucleotide Change | rs Number | Clinical Significance | Reference | |||
---|---|---|---|---|---|---|---|---|---|
Intervar | Varsome | ClinVar | Verdict | ||||||
Taiwan | 1/520 | p.S69P | c.205T > C | - | Likely pathogenic | Likely pathogenic | - | pathogenic | [23] |
Taiwan | 16/520 | - | c.932delC | - | - | - | - | - | [23] |
Taiwan | 2/520 | - | c.976C > T | - | - | - | - | - | [23] |
Taiwan | 1/506 | p.L181F | c.543G > C | - | Likely pathogenic | Likely pathogenic | - | pathogenic | [40] |
Cameroon | 2/134 | - | c.-16-51A > G | rs189167598 | - | Benign | - | Benign | [49] |
South Africa | 1/46 | p.N63N | c.189T > C | rs139688042 | Likely benign | Uncertain Significance | - | Conflicting Interpretations | [49] |
South Africa | 1/46 | p.N122N | c.366T > C | - | Likely benign | Uncertain Significance | - | Conflicting Interpretations | [49] |
Cameroon | 11/134 | p.R239R | c.717G > A | rs57946868 | Benign | Uncertain Significance | - | Conflicting Interpretations | [49] |
South Africa | 2/46 | ||||||||
South Africa | 1/46 | p.A253V | c.758C > T | rs17653265 | Benign | Benign | Benign | Benign | [49] |
USA | 6/52 | p.L11Y | c.31–32 delCTinsTA | - | - | Likely pathogenic | - | Likely pathogenic | [50] |
USA | 2/20 | p.V24A | c.71T > C | - | Likely pathogenic | Likely pathogenic | - | pathogenic | [50] |
Country | USA | Turkey | UK | |
---|---|---|---|---|
Reference | [52] | [52] | [52] | |
Protein change | p.L71L | p.T302T | p.D297N | L304L |
Nucleotide change | c.213C > T | c.906C > T | c.889G > A | c.912G > T |
rs number | rs61749924 | rs2229395 | - | - |
* Number of alleles | 2/168 | 13/120 | 4/194 | 1/80 |
Intervar | Likely benign | Likely benign | Uncertain significance | Likely benign |
Varsome | Uncertain significance | Uncertain significance | Uncertain significance | Uncertain significance |
ClinVar | - | - | - | - |
Verdict | Conflicting Interpretations | Conflicting Interpretations | Conflicting Interpretations | Conflicting Interpretations |
* Patients (#Chrom/Total #Chrom (Allele Frequency)) | * Controls (#Chrom/Total #Chrom (Allele Frequency)) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gene | Variant | Africa | Asia | Australia | Europe | North America | South America | Africa | Asia | Australia | Europe | North America | South America |
GJB2 | p.Gly12 ValfsTer2 (c.35delG) | 770/3848 (20.0%) | 5917/71,209 (8.3%) | 50/104 (48.1%) | 15,616/65,019 (24.0%) | 3237/26,976 (12.0%) | 822/8191 (10.0%) | 12/1604 (0.7%) | 35/4684 (0.7%) | 197/21,978 (0.9%) | 6/988 (0.6%) | ||
p.M34T (c.101T > C) | 2/272 (0.7%) | 89/4902 (1.8%) | 5/104 (4.8%) | 9418/47,909 (19.7%) | 451/25,118 (1.8%) | 44/4500 (1.0%) | 13/1886 (0.7%) | 5/588 (0.9%) | |||||
p.L79Cfs (c.235delC) | 2/262 (0.8%) | 9666/250,680 (3.9%) | 31/520 (6.0%) | 32/4382 (0.7%) | 80/20,406 (0.4%) | 2/866 (0.2%) | 35/4908 (0.7%) | 1/1886 (0.1%) | 1/588 (0.1%) | ||||
p.V37I (c.109G > A) | 24/1192 (2.0%) | 2833/81,139 (3.5%) | 8/104 (7.7%) | 95/13,227 (0.7%) | 530/27,288 (1.9%) | 30/4852 (0.6%) | 3/640 (0.5%) | 200/3478 (5.8%) | 11/588 (1.9%) | ||||
p.H100Rfs Ter14 (c.299_300delAT) | 0/0 | 1046/85,332 (1.2%) | 7/520 (1.3%) | 7/2936 (0.2%) | 20/19,067 (0.1%) | 0/0 | 3/1264 (0.2%) | ||||||
p.W24X (c.71G > A) | 0/0 | 666/22,464 (3.0%) | 3/104 (2.9%) | 249/12,523 (2.0%) | 47/17,055 (0.3%) | 7/2248 (0.3%) | 11/320 (3.4%) | ||||||
p.L56Rfs (c.167delT) | 2/50 (4.0%) | 240/17,350 (1.4%) | 1/104 (1.0%) | 93/12,141 (0.8%) | 275/21,540 (1.3%) | 30/3094 (1.0%) | 7/2690 (0.3%) | 1/1886 (0.1%) | |||||
p.R143W (c.427C > T) | 255/1298 (19.6%) | 154/62,605 (0.2%) | 1/104 (1.0%) | 17/2977 (0.6%) | 35/21,189 (0.2%) | 35/2132 (1.6%) | 2/290 (0.7%) | ||||||
GJB6 | Del (GJB6- D13S1830) | 1/204 (0.5%) | 31/3096 (0.1%) | 2/68 (2.9%) | 186/7778 (2.4%) | 36/1498 (2.4%) | 44/4516 (1.0%) | 0/198 | 0/782 | 0/1502 | 0/230 | 0/1508 | |
Del (GJB6- D13S1854) | 1/782 (0.1%) | 10/2524 (0.4%) | |||||||||||
GJA1 | p.L11Y (c.31–32 delCTinsTA) | 6/52 (11.5%) | 0/200 | ||||||||||
p.V24A (c.71T > C) | 2/20 (10.0%) | 0/200 | |||||||||||
p.L181F (c.543G > C) | 1/506 (0.2%) | 0/240 | |||||||||||
p.S69P (c.205T > C) | 1/520 (0.2%) | 0/240 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adadey, S.M.; Wonkam-Tingang, E.; Twumasi Aboagye, E.; Nayo-Gyan, D.W.; Boatemaa Ansong, M.; Quaye, O.; Awandare, G.A.; Wonkam, A. Connexin Genes Variants Associated with Non-Syndromic Hearing Impairment: A Systematic Review of the Global Burden. Life 2020, 10, 258. https://doi.org/10.3390/life10110258
Adadey SM, Wonkam-Tingang E, Twumasi Aboagye E, Nayo-Gyan DW, Boatemaa Ansong M, Quaye O, Awandare GA, Wonkam A. Connexin Genes Variants Associated with Non-Syndromic Hearing Impairment: A Systematic Review of the Global Burden. Life. 2020; 10(11):258. https://doi.org/10.3390/life10110258
Chicago/Turabian StyleAdadey, Samuel Mawuli, Edmond Wonkam-Tingang, Elvis Twumasi Aboagye, Daniel Wonder Nayo-Gyan, Maame Boatemaa Ansong, Osbourne Quaye, Gordon A. Awandare, and Ambroise Wonkam. 2020. "Connexin Genes Variants Associated with Non-Syndromic Hearing Impairment: A Systematic Review of the Global Burden" Life 10, no. 11: 258. https://doi.org/10.3390/life10110258
APA StyleAdadey, S. M., Wonkam-Tingang, E., Twumasi Aboagye, E., Nayo-Gyan, D. W., Boatemaa Ansong, M., Quaye, O., Awandare, G. A., & Wonkam, A. (2020). Connexin Genes Variants Associated with Non-Syndromic Hearing Impairment: A Systematic Review of the Global Burden. Life, 10(11), 258. https://doi.org/10.3390/life10110258