The Role of Connexin 43 in Lung Disease
Abstract
:1. Introduction
2. Connexin 43 in Lung Development
3. Involvement of Connexin 43 in Respiratory Failure
4. Connexin 43 in Acute Respiratory Distress Syndrome
5. Connexin 43 in Chronic Obstructive Pulmonary Disorder
6. Connexin 43 in Asthma
7. Connexin 43-Induced Transfer of Mitochondria
8. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Unwin, P.N.T.; Zampighi, G. Structure of the Junction between Communicating Cells. Nat. Cell Biol. 1980, 283, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Sosinsky, G.E.; Nicholson, B.J. Structural Organization of Gap Junction Channels. Biochim. Biophys. Acta (BBA)-Biomembr. 2005, 1711, 99–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katakowski, M.; Buller, B.; Wang, X.; Rogers, T.; Chopp, M. Functional MicroRNA Is Transferred between Glioma Cells. Cancer Res. 2010, 70, 8259–8263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemcke, H.; Steinhoff, G.; David, R. Gap Junctional Shuttling of miRNA—A Novel Pathway of Intercellular Gene Regulation and Its Prospects in Clinical Application. Cell. Signal. 2015, 27, 2506–2514. [Google Scholar] [CrossRef]
- De Bock, M.; Wang, N.; Bol, M.; Decrock, E.; Ponsaerts, R.; Bultynck, G.; Dupont, G.; Leybaert, L. Connexin 43 Hemichannels Contribute to Cytoplasmic Ca2+ Oscillations by Providing a Bimodal Ca2+-dependent Ca2+ Entry Pathway. J. Biol. Chem. 2012, 287, 12250–12266. [Google Scholar] [CrossRef] [Green Version]
- Neijssen, J.; Pang, B.; Neefjes, J. Gap Junction-Mediated Intercellular Communication in the Immune System. Prog. Biophys. Mol. Biol. 2007, 94, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Söhl, G.; Willecke, K. An Update on Connexin Genes and their Nomenclature in Mouse and Man. Cell Commun. Adhes. 2009, 10, 173–180. [Google Scholar]
- Falk, M.M.; Buehler, L.K.; Kumar, N.M.; Gilula, N.B. Cell-Free Synthesis and Assembly of Connexins into Functional Gap Junction Membrane Channels. EMBO J. 1997, 16, 2703–2716. [Google Scholar] [CrossRef] [Green Version]
- Yeager, M.; Nicholson, B.J. Structure and Biochemistry of Gap Junctions. Organelles In Vivo 2000, 30, 31–98. [Google Scholar]
- Abraham, V.; Chou, M.L.; George, P.; Pooler, P.; Zaman, A.; Savani, R.C.; Koval, M. Heterocellular Gap Junctional Communication between Alveolar Epithelial Cells. Am. J. Physiol. Cell. Mol. Physiol. 2001, 280, L1085–L1093. [Google Scholar] [CrossRef]
- Isakson, B.E.; Seedorf, G.J.; Lubman, R.L.; Evans, W.H.; Boitano, S. Cell–Cell Communication in Heterocellular Cultures of Alveolar Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 2003, 29, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Fishman, G.I.; Moreno, A.P.; Spray, D.C.; Leinwand, L.A. Functional Analysis of Human Cardiac Gap Junction Channel Mutants. Proc. Natl. Acad. Sci. USA 1991, 88, 3525–3529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, F.; Eckert, R.; Elfgang, C.; Nitsche, J.M.; A Snyder, S.; H-Ulser, D.F.; Willecke, K.; Nicholson, B.J. A Quantitative Analysis of Connexin-Specific Permeability Differences of Gap Junctions Expressed in HeLa Transfectants and Xenopus Oocytes. J. Cell Sci. 1998, 111, 31–43. [Google Scholar] [PubMed]
- Elfgang, C.; Eckert, R.; Lichtenberg-Fraté, H.; Butterweck, A.; Traub, O.; A Klein, R.; Hülser, D.F.; Willecke, K. Specific Permeability and Selective Formation of Gap Junction Channels in Connexin-Transfected HeLa Cells. J. Cell Biol. 1995, 129, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Weber, P.A.; Chang, H.-C.; Spaeth, K.E.; Nitsche, J.M.; Nicholson, B.J. The Permeability of Gap Junction Channels to Probes of Different Size Is Dependent on Connexin Composition and Permeant-Pore Affinities. Biophys. J. 2004, 87, 958–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, G.S.; Lampe, P.D.; Nicholson, B.J. Selective Transfer of Endogenous Metabolites through Gap Junctions Composed of Different Connexins. Nat. Cell Biol. 1999, 1, 457–459. [Google Scholar] [CrossRef]
- Goldberg, G.S.; Moreno, A.P.; Lampe, P.D. Gap Junctions between Cells Expressing Connexin 43 or 32 Show Inverse Permselectivity to Adenosine and ATP. J. Biol. Chem. 2002, 277, 36725–36730. [Google Scholar] [CrossRef] [Green Version]
- Laird, D.W.; Puranam, K.L.; Revel, J.P. Turnover and Phosphorylation Dynamics of Connexin 43 Gap Junction Protein in Cultured Cardiac Myocytes. Biochem. J. 1991, 273, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Mograbi, B.; Corcelle, E.; Defamie, N.; Samson, M.; Nebout, M.; Segretain, D.; Fénichel, P.; Pointis, G. Aberrant Connexin 43 Endocytosis by the Carcinogen Lindane Involves Activation of the ERK/Mitogen-Activated Protein Kinase Pathway. Carcinogenesis 2003, 24, 1415–1423. [Google Scholar] [CrossRef] [Green Version]
- Cooper, C.D.; Lampe, P.D.; Yang, T.; Poovaiah, B.W. Casein Kinase 1 Regulates Connexin-43 Gap Junction Assembly. J. Biol. Chem. 2002, 277, 44962–44968. [Google Scholar] [CrossRef] [Green Version]
- Lampe, P.D.; Lau, A.F. The Effects of Connexin Phosphorylation on Gap Junctional Communication. Int. J. Biochem. Cell Biol. 2004, 36, 1171–1186. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Kasperek, E.M.; Nicholson, B.J. Dissection of the Molecular Basis of pp60v-src Induced Gating of Connexin 43 Gap Junction Channels. J. Cell Biol. 1999, 144, 1033–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, F.J.; Prince, A.S. TLR2 Regulates Gap Junction Intercellular Communication in Airway Cells. J. Immunol. 2008, 180, 4986–4993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, L.N.; Koval, M. Cross-Talk Between Pulmonary Injury, Oxidant Stress, and Gap Junctional Communication. Antioxid. Redox Signal. 2009, 11, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Mouse Genome Database (MGD) at the Mouse Genome Informatics Website, The Jackson Laboratory, Bar Harbor, Maine. World Wide Web. Available online: http://www.informatics.jax.org (accessed on 31 August 2020).
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å. Tissue-Based Map of the Human Proteome. Science 2015, 347. [Google Scholar] [CrossRef]
- The Human Protein Atlas. Available online: http://www.proteinatlas.org (accessed on 9 August 2020).
- Reaume, A.; De Sousa, P.A.; Kulkarni, S.; Langille, B.; Zhu, D.; Davies, T.; Juneja, S.C.; Kidder, G.; Rossant, J. Cardiac Malformation in Neonatal Mice Lacking Connexin43. Science 1995, 267, 1831–1834. [Google Scholar] [CrossRef]
- Dahl, E.; Winterhager, E.; Traub, O.; Willecke, K. Expression of Gap Junction Genes, Connexin40 and Connexin43, during Fetal Mouse Development. Brain Struct. Funct. 1995, 191, 267–278. [Google Scholar] [CrossRef]
- Nagata, K.; Masumoto, K.; Esumi, G.; Teshiba, R.; Yoshizaki, K.; Fukumoto, S.; Nonaka, K.; Taguchi, T. Connexin43 Plays an Important Role in Lung Development. J. Pediatr. Surg. 2009, 44, 2296–2301. [Google Scholar] [CrossRef]
- Parthasarathi, K.; Ichimura, H.; Monma, E.; Lindert, J.; Quadri, S.; Issekutz, A.; Bhattacharya, J. Connexin 43 Mediates Spread of Ca2+-Dependent Proinflammatory Responses in Lung Capillaries. J. Clin. Investig. 2006, 116, 2193–2200. [Google Scholar] [CrossRef]
- Kasper, M.; Traub, O.; Reimann, T.; Bjermer, L.; Großmann, H.; Müller, M.; Wenzel, K.W. Upregulation of Gap Junction Protein connexin43 in Alveolar Epithelial Cells of Rats with Radiation-Induced Pulmonary Fibrosis. Histochem. Cell Biol. 1996, 106, 419. [Google Scholar] [CrossRef]
- O’Donnell, J.J.; Birukova, A.A.; Beyer, E.C.; Birukov, K.G. Gap Junction Protein Connexin43 Exacerbates Lung Vascular Permeability. PLoS ONE 2014, 9, e100931. [Google Scholar] [CrossRef] [Green Version]
- Aasen, T.; Leithe, E.; Graham, S.V.; Kameritsch, P.; Mayán, M.D.; Mesnil, M.; Pogoda, K.; Tabernero, A. Connexins in Cancer: Bridging the Gap to the Clinic. Oncogene 2019, 38, 4429–4451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, T.J.; Bertram, J.S. Connexins as Targets for Cancer Chemoprevention and Chemotherapy. Biochim. Biophys. Acta (BBA)-Biomembr. 2005, 1719, 146–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losa, D.; Chanson, M.; Crespin, S. Connexins as Therapeutic Targets in Lung Disease. Expert Opin. Ther. Targets 2011, 15, 989–1002. [Google Scholar] [CrossRef]
- Chanson, M.; Kotsias, B.A.; Peracchia, C.; O’Grady, S.M. Interactions of Connexins with Other Membrane Channels and Transporters. Prog. Biophys. Mol. Biol. 2007, 94, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Sarieddine, M.Z.R.; Scheckenbach, K.E.L.; Foglia, B.; Maass, K.; Garcia, I.; Kwak, B.R.; Chanson, M. Connexin43 Modulates Neutrophil Recruitment to the Lung. J. Cell. Mol. Med. 2009, 13, 4560–4570. [Google Scholar] [CrossRef] [Green Version]
- Westphalen, K.; Gusarova, G.A.; Islam, M.N.; Subramanian, M.; Cohen, T.S.; Prince, A.S.; Bhattacharya, J. Sessile Alveolar Macrophages Communicate with Alveolar Epithelium to Modulate Immunity. Nat. Cell Biol. 2014, 506, 503–506. [Google Scholar] [CrossRef] [Green Version]
- Haussig, S.; Schubert, A.; Mohr, F.-W.; Dhein, S. Sub-chronic Nicotine Exposure Induces Intercellular Communication Failure and Differential Down-Regulation of Connexins in Cultured Human Endothelial Cells. Atherosclerosis 2008, 196, 210–218. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Yeh, H.-I.; Tian, T.-Y.; Lee, Y.-N.; Lu, C.-S.; Ko, Y.-S. Down-Regulating Effect of Nicotine on Connexin43 Gap Junctions in Human Umbilical Vein Endothelial Cells Is Attenuated by Statins. Eur. J. Cell Biol. 2004, 82, 589–595. [Google Scholar] [CrossRef]
- Muresan, X.M.; Cervellati, F.; Sticozzi, C.; Belmonte, G.; Chui, C.H.; Lampronti, I.; Borgatti, M.; Gambari, R.; Valacchi, G. The Loss of Cellular Junctions in Epithelial Lung Cells Induced by Cigarette Smoke Is Attenuated by Corilagin. Oxid. Med. Cell. Longev. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
- Soon, A.S.C.; Chua, J.W.; Becker, D.L. Connexins in Endothelial Barrier Function—Novel Therapeutic Targets Countering Vascular Hyperpermeability. Thromb. Haemost. 2016, 116, 852–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, F.F.; Ball, L.; Rocco, P.R.M.; Pelosi, P. Ventilator-Induced Lung Injury during Controlled Ventilation in Patients with Acute Respiratory Distress Syndrome: Less Is Probably Better. Expert Rev. Respir. Med. 2018, 12, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Grommes, J.; Soehnlein, O. Contribution of Neutrophils to Acute Lung Injury. Mol. Med. 2011, 17, 293–307. [Google Scholar] [CrossRef]
- Gerber, J.; Heinrich, J.; Brehm, R. Blood-Testis Barrier and Sertoli Cell Function: Lessons from SCCx43KO Mice. Reproduction 2016, 151, R15–R27. [Google Scholar] [CrossRef] [Green Version]
- Kojima, T.; Murata, M.; Go, M.; Spray, D.C.; Sawada, N. Connexins Induce and Maintain Tight Junctions in Epithelial Cells. J. Membr. Biol. 2007, 217, 13–19. [Google Scholar] [CrossRef]
- El-Sabban, M.E.; Pauli, B.U. Cytoplasmic Dye Transfer between Metastatic Tumor Cells and Vascular Endothelium. J. Cell Biol. 1991, 115, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Katoh, F.; Kataoka, T.R.; Okada, M.; Tsubota, N.; Asada, H.; Yoshikawa, K.; Maeda, S.; Kitamura, Y.; Yamasaki, H.; et al. A Role for Heterologous Gap Junctions between Melanoma and Endothelial Cells in Metastasis. J. Clin. Investig. 2000, 105, 1189–1197. [Google Scholar] [CrossRef] [Green Version]
- Eltzschig, H.K.; Eckle, T.; Mager, A.; Küper, N.; Karcher, C.; Weissmüller, T.; Boengler, K.; Schulz, R.; Robson, S.C.; Colgan, S.P. ATP Release From Activated Neutrophils Occurs via Connexin 43 and Modulates Adenosine-Dependent Endothelial Cell Function. Circ. Res. 2006, 99, 1100–1108. [Google Scholar] [CrossRef] [Green Version]
- Abraham, V.; Chou, M.L.; DeBolt, K.M.; Koval, M. Phenotypic Control of Gap Junctional Communication by Cultured Alveolar Epithelial Cells. Am. J. Physiol. Content 1999, 276, L825–L834. [Google Scholar] [CrossRef]
- Patel, B.V.; Wilson, M.R.; Takata, M. Resolution of Acute Lung Injury and Inflammation: A Translational Mouse Model. Eur. Respir. J. 2011, 39, 1162–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cauwels, A.; Rogge, E.; VandenDriessche, B.; Shiva, S.; Brouckaert, P. Extracellular ATP Drives Systemic Inflammation, Tissue Damage and Mortality. Cell Death Dis. 2014, 5, e1102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandasamy, K.; Escue, R.; Manna, J.; Adebiyi, A.; Parthasarathi, K. Changes in Endothelial Connexin 43 Expression Inversely Correlate with Microvessel Permeability and VE-Cadherin Expression in Endotoxin-Challenged Lungs. Am. J. Physiol. Cell. Mol. Physiol. 2015, 309, L584–L592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E Saffitz, J.; Laing, J.; A Yamada, K. Connexin Expression and Turnover: Implications for Cardiac Excitability. Circ. Res. 2000, 86, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.L.; Williams, C.B.; Zambrano, J.N.; Williams, C.J.; Yeh, E.S. Connexin 43 in the Development and Progression of Breast Cancer: What’s the Connection? (Review). Int. J. Oncol. 2017, 51, 1005–1013. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Fu, Y.; Liu, K.; Hou, L.; Zhang, W. miR-206 Regulates Alveolar Type II Epithelial cell Cx43 Expression in Sepsis-Induced Acute Lung Injury. Exp. Ther. Med. 2019, 18, 296–304. [Google Scholar] [CrossRef] [Green Version]
- Anand, R.J.; Dai, S.; Gribar, S.C.; Richardson, W.; Kohler, J.W.; Hoffman, R.A.; Branca, M.F.; Li, J.; Shi, X.-H.; Sodhi, C.P.; et al. A Role for Connexin43 in Macrophage Phagocytosis and Host Survival after Bacterial Peritoneal Infection1. J. Immunol. 2008, 181, 8534–8543. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tan, X.; Xue, L. The Alpha2-Adrenoreceptor Agonist Dexmedetomidine Protects against LipopolysacchariDe-induced Apoptosis via Inhibition of Gap Junctions in Lung Fibroblasts. Biochem. Biophys. Res. Commun. 2018, 495, 92–97. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Gerard, J.C.; Fernando, J.M.; Antonio, A.; Peter, J.B.; Bourbeau, J.; Celli, B.R.; Rongchang, C.; Decramer, M.; Fabbri, L.M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary. Eur. Respir. J. 2017, 49, 1700214. [Google Scholar] [CrossRef]
- Gershon, A.; Warner, L.; Cascagnette, P.; Victor, J.C.; To, T.M. Lifetime Risk of Developing Chronic Obstructive Pulmonary Disease: A Longitudinal Population Study. Lancet 2011, 378, 991–996. [Google Scholar] [CrossRef]
- Soriano, J.B.; Abajobir, A.A.; Abate, K.H.; Abera, S.F.; Agrawal, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Alam, K.; et al. Global, Regional, and National Deaths, Prevalence, Disability-Adjusted Life Years, and Years Lived with Disability for Chronic Obstructive Pulmonary Disease and Asthma, 1990–2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017, 5, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Davidson, J.M. Elastin and the Lung. In Biochemistry of Pulmonary Emphysema; Springer: London, UK, 1992; Volume 41, pp. 13–25. [Google Scholar] [CrossRef]
- Singh, D.; Solan, J.L.; Taffet, S.M.; Javier, R.; Lampe, P.D. Connexin 43 Interacts with Zona Occludens-1 and-2 Proteins in a Cell Cycle Stage-Specific Manner. J. Biol. Chem. 2005, 280, 30416–30421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Center for Disease Control and Prevention. A National Health Interview Survey. Available online: https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm (accessed on 25 November 2020).
- Toskala, E.; Kennedy, D.W. Asthma Risk Factors. Int. Forum Allergy Rhinol. 2015, 5, S11–S16. [Google Scholar] [CrossRef] [PubMed]
- Fahy, J.V.; Dickey, B.F. Airway Mucus Function and Dysfunction. N. Engl. J. Med. 2010, 363, 2233–2247. [Google Scholar] [CrossRef] [Green Version]
- Bousquet, J.; Lockey, R.; Malling, H.J. Allergen Immunotherapy: Therapeutic Vaccines for Allergic Diseases. A WHO Position Paper. J. Allergy Clin. Immunol. 1998, 102, 558–562. [Google Scholar] [CrossRef]
- Vaswani, R.; Garg, A.; Parikh, L.; Vaswani, S. Non-adherence to Subcutaneous Allergen Immunotherapy: Inadequate Health Insurance Coverage Is the Leading Cause. Ann. Allergy Asthma Immunol. 2015, 115, 241–243. [Google Scholar] [CrossRef]
- Yao, Y.; Zeng, Q.-X.; Deng, X.-Q.; Tang, G.-N.; Guo, J.-B.; Sun, Y.; Ru, K.; Rizzo, A.N.; Shi, J.-B.; Fu, Q.-L. Connexin 43 Upregulation in Mouse Lungs during Ovalbumin-Induced Asthma. PLoS ONE 2015, 10, e0144106. [Google Scholar] [CrossRef]
- Huang, J.-Q.; Chen, X.-Y.; Huang, F.; Fan, J.-M.; Shi, X.-W.; Ju, Y.-K. Effects of Connexin 43 Inhibition in an Ovalbumin-induced Mouse Model of Asthma. Iran. J. Allergy Asthma Immunol. 2018, 17, 29–38. [Google Scholar]
- Holgate, S.T. Epithelium Dysfunction in Asthma. J. Allergy Clin. Immunol. 2007, 120, 1233–1244. [Google Scholar]
- Vliagoftis, H.; Hutson, A.M.; Mahmudi-Azer, S.; Kim, H.; Rumsaeng, V.; Oh, C.K.; Moqbel, R.; Metcalfe, D.D. Mast Cells Express Connexins on Their Cytoplasmic Membrane. J. Allergy Clin. Immunol. 1999, 103, 656–662. [Google Scholar] [CrossRef]
- Desplantez, T.; Verma, V.; Leybaert, L.; Evans, W.; Weingart, R. Gap26, a Connexin Mimetic Peptide, Inhibits Currents Carried by Connexin43 Hemichannels and Gap Junction Channels. Pharmacol. Res. 2012, 65, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Barbato, A.; Turato, G.; Baraldo, S.; Bazzan, E.; Calabrese, F.; Panizzolo, C.; Zanin, M.E.; Zuin, R.; Maestrelli, P.; Fabbri, L.M.; et al. Epithelial Damage and Angiogenesis in the Airways of Children with Asthma. Am. J. Respir. Crit. Care Med. 2006, 174, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Neijssen, J.; Herberts, C.; Drijfhout, J.W.; Reits, E.; Janssen, L.; Neefjes, J. Cross-Presentation by Intercellular Peptide Transfer through Gap Junctions. Nature 2005, 434, 83–88. [Google Scholar] [CrossRef]
- Lim, P.K.; Bliss, S.A.; Patel, S.A.; Taborga, M.; Dave, M.A.; Gregory, L.A.; Greco, S.J.; Bryan, M.; Patel, P.S.; Rameshwar, P. Gap Junction–Mediated Import of MicroRNA from Bone Marrow Stromal Cells Can Elicit Cell Cycle Quiescence in Breast Cancer Cells. Cancer Res. 2011, 71, 1550–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Fan, X.-L.; Jiang, D.; Zhang, Y.; Li, X.; Xu, Z.-B.; Fang, S.-B.; Chiu, S.; Tse, H.-F.; Lian, Q.; et al. Connexin 43-Mediated Mitochondrial Transfer of iPSC-MSCs Alleviates Asthma Inflammation. Stem. Cell Rep. 2018, 11, 1120–1135. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.N.; Das, S.R.; Emin, M.T.; Wei, M.; Sun, L.; Westphalen, K.; Rowlands, D.J.; Quadri, S.K.; Bhattacharya, S.; Bhattacharya, J. Mitochondrial Transfer from Bone-Marrow–Derived Stromal Cells to Pulmonary Alveoli Protects against Acute Lung Injury. Nat. Med. 2012, 18, 759–765. [Google Scholar] [CrossRef] [Green Version]
- Pattnaik, B.; Bodas, M.; Bhatraju, N.K.; Ahmad, T.; Pant, R.; Guleria, R.; Ghosh, B.; Agrawal, A. IL-4 Promotes Asymmetric Dimethylarginine Accumulation, Oxo-Nitrative Stress, and Hypoxic Response–Induced Mitochondrial Loss in Airway Epithelial Cells. J. Allergy Clin. Immunol. 2016, 138, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, Y.; Yeung, S.C.; Liang, Y.; Liang, X.; Ding, Y.; Ip, M.S.M.; Tse, H.-F.; Mak, J.C.W.; Lian, Q. Mitochondrial Transfer of Induced Pluripotent Stem Cell–Derived Mesenchymal Stem Cells to Airway Epithelial Cells Attenuates Cigarette Smoke–Induced Damage. Am. J. Respir. Cell Mol. Biol. 2014, 51, 455–465. [Google Scholar] [CrossRef]
- Plum, A.; Hallas, G.; Magin, T.; Dombrowski, F.; Hagendorff, A.; Schumacher, B.; Wolpert, C.; Kim, J.-S.; Lamers, W.; Evert, M.; et al. Unique and Shared Functions of Different Connexins in Mice. Curr. Biol. 2000, 10, 1083–1091. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-T.; Cheng, Y.-W.; Chou, M.-C.; Sen-Lin, T.; Lai, W.-W.; Ho, W.L.; Lee, H. The Correlation between Aberrant Connexin 43 mRNA Expression Induced by Promoter Methylation and Nodal Micrometastasis in Non-small Cell Lung Cancer. Clin. Cancer Res. 2003, 9, 4200–4204. [Google Scholar]
Cell Type | Cx43 Expression | Outcome | Reference |
---|---|---|---|
Acute Lung Injury Models | |||
Whole Body | KO | Lethal | [28] |
Whole Body | Het | Reduced Disease | [38] |
Whole Body | Increased | Increased Disease | [38] |
Alveolar Macrophages | KO | Increased Disease | [39] |
Alveolar Epithelium | KO | Increased Disease | [39] |
Vascular Endothelium | KO | Reduced Disease | [31] |
COPD Models | |||
Endothelial | Normal | Cx43 reduced | [40,41] |
Epithelial | Normal | Unchanged | [42] |
OVA-Asthma Models | |||
Whole Body | Normal | Cx43 elevated | [38] |
Whole Body | Reduced | Reduced Disease | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swartzendruber, J.A.; Nicholson, B.J.; Murthy, A.K. The Role of Connexin 43 in Lung Disease. Life 2020, 10, 363. https://doi.org/10.3390/life10120363
Swartzendruber JA, Nicholson BJ, Murthy AK. The Role of Connexin 43 in Lung Disease. Life. 2020; 10(12):363. https://doi.org/10.3390/life10120363
Chicago/Turabian StyleSwartzendruber, Julie A., Bruce J. Nicholson, and Ashlesh K. Murthy. 2020. "The Role of Connexin 43 in Lung Disease" Life 10, no. 12: 363. https://doi.org/10.3390/life10120363
APA StyleSwartzendruber, J. A., Nicholson, B. J., & Murthy, A. K. (2020). The Role of Connexin 43 in Lung Disease. Life, 10(12), 363. https://doi.org/10.3390/life10120363