Antimicrobial Activity of Microorganisms Isolated from Ant Nests of Lasius niger
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling of Substrates from the Ant Nests and Isolation of Microorganisms
2.2. pH Determination of Substrates from the Ant Nests
2.3. Media and Culture Conditions
2.4. Species Identification of Bacteria
2.4.1. Morphological Characteristics
2.4.2. Molecular Characteristics
2.5. Determination of Antimicrobial Activity
2.6. Isolation and Identification of Antibiotics
3. Results
3.1. Identification of Ants and Microorganisms from the Substrate of the Ant Nests
3.2. Antimicrobial Activity of the Bacterial Isolates
3.3. Isolation and Purification of Antimicrobial Substances from the Streptomyces antibioticus-like INA 01148 Broth
3.4. Sensitivity of Bacterial Isolates to the Antibiotic Actinomycin D and the Interactions of These Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the clinical pipeline at the end of 2015. J. Antibiot. 2017, 70, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Berdy, J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J. Antibiot. 2012, 65, 385–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efimenko, T.A.; Terekhova, L.P.; Efremenkova, O.V. Current State the Problem of Antibiotic Resistance of Pathogens. Antibiot. Khimioterapiya 2019, 64, 64–68. (In Russian) [Google Scholar]
- Schultz, T.R. In search of ant ancestors. Proc. Natl. Acad. Sci. USA 2000, 97, 14028–14029. [Google Scholar] [CrossRef] [Green Version]
- Schultz, T. Ants, plants and antibiotics. Nature 1999, 398, 747–748. [Google Scholar] [CrossRef]
- Currie, C.R. A community of ants, fungi, and bacteria: A multilateral approach to studying symbiosis. Annu. Rev. Microbiol. 2001, 55, 357–380. [Google Scholar] [CrossRef] [Green Version]
- Ishak, H.D.; Miller, J.L.; Sen, R.; Dowd, S.E.; Meyer, E.; Mueller, U.G. Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis. Sci. Rep. 2011, 1, 204. [Google Scholar] [CrossRef] [Green Version]
- Cafaro, M.J.; Poulsen, M.; Little, A.E.F.; Price, S.L.; Gerardo, N.M.; Wong, B.; Stuart, A.E.; Larget, B.; Abbot, P.; Currie, C.R. Specificity in the Symbiotic Association Between Fungus-Growing Ants and Protective Pseudonocardia Bacteria. Proc. Biol. Sci. 2011, 278, 1814–1822. [Google Scholar] [CrossRef] [Green Version]
- Mueller, U.G. Symbiont recruitment versus ant-symbiont co-evolution in the attine ant-microbe symbiosis. Curr. Opin. Microbiol. 2012, 15, 269–277. [Google Scholar] [CrossRef]
- Caldera, E.J.; Chevrette, M.G.; McDonald, B.R.; Currie, C.R. Local Adaptation of Bacterial Symbionts within a Geographic Mosaic of Antibiotic Coevolution. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef]
- Oh, D.C.; Poulsen, M.; Cameron, R.; Currie, C.R.; Clardy, J. Dentigerumycin: A Bacterial Mediator of an Ant-Fungus Symbiosis. Nat. Chem. Biol. 2009, 5, 391–393. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Endophytic and epiphytic microbes as “sources” of bioactive agents. Front. Chem. 2015, 3, 34. [Google Scholar] [CrossRef]
- Sit, C.S.; Ruzzini, A.C.; Van Arnam, E.B.; Ramadhar, T.R.; Currie, C.R.; Jon Clardy, J. Variable Genetic Architectures Produce Virtually Identical Molecules in Bacterial Symbionts of Fungus-Growing Ants. Proc. Natl. Acad. Sci. USA 2015, 112, 13150–13154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currie, C.R.; Scott, J.A.; Summerbell, R.C.; Malloch, D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 1999, 398, 701–704. [Google Scholar] [CrossRef]
- Sen, R.; Ishak, H.D.; Estrada, D.; Dowd, S.E.; Hong, E.; Mueller, U.G. Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc. Natl. Acad. Sci. USA 2009, 106, 17805–17810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaltenpoth, M. Actinobacteria as mutualists: General healthcare for insects? Trends Microbiol. 2009, 17, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Zucchi, T.D.; Guidolin, A.S.; Cônsoli, F.L. Isolation and characterization of actinobacteria ectosymbionts from Acromyrmex subterraneus brunneus (Hymenoptera, Formicidae). Microbiol. Res. 2011, 166, 68–76. [Google Scholar] [CrossRef]
- Schoenian, I.; Spiteller, M.; Ghaste, M.; Wirth, R.; Herz, H.; Spiteller, D. Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc. Natl. Acad. Sci. USA 2011, 108, 1955–1960. [Google Scholar] [CrossRef] [Green Version]
- Haeder, S.; Wirth, R.; Herz, H.; Spiteller, D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 4742–4746. [Google Scholar] [CrossRef] [Green Version]
- Arnoldi, K.V.; Dlussky, G.M. Key to Insects of the European Part of the USSR; Science: Leningrad, Russia, 1978; Volume I, pp. 519–556. [Google Scholar]
- Kupyanskaya, A.N. Key to Insects of the Far East of Russia; Science: St. Petersburg, Russia, 1995; Volume IV, pp. 325–368. (In Russian) [Google Scholar]
- Novgorodova, T.A. Organization of honeydew collection by foragers of different species of ants (Hymenoptera: Formicidae): Effect of colony size and species specificity. Eur. J. Entomol. 2015, 112, 688–697. [Google Scholar] [CrossRef] [Green Version]
- Golichenkov, M.V.; Novoselov, A.L.; Marfenina, O.E.; Dobrovol’skaya, T.G.; Zakalyukina, Y.V.; Lapygina, E.V.; Zamolodchikov, D.G. Microbiological characteristic of anthills of Lasius niger. Biol. Bull. 2011, 38, 277–282. [Google Scholar] [CrossRef]
- Zakalyukina, Y.V.; Golichenkov, M.V.; Brovkina, O.I.; Putyatina, T.S. Comparative study of actinomycete communities associated with Lasius niger and Formica cunicularia ants and their nests. Moscow Univ. Biol. Sci. Bull. 2014, 69, 118–124. [Google Scholar] [CrossRef]
- Zakalyukina, Y.V.; Biryukov, M.V.; Golichenkov, M.V.; Netrusov, A.I. Phenotypic and Phylogenetic Characterization of Actinomycetes Isolated from Lasius niger and Formica cunicularia Ants. Moscow Univ. Biol. Sci. Bull. Microbiol. 2017, 72, 13–19. [Google Scholar] [CrossRef]
- Glukhova, A.A.; Karabanova, A.A.; Yakushev, A.V.; Semenyuk, I.I.; Boykova, Y.V.; Malkina, N.D.; Efimenko, T.A.; Ivankova, T.D.; Terekhova, L.P.; Efremenkova, O.V. Antibiotic Activity of Actinobacteria from Digestive Tract of Millipede Nedyopus dawydoffiae (Diplopoda). Antibiotics 2018, 7, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gause, G.F.; Preobrazhenskaya, T.P.; Sveshnikova, M.A.; Terekhova, L.P.; Maksimova, T.S. The Guide for Identification of Actinomycetes; Nauka: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Shirling, E.B.; Gottlieb, D. Methods for Characterization of Streptomyces Species. IJSB 1966, 16, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acids Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley & Sons: Chichester, UK, 1991; pp. 115–147. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Valagurova, E.V.; Kozyritskaya, V.E.; Iutinskaya, G.A. Actinomycetes of Streptomyces Genus; Naukova dumka: Kyiv, Ukraine, 2003; pp. 180–181. (In Russian) [Google Scholar]
- Goodfellow, M.; Kämpfer, P.; Busse, H.J.; Trujillo, M.E.; Suzuki, K.; Ludwig, W.; Whitman, W.B. Bergey’s Manual of Systematic Bacteriology, 2nd ed.; Volume 5: The Actinobacteria, Part A; Springer: Athens, GA, USA, 2012; p. 1617. [Google Scholar]
- Zhang, X.; Ye, X.; Chai, W.; Lian, X.Y.; Zhang, Z. New Metabolites and Bioactive Actinomycins from Marine-Derived Streptomyces sp. ZZ338. Mar. Drugs 2016, 14, 181. [Google Scholar] [CrossRef] [Green Version]
- Dauber, J.; Wolters, V. Microbial activity and functional diversity in the mounds of three different ant species. Soil Biol. Biochem. 2000, 32, 93–99. [Google Scholar] [CrossRef]
- Chandrakar, S.; Gupta, A.K. Actinomycin-Producing Endophytic Streptomyces parvulus Associated with Root of Aloe vera and Optimization of Conditions for Antibiotic Production. Probiotics Antimicro. Prot. 2019, 11, 1055–1069. [Google Scholar] [CrossRef]
- Kulkarni, M.; Gorthi, S.; Banerjee, G.; Chattopadhyay, P. Production, characterization and optimization of actinomycin D from Streptomyces hydrogenans IB310 (an antagonistic bacterium against phytopathogens). Biocatal. Agric. Biotechnol. 2017, 10, 69–74. [Google Scholar] [CrossRef]
- Baltz, R.H. Marcel Faber Roundtable: Is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J. Ind. Microbial. Biotechnol. 2006, 33, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Waksman, S.A.; Tishler, M. The chemical nature of actinomycin, an antimicrobial substance produced by Actinomyces antibioticus. J. Biol. Chem. 1942, 142, 519–528. [Google Scholar]
Ant Nests | Apple Variety | Substrate in Ant Nests | ||
---|---|---|---|---|
Color | pH | CFU/g * | ||
1 | Antonovka | Brown | 7.81 ± 0.08 | 1.3 × 105 |
2 | Korichnoe | Black | 7.22 ± 0.13 | 8.2 × 104 |
Ant Nests | Species, Strains | DNA (bp) | Percent Identity | Accession Numbers of the Deposited Sequences (GenBank) |
---|---|---|---|---|
1 | Bacillus muralis-like INA 01162 | 1393 | 98 | MT023087 |
Bacillus sp. INA 01161 | 1437 | 99.5 | MT023086 | |
Lysinibacillus pakistanensis-like INA 01164 | 1403 | 100 | MT023089 | |
Streptomyces antibioticus-like INA 01148 | 1299 | 100 | MT023090 | |
2 | Bacillus aryabhattai-like INA 01159 | 1405 | 99.5 | MT126414 |
Bacillus muralis-like INA 01160 | 1396 | 98.7 | MT126415 | |
Bacillus sp. INA 01158 | 1431 | 100 | MT126413 | |
Streptomyces sp. INA 01156 | 1373 | 90.7 | MT126416 |
Culture Media [26] | Collection Test Strains | Bacillary Isolates from Ant Nest 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Staphilococcus aureus INA 00761 | St. aureus FDA 209P | Bacillus subtilis ATCC 6633 | Micrococcus luteus NCTC 8340 | Leuconostoc mesenteroides VKPM B-4177 | Escherichia coli ATCC 25922 | Aspergillus niger INA 00760 | Saccharomyces cerevisiae RIA 259 | Bacillus sp. INA 01161 | B. muralis-like INA 01162 | Lys. pakistanensis-like INA 01164 | |
2263 | 24.3 ± 0.6 | 23.7 ± 1.5 | 23.3 ± 2.3 | 22.3 ± 1.5 | 0 | 0 | 0 | 0 | 25.3 ± 2.5 | 30.7 ± 3.1 | 22.3 ± 3.8 |
A4 | 23.3 ± 5.9 | 20.7 ± 4.0 | 24.0 ± 6.9 | 23.0 ± 6.1 | 0 | 0 | 14.3 ± 0.6 | 19.7 ± 1.5 | 26.7 ± 5.1 | 33.3 ± 3.1 | 29.7 ± 4.9 |
Suc | 27.3 ± 3.1 | 25.3 ± 1.5 | 27.3 ± 2.5 | 24.7 ± 3.1 | 0 | 0 | 0 | 0 | 29.3 ± 3.2 | 31.7 ± 1.2 | 29.7 ± 0.6 |
5339 | 23.3 ± 4.7 | 21.0 ± 5.3 | 23.7 ± 4.2 | 22.0 ± 4.0 | 0 | 0 | 0 | 17.7 ± 3.1 | 24.7 ± 4.5 | 30.7 ± 3.5 | 20.3 ± 2.5 |
6613 | 26.0 ± 1.0 | 24.0 ± 3.6 | 26.3 ± 2.1 | 23.3 ± 4.7 | 0 | 0 | 0 | 13.7 ± 1.5 | 30.0 ± 2.0 | 30.0 ± 2.6 | 32.3 ± 3.1 |
330 | 27.3 ± 1.2 | 24.0 ± 3.5 | 26.0 ± 2.6 | 25.3 ± 1.5 | 0 | 0 | 0 | 13.7 ± 1.5 | 24.7 ± 2.1 | 32.7 ± 2.5 | 32.0 ± 3.6 |
Am | 25.7 ± 2.5 | 22.7 ± 4.2 | 24.7 ± 4.0 | 24.7 ± 3.1 | 0 | 0 | 0 | 0 | 24.7 ± 2.1 | 31.3 ± 3.1 | 30.3 ± 1.5 |
Culture Media [26] | Collection Test Strains | Bacillary Isolates from Ant Nest 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
St. aureus INA 00761 | St. aureus FDA 209P | B. subtilis ATCC 6633 | M. luteus NCTC 8340 | Leuc. Mesenteroides VKPM B-4177 | E. coli ATCC 25922 | A. niger INA 00760 | Sac. cerevisiae RIA 259 | Bacillus sp. INA 01158 | B. muralism-like INA 01160 | B. aryabhattai-like INA 01159 | |
2263 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
A4 | 0 | 0 | 0 | 17.3 ± 2.5 | 0 | 0 | 0 | 0 | 18.7 ± 3.1 | 15.3 ± 3.2 | 19.7 ± 2.9 |
Suc | 0 | 0 | 0 | 15.7 ± 3.6 | 0 | 0 | 0 | 0 | 17.3 ± 3.0 | 18.7 ± 4.2 | 19.7 ± 1.1 |
5339 | 0 | 0 | 17.3 ± 4.0 | 19.3 ± 3.1 | 0 | 0 | 0 | 0 | 20.3 ± 1.5 | 20.7 ± 3.1 | 21.3 ± 1.5 |
6613 | 0 | 0 | 21.7 ± 2.1 | 21.7 ± 2.5 | 0 | 0 | 0 | 0 | 21.0 ± 2.3 | 20.0 ± 2.7 | 20.3 ± 3.4 |
330 | 0 | 15.7 ± 2.5 | 20.7 ± 3.5 | 19.7 ± 2.1 | 15.3 ± 0.6 | 0 | 0 | 0 | 19.7 ± 3.1 | 20.7 ± 2.6 | 22.0 ± 0.6 |
Am | 15.3 ± 1.5 | 15.3 ± 0.6 | 12.3 ± 0.6 | 18.7 ± 3.5 | 0 | 0 | 0 | 0 | 16.7 ± 2.7 | 17.3 ± 3.1 | 20.1 ± 1.2 |
Microbial Isolates from Ant Nest | MIC of Actinomycin D (µg/disc) |
---|---|
Bacillus muralis-like INA 01162 | 0.125 |
Bacillus sp. INA 01161 | 0.06 |
Lysinibacillus pakistanensis-like INA 01164 | 0.125 |
Streptomyces antibioticus-like INA 01148 | >64 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efimenko, T.A.; Glukhova, A.A.; Demiankova, M.V.; Boykova, Y.V.; Malkina, N.D.; Sumarukova, I.G.; Vasilieva, B.F.; Rogozhin, E.A.; Ivanov, I.A.; Krassilnikov, V.A.; et al. Antimicrobial Activity of Microorganisms Isolated from Ant Nests of Lasius niger. Life 2020, 10, 91. https://doi.org/10.3390/life10060091
Efimenko TA, Glukhova AA, Demiankova MV, Boykova YV, Malkina ND, Sumarukova IG, Vasilieva BF, Rogozhin EA, Ivanov IA, Krassilnikov VA, et al. Antimicrobial Activity of Microorganisms Isolated from Ant Nests of Lasius niger. Life. 2020; 10(6):91. https://doi.org/10.3390/life10060091
Chicago/Turabian StyleEfimenko, Tatiana A., Alla A. Glukhova, Mariia V. Demiankova, Yuliya V. Boykova, Natalia D. Malkina, Irina G. Sumarukova, Byazilya F. Vasilieva, Eugene A. Rogozhin, Igor A. Ivanov, Vladislav A. Krassilnikov, and et al. 2020. "Antimicrobial Activity of Microorganisms Isolated from Ant Nests of Lasius niger" Life 10, no. 6: 91. https://doi.org/10.3390/life10060091
APA StyleEfimenko, T. A., Glukhova, A. A., Demiankova, M. V., Boykova, Y. V., Malkina, N. D., Sumarukova, I. G., Vasilieva, B. F., Rogozhin, E. A., Ivanov, I. A., Krassilnikov, V. A., & Efremenkova, O. V. (2020). Antimicrobial Activity of Microorganisms Isolated from Ant Nests of Lasius niger. Life, 10(6), 91. https://doi.org/10.3390/life10060091