Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance
Abstract
:1. Introduction
2. Results
2.1. Mechanisms of Action of Herbal Medicines-Drugs Interactions
2.1.1. St John’s Wort (SJW)
2.1.2. Ginkgo Biloba
2.1.3. Allium Sativum
2.2. Clinical Evidence of the Herbal–Drug Interaction Mediated by the Inhibition of Drug-Metabolizing Enzymes and/or Transporters
2.2.1. Hydrastis Canadensis
2.2.2. Kava Kava
2.2.3. Echinacea
2.2.4. Milk Thistle
3. Discussion
4. Methods
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cassileth, B.R.; Heitzer, M.; Wesa, K. The Public Health Impact of Herbs and Nutritional Supplements. Pharm. Biol. 2009, 47, 761–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertilsson, G.; Heidrich, J.; Svensson, K.; Asman, M.; Jendeberg, L.; Sydow-Backman, M.; Ohlsson, R.; Postlind, H.; Blomquist, P.; Berkenstam, A. Identification of a human nuclear receptor defines a new signaling pathway for CYP3A induction. Proc. Natl. Acad. Sci. USA 1998, 95, 12208–12213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blumberg, B.; Sabbagh, W., Jr.; Juguilon, H.; Bolado, J., Jr.; van Meter, C.M.; Ong, E.S.; Evans, R.M. SXR, a novel steroid and xenobiotic-sensing nuclear receptor. Genes Dev. 1998, 12, 3195–3205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, J.M.; McKee, D.D.; Watson, M.A.; Willson, T.M.; Moore, J.T.; Kliewer, S.A. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Investig. 1998, 102, 1016–1023. [Google Scholar] [CrossRef]
- Moore, D.D.; Kato, S.; Xie, W.; Mangelsdorf, D.J.; Schmidt, D.R.; Xiao, R.; Kliewer, S.A. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: Constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharm. Rev. 2006, 58, 742–759. [Google Scholar] [CrossRef] [Green Version]
- Nicolussi, S.; Drewe, J.; Butterweck, V.; Meyer Zu Schwabedissen, H.E. Clinical relevance of St. John’s wort drug interactions revisited. Br. J. Pharmacol. 2020, 177, 1212–1226. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, J.; Wei, P.; Schrader, W.T.; Moore, D.D. Meclizine is an agonist ligand for mouse constitutive androstane receptor (CAR) and an inverse agonist for human CAR. Mol. Endocrinol. 2004, 18, 2402–2408. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Barwick, J.L.; Downes, M.; Blumberg, B.; Simon, C.M.; Nelson, M.C.; Neuschwander-Tetri, B.A.; Brunt, E.M.; Guzelian, P.S.; Evans, R.M. Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature 2000, 406, 435–439. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.; Chua, S.S.; Wei, P.; Moore, D.D. Modulation of acetaminophen-induced hepatotoxicity by the xenobiotic receptor CAR. Science 2002, 298, 422–424. [Google Scholar] [CrossRef]
- Prakash, C.; Zuniga, B.; Song, C.S.; Jiang, S.; Cropper, J.; Park, S.; Chatterjee, B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. Nucl. Recept. Res. 2015, 2. [Google Scholar] [CrossRef]
- Jeuken, A.; Keser, B.J.; Khan, E.; Brouwer, A.; Koeman, J.; Denison, M.S. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits. J. Agric. Food Chem. 2003, 51, 5478–5487. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Tang, C.; Sant, V.; Li, S.; Poloyac, S.M.; Xie, W. A Molecular Aspect in the Regulation of Drug Metabolism: Does PXR-Induced Enzyme Expression Always Lead to Functional Changes in Drug Metabolism? Curr. Pharmacol. Rep. 2016, 2, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piscitelli, S.C.; Burstein, A.H.; Chaitt, D.; Alfaro, R.M.; Falloon, J. Indinavir concentrations and St John’s wort. Lancet 2000, 355, 547–548. [Google Scholar] [CrossRef]
- Ruschitzka, F.; Meier, P.J.; Turina, M.; Luscher, T.F.; Noll, G. Acute heart transplant rejection due to Saint John’s wort. Lancet 2000, 355, 548–549. [Google Scholar] [CrossRef]
- Johne, A.; Brockmoller, J.; Bauer, S.; Maurer, A.; Langheinrich, M.; Roots, I. Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort (Hypericum perforatum). Clin. Pharmacol. Ther. 1999, 66, 338–345. [Google Scholar] [CrossRef]
- Gaid, M.; Biedermann, E.; Fuller, J.; Haas, P.; Behrends, S.; Krull, R.; Scholl, S.; Wittstock, U.; Muller-Goymann, C.; Beerhues, L. Biotechnological production of hyperforin for pharmaceutical formulation. Eur. J. Pharm. Biopharm. 2018, 126, 10–26. [Google Scholar] [CrossRef]
- Wentworth, J.M.; Agostini, M.; Love, J.; Schwabe, J.W.; Chatterjee, V.K. St John’s wort, a herbal antidepressant, activates the steroid X receptor. J. Endocrinol. 2000, 166, R11–R16. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.B.; Goodwin, B.; Jones, S.A.; Wisely, G.B.; Serabjit-Singh, C.J.; Willson, T.M.; Collins, J.L.; Kliewer, S.A. St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl. Acad. Sci. USA 2000, 97, 7500–7502. [Google Scholar] [CrossRef] [Green Version]
- Biber, A.; Fischer, H.; Romer, A.; Chatterjee, S.S. Oral bioavailability of hyperforin from hypericum extracts in rats and human volunteers. Pharmacopsychiatry 1998, 31 (Suppl. 1), 36–43. [Google Scholar] [CrossRef]
- Goodwin, B.; Moore, L.B.; Stoltz, C.M.; McKee, D.D.; Kliewer, S.A. Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol. Pharmacol. 2001, 60, 427–431. [Google Scholar]
- Maglich, J.M.; Stoltz, C.M.; Goodwin, B.; Hawkins-Brown, D.; Moore, J.T.; Kliewer, S.A. Nuclear pregnane x receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol. Pharmacol. 2002, 62, 638–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascussi, J.M.; Gerbal-Chaloin, S.; Drocourt, L.; Maurel, P.; Vilarem, M.J. The expression of CYP2B6, CYP2C9 and CYP3A4 genes: A tangle of networks of nuclear and steroid receptors. Biochim. Biophys. Acta 2003, 1619, 243–253. [Google Scholar] [CrossRef]
- Geick, A.; Eichelbaum, M.; Burk, O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J. Biol. Chem. 2001, 276, 14581–14587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kast, H.R.; Goodwin, B.; Tarr, P.T.; Jones, S.A.; Anisfeld, A.M.; Stoltz, C.M.; Tontonoz, P.; Kliewer, S.; Willson, T.M.; Edwards, P.A. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J. Biol. Chem. 2002, 277, 2908–2915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durr, D.; Stieger, B.; Kullak-Ublick, G.A.; Rentsch, K.M.; Steinert, H.C.; Meier, P.J.; Fattinger, K. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin. Pharmacol Ther. 2000, 68, 598–604. [Google Scholar] [CrossRef]
- Hennessy, M.; Kelleher, D.; Spiers, J.P.; Barry, M.; Kavanagh, P.; Back, D.; Mulcahy, F.; Feely, J. St John’s wort increases expression of P-glycoprotein: Implications for drug interactions. Br. J. Clin. Pharmacol. 2002, 53, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Mai, I.; Bauer, S.; Perloff, E.S.; Johne, A.; Uehleke, B.; Frank, B.; Budde, K.; Roots, I. Hyperforin content determines the magnitude of the St John’s wort-cyclosporine drug interaction. Clin. Pharmacol. Ther. 2004, 76, 330–340. [Google Scholar] [CrossRef]
- Mueller, S.C.; Uehleke, B.; Woehling, H.; Petzsch, M.; Majcher-Peszynska, J.; Hehl, E.M.; Sievers, H.; Frank, B.; Riethling, A.K.; Drewelow, B. Effect of St John’s wort dose and preparations on the pharmacokinetics of digoxin. Clin. Pharmacol. Ther. 2004, 75, 546–557. [Google Scholar] [CrossRef]
- Mueller, S.C.; Majcher-Peszynska, J.; Uehleke, B.; Klammt, S.; Mundkowski, R.G.; Miekisch, W.; Sievers, H.; Bauer, S.; Frank, B.; Kundt, G.; et al. The extent of induction of CYP3A by St. John’s wort varies among products and is linked to hyperforin dose. Eur. J. Clin. Pharmacol. 2006, 62, 29–36. [Google Scholar] [CrossRef]
- Mueller, S.C.; Majcher-Peszynska, J.; Mundkowski, R.G.; Uehleke, B.; Klammt, S.; Sievers, H.; Lehnfeld, R.; Frank, B.; Thurow, K.; Kundt, G.; et al. No clinically relevant CYP3A induction after St. John’s wort with low hyperforin content in healthy volunteers. Eur. J. Clin. Pharmacol. 2009, 65, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Chrubasik-Hausmann, S.; Vlachojannis, J.; McLachlan, A.J. Understanding drug interactions with St John’s wort (Hypericum perforatum L.): Impact of hyperforin content. J. Pharm. Pharmacol. 2019, 71, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Loughren, M.J.; Kharasch, E.D.; Kelton-Rehkopf, M.C.; Syrjala, K.L.; Shen, D.D. Influence of St. John’s Wort on Intravenous Fentanyl Pharmacokinetics, Pharmacodynamics, and Clinical Effects: A Randomized Clinical Trial. Anesthesiology 2020, 132, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gorski, J.C.; Hamman, M.A.; Huang, S.M.; Lesko, L.J.; Hall, S.D. The effects of St John’s wort (Hypericum perforatum) on human cytochrome P450 activity. Clin. Pharmacol. Ther. 2001, 70, 317–326. [Google Scholar] [CrossRef]
- Markowitz, J.S.; Donovan, J.L.; DeVane, C.L.; Taylor, R.M.; Ruan, Y.; Wang, J.S.; Chavin, K.D. Effect of St John’s wort on drug metabolism by induction of cytochrome P450 3A4 enzyme. JAMA 2003, 290, 1500–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markowitz, J.S.; DeVane, C.L.; Boulton, D.W.; Carson, S.W.; Nahas, Z.; Risch, S.C. Effect of St. John’s wort (Hypericum perforatum) on cytochrome P-450 2D6 and 3A4 activity in healthy volunteers. Life Sci. 2000, 66, PL133-139. [Google Scholar] [CrossRef]
- Sugimoto, K.; Ohmori, M.; Tsuruoka, S.; Nishiki, K.; Kawaguchi, A.; Harada, K.; Arakawa, M.; Sakamoto, K.; Masada, M.; Miyamori, I.; et al. Different effects of St John’s wort on the pharmacokinetics of simvastatin and pravastatin. Clin. Pharmacol. Ther. 2001, 70, 518–524. [Google Scholar] [CrossRef]
- Johne, A.; Schmider, J.; Brockmoller, J.; Stadelmann, A.M.; Stormer, E.; Bauer, S.; Scholler, G.; Langheinrich, M.; Roots, I. Decreased plasma levels of amitriptyline and its metabolites on comedication with an extract from St. John’s wort (Hypericum perforatum). J. Clin. Psychopharmacol. 2002, 22, 46–54. [Google Scholar] [CrossRef]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Cui, Y.; Ang, C.Y. Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clin. Pharmacol. Ther. 2002, 72, 276–287. [Google Scholar] [CrossRef]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Cui, Y.; Ang, C.Y. Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly: St John’s wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 2005, 22, 525–539. [Google Scholar] [CrossRef]
- Eich-Hochli, D.; Oppliger, R.; Golay, K.P.; Baumann, P.; Eap, C.B. Methadone maintenance treatment and St. John’s Wort—A case report. Pharmacopsychiatry 2003, 36, 35–37. [Google Scholar] [CrossRef]
- Hall, S.D.; Wang, Z.; Huang, S.M.; Hamman, M.A.; Vasavada, N.; Adigun, A.Q.; Hilligoss, J.K.; Miller, M.; Gorski, J.C. The interaction between St John’s wort and an oral contraceptive. Clin. Pharmacol. Ther. 2003, 74, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.A.; Kern, S.E.; Stanczyk, F.Z.; Westhoff, C.L. Interaction of St. John’s Wort with oral contraceptives: Effects on the pharmacokinetics of norethindrone and ethinyl estradiol, ovarian activity and breakthrough bleeding. Contraception 2005, 71, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Dresser, G.K.; Schwarz, U.I.; Wilkinson, G.R.; Kim, R.B. Coordinate induction of both cytochrome P4503A and MDR1 by St John’s wort in healthy subjects. Clin. Pharmacol. Ther. 2003, 73, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Williams, K.M.; Liauw, W.S.; Ammit, A.J.; Roufogalis, B.D.; Duke, C.C.; Day, R.O.; McLachlan, A.J. Effect of St John’s wort and ginseng on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br. J. Clin. Pharmacol. 2004, 57, 592–599. [Google Scholar] [CrossRef] [Green Version]
- Frye, R.F.; Fitzgerald, S.M.; Lagattuta, T.F.; Hruska, M.W.; Egorin, M.J. Effect of St John’s wort on imatinib mesylate pharmacokinetics. Clin. Pharmacol. Ther. 2004, 76, 323–329. [Google Scholar] [CrossRef]
- Wang, L.S.; Zhou, G.; Zhu, B.; Wu, J.; Wang, J.G.; Abd El-Aty, A.M.; Li, T.; Liu, J.; Yang, T.L.; Wang, D.; et al. St John’s wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin. Pharmacol. Ther. 2004, 75, 191–197. [Google Scholar] [CrossRef]
- Wang, L.S.; Zhu, B.; Abd El-Aty, A.M.; Zhou, G.; Li, Z.; Wu, J.; Chen, G.L.; Liu, J.; Tang, Z.R.; An, W.; et al. The influence of St John’s Wort on CYP2C19 activity with respect to genotype. J. Clin. Pharmacol. 2004, 44, 577–581. [Google Scholar] [CrossRef]
- Hebert, M.F.; Park, J.M.; Chen, Y.L.; Akhtar, S.; Larson, A.M. Effects of St. John’s wort (Hypericum perforatum) on tacrolimus pharmacokinetics in healthy volunteers. J. Clin. Pharmacol. 2004, 44, 89–94. [Google Scholar] [CrossRef]
- Tannergren, C.; Engman, H.; Knutson, L.; Hedeland, M.; Bondesson, U.; Lennernas, H. St John’s wort decreases the bioavailability of R- and S-verapamil through induction of the first-pass metabolism. Clin. Pharmacol. Ther. 2004, 75, 298–309. [Google Scholar] [CrossRef]
- Rengelshausen, J.; Banfield, M.; Riedel, K.D.; Burhenne, J.; Weiss, J.; Thomsen, T.; Walter-Sack, I.; Haefeli, W.E.; Mikus, G. Opposite effects of short-term and long-term St John’s wort intake on voriconazole pharmacokinetics. Clin. Pharmacol. Ther. 2005, 78, 25–33. [Google Scholar] [CrossRef]
- Schwarz, U.I.; Hanso, H.; Oertel, R.; Miehlke, S.; Kuhlisch, E.; Glaeser, H.; Hitzl, M.; Dresser, G.K.; Kim, R.B.; Kirch, W. Induction of intestinal P-glycoprotein by St John’s wort reduces the oral bioavailability of talinolol. Clin. Pharmacol. Ther. 2007, 81, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Williams, K.M.; Liauw, W.S.; Murray, M.; Day, R.O.; McLachlan, A.J. Effects of St John’s wort and CYP2C9 genotype on the pharmacokinetics and pharmacodynamics of gliclazide. Br. J. Pharmacol. 2008, 153, 1579–1586. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.D.; Li, J.L.; Su, Q.B.; Guan, S.; Chen, J.; Du, J.; He, Y.W.; Zeng, J.; Zhang, J.X.; Chen, X.; et al. Impact of the haplotypes of the human pregnane X receptor gene on the basal and St John’s wort-induced activity of cytochrome P450 3A4 enzyme. Br. J. Clin. Pharmacol. 2009, 67, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peltoniemi, M.A.; Saari, T.I.; Hagelberg, N.M.; Laine, K.; Neuvonen, P.J.; Olkkola, K.T. St John’s wort greatly decreases the plasma concentrations of oral S-ketamine. Fundam. Clin. Pharmacol. 2012, 26, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Hojo, Y.; Echizenya, M.; Ohkubo, T.; Shimizu, T. Drug interaction between St John’s wort and zolpidem in healthy subjects. J. Clin. Pharmacol. Ther. 2011, 36, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Markert, C.; Ngui, P.; Hellwig, R.; Wirsching, T.; Kastner, I.M.; Riedel, K.D.; Burhenne, J.; Weiss, J.; Mikus, G.; Haefeli, W.E. Influence of St. John’s wort on the steady-state pharmacokinetics and metabolism of bosentan. Int. J. Clin. Pharmcol. Ther. 2014, 52, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Markert, C.; Kastner, I.M.; Hellwig, R.; Kalafut, P.; Schweizer, Y.; Hoffmann, M.M.; Burhenne, J.; Weiss, J.; Mikus, G.; Haefeli, W.E. The effect of induction of CYP3A4 by St John’s wort on ambrisentan plasma pharmacokinetics in volunteers of known CYP2C19 genotype. Basic Clin. Pharmacol. Toxicol. 2015, 116, 423–428. [Google Scholar] [CrossRef]
- Goey, A.K.; Meijerman, I.; Rosing, H.; Marchetti, S.; Mergui-Roelvink, M.; Keessen, M.; Burgers, J.A.; Beijnen, J.H.; Schellens, J.H. The effect of St John’s wort on the pharmacokinetics of docetaxel. Clin. Pharmcokinet. 2014, 53, 103–110. [Google Scholar] [CrossRef]
- Gordon, R.Y.; Becker, D.J.; Rader, D.J. Reduced efficacy of rosuvastatin by St. John’s Wort. Am. J. Med. 2009, 122, e1–e2. [Google Scholar] [CrossRef]
- Martin, P.D.; Warwick, M.J.; Dane, A.L.; Hill, S.J.; Giles, P.B.; Phillips, P.J.; Lenz, E. Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin. Pharmacol. Ther. 2003, 25, 2822–2835. [Google Scholar] [CrossRef]
- Keskitalo, J.E.; Zolk, O.; Fromm, M.F.; Kurkinen, K.J.; Neuvonen, P.J.; Niemi, M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 2009, 86, 197–203. [Google Scholar] [CrossRef]
- Stage, T.B.; Pedersen, R.S.; Damkier, P.; Christensen, M.M.; Feddersen, S.; Larsen, J.T.; Hojlund, K.; Brosen, K. Intake of St John’s wort improves the glucose tolerance in healthy subjects who ingest metformin compared with metformin alone. Br. J. Clin. Pharmacol. 2015, 79, 298–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pentikainen, P.J.; Neuvonen, P.J.; Penttila, A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur. J. Clin. Pharmacol. 1979, 16, 195–202. [Google Scholar] [CrossRef]
- Chen, L.; Pawlikowski, B.; Schlessinger, A.; More, S.S.; Stryke, D.; Johns, S.J.; Portman, M.A.; Chen, E.; Ferrin, T.E.; Sali, A.; et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet. Genom. 2010, 20, 687–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nies, A.T.; Koepsell, H.; Winter, S.; Burk, O.; Klein, K.; Kerb, R.; Zanger, U.M.; Keppler, D.; Schwab, M.; Schaeffeler, E. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 2009, 50, 1227–1240. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhou, G.; Guo, D.; Liu, Y.L.; Chen, W.Q.; Liu, Z.Q.; Tan, Z.R.; Sheng, D.; Zhou, H.H.; Zhang, W. The pregnane X receptor agonist St John’s Wort has no effects on the pharmacokinetics and pharmacodynamics of repaglinide. Clin. Pharmacokinet. 2011, 50, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Niemi, M.; Backman, J.T.; Kajosaari, L.I.; Leathart, J.B.; Neuvonen, M.; Daly, A.K.; Eichelbaum, M.; Kivisto, K.T.; Neuvonen, P.J. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin. Pharmacol. Ther. 2005, 77, 468–478. [Google Scholar] [CrossRef]
- Cho, S.K.; Yoon, J.S.; Lee, M.G.; Lee, D.H.; Lim, L.A.; Park, K.; Park, M.S.; Chung, J.Y. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin. Pharmacol. Ther. 2011, 89, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Niemi, M.; Backman, J.T.; Neuvonen, M.; Neuvonen, P.J.; Kivisto, K.T. Rifampin decreases the plasma concentrations and effects of repaglinide. Clin. Pharmacol. Ther. 2000, 68, 495–500. [Google Scholar] [CrossRef]
- Van Strater, A.C.; Bogers, J.P. Interaction of St John’s wort (Hypericum perforatum) with clozapine. Int. Clin. Psychopharmacol. 2012, 27, 121–124. [Google Scholar] [CrossRef]
- Yeung, E.Y.; Sueyoshi, T.; Negishi, M.; Chang, T.K. Identification of Ginkgo biloba as a novel activator of pregnane X receptor. Drug Metab. Dispos. 2008, 36, 2270–2276. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Stanton, J.D.; Tolson, A.H.; Luo, Y.; Wang, H. Bioactive terpenoids and flavonoids from Ginkgo biloba extract induce the expression of hepatic drug-metabolizing enzymes through pregnane X receptor, constitutive androstane receptor, and aryl hydrocarbon receptor-mediated pathways. Pharm. Res. 2009, 26, 872–882. [Google Scholar] [CrossRef] [Green Version]
- Lau, A.J.; Yang, G.; Yap, C.W.; Chang, T.K. Selective agonism of human pregnane X receptor by individual ginkgolides. Drug Metab. Dispos. 2012, 40, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- Gaudineau, C.; Beckerman, R.; Welbourn, S.; Auclair, K. Inhibition of human P450 enzymes by multiple constituents of the Ginkgo biloba extract. Biochem. Biophys. Res. Commun. 2004, 318, 1072–1078. [Google Scholar] [CrossRef]
- Taki, Y.; Hagiwara, E.; Hirose, C.; Shinozuka, K.; Umegaki, K.; Yamada, S. Effects of Ginkgo biloba extract on the pharmacokinetics and pharmacodynamics of tolbutamide in protein-restricted rats. J. Pharm. Pharmacol. 2011, 63, 1238–1243. [Google Scholar] [CrossRef]
- Hussain, S.A.; Alzubaidi, F.A.; Hashem, H.O. Effects of Gingko biloba extract on tissue distribution of fluoxetine and venlafaxine in rats. J. Intercult. Ethnopharmacol. 2015, 4, 234–238. [Google Scholar] [CrossRef]
- Markowitz, J.S.; Donovan, J.L.; Lindsay DeVane, C.; Sipkes, L.; Chavin, K.D. Multiple-dose administration of Ginkgo biloba did not affect cytochrome P-450 2D6 or 3A4 activity in normal volunteers. J. Clin. Psychopharmacol. 2003, 23, 576–581. [Google Scholar] [CrossRef]
- Robertson, S.M.; Davey, R.T.; Voell, J.; Formentini, E.; Alfaro, R.M.; Penzak, S.R. Effect of Ginkgo biloba extract on lopinavir, midazolam and fexofenadine pharmacokinetics in healthy subjects. Curr. Med. Res. Opin. 2008, 24, 591–599. [Google Scholar] [CrossRef]
- Penzak, S.R.; Busse, K.H.; Robertson, S.M.; Formentini, E.; Alfaro, R.M.; Davey, R.T., Jr. Limitations of using a single postdose midazolam concentration to predict CYP3A-mediated drug interactions. J. Clin. Pharmacol. 2008, 48, 671–680. [Google Scholar] [CrossRef]
- Uchida, S.; Yamada, H.; Li, X.D.; Maruyama, S.; Ohmori, Y.; Oki, T.; Watanabe, H.; Umegaki, K.; Ohashi, K.; Yamada, S. Effects of Ginkgo biloba extract on pharmacokinetics and pharmacodynamics of tolbutamide and midazolam in healthy volunteers. J. Clin. Pharmacol. 2006, 46, 1290–1298. [Google Scholar] [CrossRef]
- Yoshioka, M.; Ohnishi, N.; Koishi, T.; Obata, Y.; Nakagawa, M.; Matsumoto, T.; Tagagi, K.; Takara, K.; Ohkuni, T.; Yokoyama, T.; et al. Studies on interactions between functional foods or dietary supplements and medicines. IV. Effects of Ginkgo biloba leaf extract on the pharmacokinetics and pharmacodynamics of nifedipine in healthy volunteers. Biol. Pharm. Bull. 2004, 27, 2006–2009. [Google Scholar] [CrossRef] [Green Version]
- Greenblatt, D.J.; von Moltke, L.L.; Perloff, E.S.; Luo, Y.; Harmatz, J.S.; Zinny, M.A. Interaction of flurbiprofen with cranberry juice, grape juice, tea, and fluconazole: In vitro and clinical studies. Clin. Pharmacol. Ther. 2006, 79, 125–133. [Google Scholar] [CrossRef]
- Jiang, X.; Williams, K.M.; Liauw, W.S.; Ammit, A.J.; Roufogalis, B.D.; Duke, C.C.; Day, R.O.; McLachlan, A.J. Effect of ginkgo and ginger on the pharmacokinetics and pharmacodynamics of warfarin in healthy subjects. Br. J. Clin. Pharmacol. 2005, 59, 425–432. [Google Scholar] [CrossRef]
- Hellum, B.H.; Hu, Z.; Nilsen, O.G. Trade herbal products and induction of CYP2C19 and CYP2E1 in cultured human hepatocytes. Basic Clin. Pharmacol. Toxicol. 2009, 105, 58–63. [Google Scholar] [CrossRef]
- Yin, O.Q.; Tomlinson, B.; Waye, M.M.; Chow, A.H.; Chow, M.S. Pharmacogenetics and herb-drug interactions: Experience with Ginkgo biloba and omeprazole. Pharmacogenetics 2004, 14, 841–850. [Google Scholar] [CrossRef]
- Lei, H.P.; Wang, G.; Wang, L.S.; Ou-Yang, D.S.; Chen, H.; Li, Q.; Zhang, W.; Tan, Z.R.; Fan, L.; He, Y.J.; et al. Lack of effect of Ginkgo biloba on voriconazole pharmacokinetics in Chinese volunteers identified as CYP2C19 poor and extensive metabolizers. Ann. Pharmacother. 2009, 43, 726–731. [Google Scholar] [CrossRef]
- Zuo, X.C.; Zhang, B.K.; Jia, S.J.; Liu, S.K.; Zhou, L.Y.; Li, J.; Zhang, J.; Dai, L.L.; Chen, B.M.; Yang, G.P.; et al. Effects of Ginkgo biloba extracts on diazepam metabolism: A pharmacokinetic study in healthy Chinese male subjects. Eur. J. Clin. Pharmacol. 2010, 66, 503–509. [Google Scholar] [CrossRef]
- Wiegman, D.J.; Brinkman, K.; Franssen, E.J. Interaction of Ginkgo biloba with efavirenz. AIDS 2009, 23, 1184–1185. [Google Scholar] [CrossRef]
- Lei, H.P.; Ji, W.; Lin, J.; Chen, H.; Tan, Z.R.; Hu, D.L.; Liu, L.J.; Zhou, H.H. Effects of Ginkgo biloba extract on the pharmacokinetics of bupropion in healthy volunteers. Br. J. Clin. Pharmacol. 2009, 68, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Mauro, V.F.; Mauro, L.S.; Kleshinski, J.F.; Khuder, S.A.; Wang, Y.; Erhardt, P.W. Impact of Ginkgo biloba on the pharmacokinetics of digoxin. Am. J. Ther. 2003, 10, 247–251. [Google Scholar] [CrossRef]
- Fan, L.; Tao, G.Y.; Wang, G.; Chen, Y.; Zhang, W.; He, Y.J.; Li, Q.; Lei, H.P.; Jiang, F.; Hu, D.L.; et al. Effects of Ginkgo biloba extract ingestion on the pharmacokinetics of talinolol in healthy Chinese volunteers. Ann. Pharmacother. 2009, 43, 944–949. [Google Scholar] [CrossRef]
- Ofer, M.; Wolffram, S.; Koggel, A.; Spahn-Langguth, H.; Langguth, P. Modulation of drug transport by selected flavonoids: Involvement of P-gp and OCT? Eur. J. Pharm. Sci. 2005, 25, 263–271. [Google Scholar] [CrossRef]
- Blonk, M.; Colbers, A.; Poirters, A.; Schouwenberg, B.; Burger, D. Effect of Ginkgo biloba on the pharmacokinetics of raltegravir in healthy volunteers. Antimicrob. Agents Chemother. 2012, 56, 5070–5075. [Google Scholar] [CrossRef] [Green Version]
- Moss, D.M.; Kwan, W.S.; Liptrott, N.J.; Smith, D.L.; Siccardi, M.; Khoo, S.H.; Back, D.J.; Owen, A. Raltegravir is a substrate for SLC22A6: A putative mechanism for the interaction between raltegravir and tenofovir. Antimicrob. Agents Chemother. 2011, 55, 879–887. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.W.; Ma, Z.; Geng, T.; Wang, Z.Z.; Ding, G.; Yu-an, B.; Xiao, W. Evaluation of in vitro inhibition and induction of cytochrome P450 activities by hydrolyzed ginkgolides. J. Ethnopharmacol. 2014, 158, 132–139. [Google Scholar] [CrossRef]
- Zadoyan, G.; Rokitta, D.; Klement, S.; Dienel, A.; Hoerr, R.; Gramatte, T.; Fuhr, U. Effect of Ginkgo biloba special extract EGb 761(R) on human cytochrome P450 activity: A cocktail interaction study in healthy volunteers. Eur. J. Clin. Pharmacol. 2012, 68, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Kim, G.Y.; Yeo, C.W.; Oh, M.; Ghim, J.L.; Shon, J.H.; Kim, E.Y.; Kim, D.H.; Shin, J.G. The effect of Ginkgo biloba extracts on the pharmacokinetics and pharmacodynamics of cilostazol and its active metabolites in healthy Korean subjects. Br. J. Clin. Pharmacol. 2014, 77, 821–830. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.X.; Pei, Q.; Yin, J.Y.; Peng, X.D.; Zhou, B.T.; Zhao, Y.C.; Wu, L.X.; Meng, X.G.; Wang, G.; Li, Q.; et al. Effects of Ginkgo biloba extracts on pharmacokinetics and efficacy of atorvastatin based on plasma indices. Xenobiotica 2012, 42, 784–790. [Google Scholar] [CrossRef]
- Lennernas, H. Clinical pharmacokinetics of atorvastatin. Clin. Pharmacokinet. 2003, 42, 1141–1160. [Google Scholar] [CrossRef]
- Dai, L.L.; Fan, L.; Wu, H.Z.; Tan, Z.R.; Chen, Y.; Peng, X.D.; Shen, M.X.; Yang, G.P.; Zhou, H.H. Assessment of a pharmacokinetic and pharmacodynamic interaction between simvastatin and Ginkgo biloba extracts in healthy subjects. Xenobiotica 2013, 43, 862–867. [Google Scholar] [CrossRef]
- Pasanen, M.K.; Neuvonen, M.; Neuvonen, P.J.; Niemi, M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genom. 2006, 16, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Kivisto, K.T.; Niemi, M. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm. Res. 2007, 24, 239–247. [Google Scholar] [CrossRef]
- Giardi, M.T.; Rea, G.; Berra, B. (Eds.) Bio-farms for nutraceuticals—Functional food and safety control by biosensors. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2010. [Google Scholar]
- Foster, B.C.; Foster, M.S.; Vandenhoek, S.; Krantis, A.; Budzinski, J.W.; Arnason, J.T.; Gallicano, K.D.; Choudri, S. An in vitro evaluation of human cytochrome P450 3A4 and P-glycoprotein inhibition by garlic. J. Pharm. Pharmacol. Sci. 2001, 4, 176–184. [Google Scholar]
- Greenblatt, D.J.; Leigh-Pemberton, R.A.; von Moltke, L.L. In vitro interactions of water-soluble garlic components with human cytochromes p450. J. Nutr. 2006, 136, 806S–809S. [Google Scholar] [CrossRef]
- Yang, C.S.; Chhabra, S.K.; Hong, J.Y.; Smith, T.J. Mechanisms of inhibition of chemical toxicity and carcinogenesis by diallyl sulfide (DAS) and related compounds from garlic. J. Nutr. 2001, 131, 1041S–1045S. [Google Scholar] [CrossRef] [Green Version]
- Guyonnet, D.; Belloir, C.; Suschetet, M.; Siess, M.H.; Le Bon, A.M. Mechanisms of protection against aflatoxin B (1) genotoxicity in rats treated by organosulfur compounds from garlic. Carcinogenesis 2002, 23, 1335–1341. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Noordine, M.L.; Cherbuy, C.; Vaugelade, P.; Pascussi, J.M.; Duee, P.H.; Thomas, M. Different activation patterns of rat xenobiotic metabolism genes by two constituents of garlic. Carcinogenesis 2006, 27, 2090–2095. [Google Scholar] [CrossRef]
- Berginc, K.; Zakelj, S.; Kristl, A. In vitro interactions between aged garlic extract and drugs used for the treatment of cardiovascular and diabetic patients. Eur. J. Nutr. 2010, 49, 373–384. [Google Scholar] [CrossRef]
- Asdaq, S.M.; Inamdar, M.N. The potential benefits of a garlic and hydrochlorothiazide combination as antihypertensive and cardioprotective in rats. J. Nat. Med. 2011, 65, 81–88. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, M.; Zhao, N.; Ren, J.; Zhou, H.; Cheng, G. Effect of diallyl trisulfide on the pharmacokinetics of dipyridamole in rats. Arch. Pharm. Res. 2011, 34, 1957–1964. [Google Scholar] [CrossRef]
- Nabekura, T.; Kamiyama, S.; Kitagawa, S. Effects of dietary chemopreventive phytochemicals on P-glycoprotein function. Biochem. Biophys. Res. Commun. 2005, 327, 866–870. [Google Scholar] [CrossRef]
- Markowitz, J.S.; Devane, C.L.; Chavin, K.D.; Taylor, R.M.; Ruan, Y.; Donovan, J.L. Effects of garlic (Allium sativum L.) supplementation on cytochrome P450 2D6 and 3A4 activity in healthy volunteers. Clin. Pharmacol. Ther. 2003, 74, 170–177. [Google Scholar] [CrossRef]
- Piscitelli, S.C.; Burstein, A.H.; Welden, N.; Gallicano, K.D.; Falloon, J. The effect of garlic supplements on the pharmacokinetics of saquinavir. Clin. Infect. Dis. 2002, 34, 234–238. [Google Scholar] [CrossRef]
- Berginc, K.; Kristl, A. The effect of garlic supplements and phytochemicals on the ADMET properties of drugs. Expert Opin. Drug Metab. Toxicol. 2012, 8, 295–310. [Google Scholar] [CrossRef]
- Gallicano, K.; Foster, B.; Choudhri, S. Effect of short-term administration of garlic supplements on single-dose ritonavir pharmacokinetics in healthy volunteers. Br. J. Clin. Pharmacol. 2003, 55, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Cox, M.C.; Low, J.; Lee, J.; Walshe, J.; Denduluri, N.; Berman, A.; Permenter, M.G.; Petros, W.P.; Price, D.K.; Figg, W.D.; et al. Influence of garlic (Allium sativum) on the pharmacokinetics of docetaxel. Clin. Cancer Res. 2006, 12, 4636–4640. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, P.; Franklin, M.R. Human cytochrome p450 inhibition and metabolic-intermediate complex formation by goldenseal extract and its methylenedioxyphenyl components. Drug Metab. Dispos. 2003, 31, 1391–1397. [Google Scholar] [CrossRef]
- Etheridge, A.S.; Black, S.R.; Patel, P.R.; So, J.; Mathews, J.M. An in vitro evaluation of cytochrome P450 inhibition and P-glycoprotein interaction with goldenseal, Ginkgo biloba, grape seed, milk thistle, and ginseng extracts and their constituents. Planta Med. 2007, 73, 731–741. [Google Scholar] [CrossRef] [Green Version]
- Raner, G.M.; Cornelious, S.; Moulick, K.; Wang, Y.; Mortenson, A.; Cech, N.B. Effects of herbal products and their constituents on human cytochrome P450(2E1) activity. Food Chem. Toxicol. 2007, 45, 2359–2365. [Google Scholar] [CrossRef] [Green Version]
- Sevior, D.K.; Hokkanen, J.; Tolonen, A.; Abass, K.; Tursas, L.; Pelkonen, O.; Ahokas, J.T. Rapid screening of commercially available herbal products for the inhibition of major human hepatic cytochrome P450 enzymes using the N-in-one cocktail. Xenobiotica 2010, 40, 245–254. [Google Scholar] [CrossRef]
- Sandhu, R.S.; Prescilla, R.P.; Simonelli, T.M.; Edwards, D.J. Influence of goldenseal root on the pharmacokinetics of indinavir. J. Clin. Pharmacol. 2003, 43, 1283–1288. [Google Scholar] [CrossRef]
- Yeh, K.C.; Stone, J.A.; Carides, A.D.; Rolan, P.; Woolf, E.; Ju, W.D. Simultaneous investigation of indinavir nonlinear pharmacokinetics and bioavailability in healthy volunteers using stable isotope labeling technique: Study design and model-independent data analysis. J. Pharm. Sci. 1999, 88, 568–573. [Google Scholar] [CrossRef]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Khan, I.A.; Shah, A. In vivo effects of goldenseal, kava kava, black cohosh, and valerian on human cytochrome P450 1A2, 2D6, 2E1, and 3A4/5 phenotypes. Clin Pharmacol. Ther. 2005, 77, 415–426. [Google Scholar] [CrossRef]
- Gurley, B.J.; Swain, A.; Hubbard, M.A.; Hartsfield, F.; Thaden, J.; Williams, D.K.; Gentry, W.B.; Tong, Y. Supplementation with goldenseal (Hydrastis canadensis), but not kava kava (Piper methysticum), inhibits human CYP3A activity in vivo. Clin Pharmacol. Ther. 2008, 83, 61–69. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, H.J.; Munoz, J.; Gurley, B.J.; Markowitz, J.S. An ex vivo approach to botanical-drug interactions: A proof of concept study. J. Ethnopharmacol. 2015, 163, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurley, B.J.; Swain, A.; Barone, G.W.; Williams, D.K.; Breen, P.; Yates, C.R.; Stuart, L.B.; Hubbard, M.A.; Tong, Y.; Cheboyina, S. Effect of goldenseal (Hydrastis canadensis) and kava kava (Piper methysticum) supplementation on digoxin pharmacokinetics in humans. Drug Metab. Dispos. 2007, 35, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Mathews, J.M.; Etheridge, A.S.; Black, S.R. Inhibition of human cytochrome P450 activities by kava extract and kavalactones. Drug Metab. Dispos. 2002, 30, 1153–1157. [Google Scholar] [CrossRef]
- Zou, L.; Henderson, G.L.; Harkey, M.R.; Sakai, Y.; Li, A. Effects of kava (Kava-kava, ‘Awa, Yaqona, Piper methysticum) on c-DNA-expressed cytochrome P450 enzymes and human cryopreserved hepatocytes. Phytomedicine 2004, 11, 285–294. [Google Scholar] [CrossRef]
- Gurley, B.J.; Swain, A.; Hubbard, M.A.; Williams, D.K.; Barone, G.; Hartsfield, F.; Tong, Y.; Carrier, D.J.; Cheboyina, S.; Battu, S.K. Clinical assessment of CYP2D6-mediated herb-drug interactions in humans: Effects of milk thistle, black cohosh, goldenseal, kava kava, St. John’s wort, and Echinacea. Mol. Nutr. Food Res. 2008, 52, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Budzinski, J.W.; Foster, B.C.; Vandenhoek, S.; Arnason, J.T. An in vitro evaluation of human cytochrome P450 3A4 inhibition by selected commercial herbal extracts and tinctures. Phytomedicine 2000, 7, 273–282. [Google Scholar] [CrossRef]
- Yale, S.H.; Glurich, I. Analysis of the inhibitory potential of Ginkgo biloba, Echinacea purpurea, and Serenoa repens on the metabolic activity of cytochrome P450 3A4, 2D6, and 2C9. J. Altern. Complement. Med. 2005, 11, 433–439. [Google Scholar] [CrossRef]
- Modarai, M.; Silva, E.; Suter, A.; Heinrich, M.; Kortenkamp, A. Safety of Herbal Medicinal Products: Echinacea and Selected Alkylamides Do Not Induce CYP3A4 mRNA Expression. Evid. Based Complement. Altern. Med. 2011, 2011, 213021. [Google Scholar] [CrossRef] [Green Version]
- Mrozikiewicz, P.M.; Bogacz, A.; Karasiewicz, M.; Mikolajczak, P.L.; Ozarowski, M.; Seremak-Mrozikiewicz, A.; Czerny, B.; Bobkiewicz-Kozlowska, T.; Grzeskowiak, E. The effect of standardized Echinacea purpurea extract on rat cytochrome P450 expression level. Phytomedicine 2010, 17, 830–833. [Google Scholar] [CrossRef]
- Albassam, A.A.; Mohamed, M.E.; Frye, R.F. Inhibitory effect of six herbal extracts on CYP2C8 enzyme activity in human liver microsomes. Xenobiotica 2015, 45, 406–412. [Google Scholar] [CrossRef]
- Gorski, J.C.; Huang, S.M.; Pinto, A.; Hamman, M.A.; Hilligoss, J.K.; Zaheer, N.A.; Desai, M.; Miller, M.; Hall, S.D. The effect of echinacea (Echinacea purpurea root) on cytochrome P450 activity in vivo. Clin Pharmacol. Ther. 2004, 75, 89–100. [Google Scholar] [CrossRef]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Carrier, J.; Khan, I.A.; Edwards, D.J.; Shah, A. In vivo assessment of botanical supplementation on human cytochrome P450 phenotypes: Citrus aurantium, Echinacea purpurea, milk thistle, and saw palmetto. Clin Pharmacol. Ther. 2004, 76, 428–440. [Google Scholar] [CrossRef]
- Abdul, M.I.; Jiang, X.; Williams, K.M.; Day, R.O.; Roufogalis, B.D.; Liauw, W.S.; Xu, H.; Matthias, A.; Lehmann, R.P.; McLachlan, A.J. Pharmacokinetic and pharmacodynamic interactions of echinacea and policosanol with warfarin in healthy subjects. Br. J. Clin. Pharmacol. 2010, 69, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Penzak, S.R.; Robertson, S.M.; Hunt, J.D.; Chairez, C.; Malati, C.Y.; Alfaro, R.M.; Stevenson, J.M.; Kovacs, J.A. Echinacea purpurea significantly induces cytochrome P450 3A activity but does not alter lopinavir-ritonavir exposure in healthy subjects. Pharmacotherapy 2010, 30, 797–805. [Google Scholar] [CrossRef] [Green Version]
- Goey, A.K.; Mooiman, K.D.; Beijnen, J.H.; Schellens, J.H.; Meijerman, I. Relevance of in vitro and clinical data for predicting CYP3A4-mediated herb-drug interactions in cancer patients. Cancer Treat. Rev. 2013, 39, 773–783. [Google Scholar] [CrossRef]
- Molto, J.; Valle, M.; Miranda, C.; Cedeno, S.; Negredo, E.; Clotet, B. Herb-drug interaction between Echinacea purpurea and etravirine in HIV-infected patients. Antimicrob. Agents Chemother. 2012, 56, 5328–5331. [Google Scholar] [CrossRef] [Green Version]
- Molto, J.; Valle, M.; Miranda, C.; Cedeno, S.; Negredo, E.; Barbanoj, M.J.; Clotet, B. Herb-drug interaction between Echinacea purpurea and darunavir-ritonavir in HIV-infected patients. Antimicrob. Agents Chemother. 2011, 55, 326–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awortwe, C.; Manda, V.K.; Avonto, C.; Khan, S.I.; Khan, I.A.; Walker, L.A.; Bouic, P.J.; Rosenkranz, B. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway. Xenobiotica 2015, 45, 218–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awortwe, C.; Kaehler, M.; Rosenkranz, B.; Cascorbi, I.; Bruckmueller, H. MicroRNA-655-3p regulates Echinacea purpurea mediated activation of ABCG2. Xenobiotica 2018, 48, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Sridar, C.; Goosen, T.C.; Kent, U.M.; Williams, J.A.; Hollenberg, P.F. Silybin inactivates cytochromes P450 3A4 and 2C9 and inhibits major hepatic glucuronosyltransferases. Drug Metab. Dispos. 2004, 32, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brantley, S.J.; Oberlies, N.H.; Kroll, D.J.; Paine, M.F. Two flavonolignans from milk thistle (Silybum marianum) inhibit CYP2C9-mediated warfarin metabolism at clinically achievable concentrations. J. Pharmacol. Exp. Ther. 2010, 332, 1081–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mooiman, K.D.; Maas-Bakker, R.F.; Moret, E.E.; Beijnen, J.H.; Schellens, J.H.; Meijerman, I. Milk thistle’s active components silybin and isosilybin: Novel inhibitors of PXR-mediated CYP3A4 induction. Drug Metab. Dispos. 2013, 41, 1494–1504. [Google Scholar] [CrossRef] [Green Version]
- Gufford, B.T.; Chen, G.; Vergara, A.G.; Lazarus, P.; Oberlies, N.H.; Paine, M.F. Milk Thistle Constituents Inhibit Raloxifene Intestinal Glucuronidation: A Potential Clinically Relevant Natural Product-Drug Interaction. Drug Metab. Dispos. 2015, 43, 1353–1359. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Morris, M.E. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J. Pharmacol. Exp. Ther. 2003, 304, 1258–1267. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Morris, M.E. Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharm. Res. 2003, 20, 1184–1191. [Google Scholar] [CrossRef]
- Piscitelli, S.C.; Formentini, E.; Burstein, A.H.; Alfaro, R.; Jagannatha, S.; Falloon, J. Effect of milk thistle on the pharmacokinetics of indinavir in healthy volunteers. Pharmacotherapy 2002, 22, 551–556. [Google Scholar] [CrossRef]
- DiCenzo, R.; Shelton, M.; Jordan, K.; Koval, C.; Forrest, A.; Reichman, R.; Morse, G. Coadministration of milk thistle and indinavir in healthy subjects. Pharmacotherapy 2003, 23, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Rajnarayana, K.; Reddy, M.S.; Vidyasagar, J.; Krishna, D.R. Study on the influence of silymarin pretreatment on metabolism and disposition of metronidazole. Arzneimittelforschung 2004, 54, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Raucy, J.L. Regulation of CYP3A4 expression in human hepatocytes by pharmaceuticals and natural products. Drug Metab. Dispos. 2003, 31, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Gurley, B.; Hubbard, M.A.; Williams, D.K.; Thaden, J.; Tong, Y.; Gentry, W.B.; Breen, P.; Carrier, D.J.; Cheboyina, S. Assessing the clinical significance of botanical supplementation on human cytochrome P450 3A activity: Comparison of a milk thistle and black cohosh product to rifampin and clarithromycin. J. Clin. Pharmacol. 2006, 46, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Van Erp, N.P.; Baker, S.D.; Zhao, M.; Rudek, M.A.; Guchelaar, H.J.; Nortier, J.W.; Sparreboom, A.; Gelderblom, H. Effect of milk thistle (Silybum marianum) on the pharmacokinetics of irinotecan. Clin. Cancer Res. 2005, 11, 7800–7806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molto, J.; Valle, M.; Miranda, C.; Cedeno, S.; Negredo, E.; Clotet, B. Effect of milk thistle on the pharmacokinetics of darunavir-ritonavir in HIV-infected patients. Antimicrob. Agents Chemother. 2012, 56, 2837–2841. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi-Suzuki, M.; Frye, R.F.; Zhu, H.J.; Brinda, B.J.; Chavin, K.D.; Bernstein, H.J.; Markowitz, J.S. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity. Drug Metab. Dispos. 2014, 42, 1611–1616. [Google Scholar] [CrossRef] [Green Version]
- Brantley, S.J.; Graf, T.N.; Oberlies, N.H.; Paine, M.F. A systematic approach to evaluate herb-drug interaction mechanisms: Investigation of milk thistle extracts and eight isolated constituents as CYP3A inhibitors. Drug Metab. Dispos. 2013, 41, 1662–1670. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, Z.; Xia, M.M.; Wang, Y.Y.; Wang, H.Y.; Hu, G.X. Inhibitory effect of silybin on pharmacokinetics of imatinib in vivo and in vitro. Can. J. Physiol. Pharmacol. 2014, 92, 961–964. [Google Scholar] [CrossRef]
- Han, Y.; Guo, D.; Chen, Y.; Chen, Y.; Tan, Z.R.; Zhou, H.H. Effect of silymarin on the pharmacokinetics of losartan and its active metabolite E-3174 in healthy Chinese volunteers. Eur. J. Clin. Pharmacol. 2009, 65, 585–591. [Google Scholar] [CrossRef]
- Gurley, B.J.; Barone, G.W.; Williams, D.K.; Carrier, J.; Breen, P.; Yates, C.R.; Song, P.F.; Hubbard, M.A.; Tong, Y.; Cheboyina, S. Effect of milk thistle (Silybum marianum) and black cohosh (Cimicifuga racemosa) supplementation on digoxin pharmacokinetics in humans. Drug Metab. Dispos. 2006, 34, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Guo, D.; Chen, Y.; Tan, Z.R.; Zhou, H.H. Effect of continuous silymarin administration on oral talinolol pharmacokinetics in healthy volunteers. Xenobiotica 2009, 39, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Flaig, T.W.; Gustafson, D.L.; Su, L.J.; Zirrolli, J.A.; Crighton, F.; Harrison, G.S.; Pierson, A.S.; Agarwal, R.; Glode, L.M. A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Investig. New Drugs 2007, 25, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, D.; Crudo, M.; Rombola, L.; Watanabe, C.; Mizoguchi, H.; Sakurada, S.; Sakurada, T.; Greco, R.; Corasaniti, M.T.; Morrone, L.A.; et al. Antinociceptive effect of inhalation of the essential oil of bergamot in mice. Fitoterapia 2018, 129, 20–24. [Google Scholar] [CrossRef]
- Scuteri, D.; Morrone, L.A.; Rombola, L.; Avato, P.R.; Bilia, A.R.; Corasaniti, M.T.; Sakurada, S.; Sakurada, T.; Bagetta, G. Aromatherapy and Aromatic Plants for the Treatment of Behavioural and Psychological Symptoms of Dementia in Patients with Alzheimer’s Disease: Clinical Evidence and Possible Mechanisms. Evid. Based Complement. Altern. Med. 2017, 2017, 9416305. [Google Scholar] [CrossRef] [Green Version]
- Scuteri, D.; Rombola, L.; Morrone, L.A.; Bagetta, G.; Sakurada, S.; Sakurada, T.; Tonin, P.; Corasaniti, M.T. Neuropharmacology of the Neuropsychiatric Symptoms of Dementia and Role of Pain: Essential Oil of Bergamot as a Novel Therapeutic Approach. Int. J. Mol. Sci. 2019, 20, 3327. [Google Scholar] [CrossRef] [Green Version]
- Scuteri, D.; Rombola, L.; Tridico, L.; Mizoguchi, H.; Watanabe, C.; Sakurada, T.; Sakurada, S.; Corasaniti, M.T.; Bagetta, G.; Morrone, L.A. Neuropharmacological Properties of the Essential Oil of Bergamot for the Clinical Management of Pain-Related BPSDs. Curr. Med. Chem. 2019, 26, 3764–3774. [Google Scholar] [CrossRef]
- Obach, R.S. Inhibition of human cytochrome P450 enzymes by constituents of St. John’s Wort, an herbal preparation used in the treatment of depression. J. Pharmacol. Exp. Ther. 2000, 294, 88–95. [Google Scholar]
- Folashade, K.O.; Omoregi, E.H.; Ahmadu, P.O. Standardization of herbal medicines—A review. Int. J. Biodivers. Conserv. 2012, 4, 101–112. [Google Scholar]
Hypericum Extract | Subject Number | Drug Pharmacokinetic Parameters | Protein Involved | Ref. | |
---|---|---|---|---|---|
Dose 3 × 300 mg/day | Duration | ||||
LI160 Rex Sund Jarsin LI160 Jarsin LI160 Jarsin LI160 Jarsin LI160 | 10 days 12 days | 13 male and 12 female 12 female 13 subjects 16 male and 4 female 10 male and 11 female 9 male | ↓ AUC and Cmax of digoxin ↓ AUC and Cmax of midazolam ↓ AUC of bosentan ↓ AUC and Cmax of ambrisentan ↓ Cmax of midazolam and fexofenadine ↓ AUC and Cmax of talinolol | P-gp CYP3A4 CYP2C9/3A4 CYP3A4/5 CYP2C19 CYP3A4 and P-gpCYP3A4, P-gp | [15] [56] [57] [43] [51] |
Buyers Jarsin LI160 TruNatur LI160 Kira Buyers Buyers Solaray 3 × 325 mg/day Movina Jarsin LI160 Kira Kira Willmar Schwabe Pharm Jarsin LI160 Hyperiplant | 14 days | 6 male and 2 female 7 male and 5 female 8 male 12 subjects * 6 male and 6 female 12 male 12 male 15 male 8 male 16 male 14 male 15 male and 6 female 14 subjects 6 male and 6 female 4 male and 7 female * | ↓ AUC of indinavir ↓ AUC of midazolam ↓ AUC of simvastatin ↓ AUC of amitriptyline ↓ AUC and Cmax of imatinib ↓ AUC and Cmax of omeprazole ↓ AUC and Cmax of mephenitoin AUC and Cmax no change of repaglinide ↓ AUC and Cmax of verapamil ↓ AUC and Cmax of voriconazole ↓ AUC and Cmax of zolpidem ↓ AUC and Cmax of gliclazide ↓ AUC and Cmax of nifedipine ↓ AUC and Cmax of S-ketamine ↓ AUC of docetaxel | CYP3A4 CYP3A4 CYP2C8/3A4 CYP3A4 CYP3A5, P-gp CYP2C19 CYP2C19 CYP2C8/3A4 CYP3A4 CYP3A4/5, P-gp CYP2C19 CYP3A4 CYP-2C9 CYP3A4 CYP3A4/2B6 CYP3A | [13] [33] [36] [37] [45] [46] [47] [66] [49] [50] [55] [52] [53] [54] [58] |
LichtwerPharma AG | 18 days | 2 male and 8 female * | ↓ AUC and Cmax of tacrolimus | CYP3A, P-gp | [48] |
Modigen 2 × 300 mg/day | 21 days | 20 male | no effect steady-state of metformin | [62] | |
Rexall Sundown Buyers - | 56 days 28 days | 12 female 16 female 6 male and 6 female | ↓ AUC and Cmax of ethinyl estradiol/norethindrone combination ↓ AUC of ethinyl estradiol/norethindrone combination ↓6-hydroxychlorzoxazone/chlorzoxazone serum ratios (2-h) ↓1-dydroxymidazolam/midazolam serum ratios (1-h) in young and in elderly subjects | CYP3A CYP3A4 CYP2E1 CYP3A4 | [41] [42] [38] [39] |
- | 31 days | 2 male and 2 female * | ↓of (R,S)-methadone concentration-to-dose ratios | [40] |
Herbal Extract | Subject Number | Drug Pharmacokinetic Parameters | Protein Involved | Ref. | |
---|---|---|---|---|---|
Dose | Duration | ||||
Ginkgo biloba extract 240 mg standardized to 0.12% to 0.3% hypericin | 14 days | 12 subjects | ↓ AUC of alprazolam | CYP3A4 | [77] |
no effect | |||||
half-life of elimination | |||||
Ginkgo biloba extract 240 mg | 28 days | 14 subjects | ↓ AUC and Cmax of midazolam | CYP3A4 | [78] |
EGb 761 360 mg standardized to the content of 24% Ginkgo flavone glycoside and 6% terpene lactone | 28 days | 10 male | ↓ oral clearance ↑AUC of midazolam ↓ AUC of tolbutamide | CYP3A4 Inhibition CYP2C9 | [80] |
Ginkgo biloba extract mg not available | some months | 1 HIV-infected * | ↓ plasma concentrations of efavirenz | CYP2B6 | [87] |
Ginkgo biloba extract 120 mg, twice daily | 12 days | 7 male | voriconazole no pharmacokinetic change of | extensive (2C19*1/2C19*1) and poor (2C19*2/2C19*2) metabolizers | [85] |
Ginkgo biloba extract 120 mg, twice daily | 14 days | 14 male | bupropion no pharmacokinetic change | CYP2B6 | [88] |
Ginkgo biloba extract 120 mg, twice daily | 28 days | 12 male | diazepam no pharmacokinetic change | CYP2C19 | [86] |
Ginko biloba extract 360 mg/day | 14 days | 10 male | ↑Cmax and AUC of talinolol no effects elimination half-life | P-gp inhibition | [90] |
Tavonin extract 120 mg twice daily | 14 days | 9 male and 9 female | ↑Cmax and AUC of raltegravir | P-gp inhibition | [92] |
EGb 761® 120 mg twice daily or 240 mg once daily | 8 days | 18: male and female | caffeine tolbutamide omeprazole dextromethorphan midazolam no pharmacokinetic changes | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A | [95] |
Ginexin® 80 mg twice daily | 7 days | 34 male | Cilostazol no pharmacokinetic changes | CYP2C19 and CYP3A | [96] |
Ginkgo biloba extract 360 mg) | 14 days | 16 male | ↓AUC(0–∞) and Cmax ↑ Vd and CL atorvastatin | CYP3A4 | [97] |
Ginko biloba extract 120 mg twice daily | 14 days | 14 subjects | ↑AUC(0–∞) and Cmax simvastatin | OATP1B1, CYP3A4 and BCRP | [99] |
Herbal Extract | Subject Number | Drug Pharmacokinetic Parameters | Protein Involved | Ref. | |
---|---|---|---|---|---|
Dose | Duration | ||||
Garlic oil 500 mg three times daily | 28 days | 6 male and 6 female | ↓6-hydroxychlorzoxazone/chlorzoxazone serum ratios (2-h) in young and in elderly subjects ↓paraxanthine/caffeine serum ratios (6-h) 1-dydroxymidazolam/midazolam serum ratios (1-h) debrisoquine urinary recovery ratios no changes | CYP2El CYP1A2 CYP3A4 CY2D6 | [38] [39] |
Garlic powder tablets (kwai) 3 × 600 mg tablets twice daily | 14 days | 9 male and 6 female | AUC, Cmax, Tmax, half-life of elimination of alprazolam urinary dextromethorphan/dextrorphan ratios activity no changes | CYP34 CYP2D6 | [113] |
Garlic powder caplets twice daily | 19 days | 4 male and 6 female | ↓Cmax and AUC of saquinavir | P-gp | [114] |
Garlic capsules twice daily | 4 days | 5 male and 5 female | not pharmacokinetics changes of ritonavir | [116] |
Herbal Extract | Subject Number | Drug Pharmacokinetic Parameters | Protein Involved | Ref. | |
---|---|---|---|---|---|
Dose | Duration of treatment | ||||
Hydrastis Canadensis root extract [Goldenseal] 900 mg, 3 times daily (no standardization claim) | 28 days | 6 male and 6 female | debrisoquin and midazolam pre- and post-supplementation phenotypic ratio means | CYP2D6 and CYP3A4/5 | [124] |
Goldenseal 1.323 mg, 3 times daily (standardized to contain 24.1 mg isoquinoline alkaloids per capsule) | 14 days | 8 male and 8 female | ↑ Cmax, AUC(0-∞,) elimination half-life of midazolam | CYP3A4/5 | [125] |
Kava-kava extract138 mg/die | 28 days | 6 male and 6 female | chlorzoxazone pre- and post-supplementation phenotypic ratio means | [124] | |
Echinacea purpurea extract from root 400 mg, 4 times dail | 8 days | 6 male and 6 female | ↓ Dose/AUC (0-∞) ↑ Cmax and Tmax of caffeine | CYPlA2 | [136] |
Echinacea purpurea whole plant extract 800 mg 2 times daily | 28 days | 6 male and 6 female | 6-h serum paraxanthine-to-caffeine concentration ratio | CYP1A2 | [137] |
Echinacea purpurea extract from root 400 mg, 4 times daily | 8 days | 6 male and 6 female | ↑ AUC of tolbutamide | CYP2C9 | [136] |
MediHerb Premium EchinaceaTM tablets 4 times daily (mixture of Echinacea angustifolia and Echinacea purpurea) | 14 days | 12 male | ↑apparent clearance of (S)-warfarin | CYP2C9 | [138] |
Echinacea purpurea extract from root 400 mg, 4 times daily | 8 days | 6 male and 6 female | ↓ AUC(0-∞) by 23% and of t½ of midazolam, administered intravenously | CYP3A4 | [136] |
Echinamide® Natural Factors capsule 250 mg 2 daily | 28 days | 8 male and 5 female | ↑ AUC of midazolam by 37% and a reduction of half-life by 45% | CYP3A4 | [139] |
Echinaforce® 3 times daily | 14 days | 9 male and 2 female* | AUC(0–∞), t1/2 and Cmax of docetaxel No effect | CYP3A4 | [140] |
Arkocapsulas Echinacea capsule 500 mg every 6 h | 14 days | 14 male and 1 female° | AUC and Cmax of darunavir and ritonavir No effect | CYP3A4 | [142] |
Arkocapsulas Echinacea capsule 500 mg every 6 h | 14 days | 14 male° | AUC and Cmax of etravirine No effect | CYP3A4 | [141] |
Silybum marianum (milk thistle) | |||||
Silymarin (Thisilyn) 153 mg 3 times daily | 21 days | 12 subjects | ! C8(μg/mL) of indinavir | CYP3A4 | [151] |
Silymarin 160 mg | 14 days | 7 male and 3 female | ! Cmax, AUC of indinavir | CYP3A4 | [152] |
Milk thistle 175 mg 2 daily (standardized to 80% silymarin) | 28 days | 6 male and 6 female | 1-hydroxymidazolam/midazolam serum ratios (1-h sample) No effect | CYP3A4 | [137] |
Milk thistle 300 mg 3 times daily (standardized to contain 80% silymarin) | 14 days | 10 male and 10 female | AUC(0-∞), Cmax and Tmax CL/F, t½ of midazolam No effect | CYP3A4 | [155] |
Milk thistle extract 200 mg 3 times daily (standardized to 80% silymarin) | 4 or 12 days | 2 male and 4 female * | No effects on irinotecan clearance | CYP3A4 UGT1Al | [156] |
Silymarin (Legalon) 150 mg every 8 h | 14 days | 15 patients° | AUC and Cmax of darunavir and ritonavir No effect | CYP3A4 | [157] |
Silymarin (Legalon) 140 mg 3 times daily | 14 days | 12 subjects | AUC(0-12) and Cmax of midazolam, caffeine, tolbutamide, dextromethorphan No effect | CYP3A4/5, CYP1A2, CYP2C9, CYP2D6 | [158] |
Silymarin 420 mg/day | 14 days | 12 male | ↑AUC(0-24), AUC(0-∞) and Cmax dose/AUC(0-∞) of losartan | CYP2C9*1/*1 | [161] |
Silymarin (140 mg three times daily) | 14 days | 18 male | ↑AUC(0-36), the AUC(0-∞) and Cmax ↓oral clearance (CL/F) of talinolol | Pg-p | [163] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rombolà, L.; Scuteri, D.; Marilisa, S.; Watanabe, C.; Morrone, L.A.; Bagetta, G.; Corasaniti, M.T. Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance. Life 2020, 10, 106. https://doi.org/10.3390/life10070106
Rombolà L, Scuteri D, Marilisa S, Watanabe C, Morrone LA, Bagetta G, Corasaniti MT. Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance. Life. 2020; 10(7):106. https://doi.org/10.3390/life10070106
Chicago/Turabian StyleRombolà, Laura, Damiana Scuteri, Straface Marilisa, Chizuko Watanabe, Luigi Antonio Morrone, Giacinto Bagetta, and Maria Tiziana Corasaniti. 2020. "Pharmacokinetic Interactions between Herbal Medicines and Drugs: Their Mechanisms and Clinical Relevance" Life 10, no. 7: 106. https://doi.org/10.3390/life10070106