Improving Phylogenetic Signals of Mitochondrial Genes Using a New Method of Codon Degeneration
Abstract
:1. Introduction
1.1. Nucleotide Composition Bias
1.2. Conflicting Signal between Nucleotide and Amino Acid Sequences
2. Materials and Methods
2.1. The “Principled” Codon Degeneration and Two Alternatives
2.2. Mitochondrial Data and Phylogenetic Analysis
3. Results
3.1. Codon Degeneration Increased the Phylogenetic Resolution Power in Early Mammalian Lineages
3.2. Codon Degeneration Challenged the Conventional Phylogenetic Placement of Rhea
4. Discussion
4.1. When to Use Codon Degeneration?
4.2. “Principled” Degeneration versus Degenerating the Third Codon Site Only
4.3. The Serine Codon Family
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Grundy, W.N.; Naylor, G.J. Phylogenetic inference from conserved sites alignments. J. Exp. Zool. 1999, 285, 128–139. [Google Scholar] [CrossRef]
- Cox, C.J.; Li, B.; Foster, P.G.; Embley, T.M.; Civán, P. Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Syst. Biol. 2014, 63, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lopes, J.S.; Foster, P.G.; Embley, T.M.; Cox, C.J. Compositional Biases among Synonymous Substitutions Cause Conflict between Gene and Protein Trees for Plastid Origins. Mol. Biol. Evol. 2014, 31, 1697–1709. [Google Scholar] [CrossRef] [PubMed]
- Criscuolo, A.; Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 2010, 10, 210. [Google Scholar] [CrossRef] [Green Version]
- Rota-Stabelli, O.; Lartillot, N.; Philippe, H.; Pisani, D. Serine codon-usage bias in deep phylogenomics: Pancrustacean relationships as a case study. Syst. Biol. 2013, 62, 121–133. [Google Scholar] [CrossRef]
- Zwick, A.; Regier, J.C.; Zwickl, D.J. Resolving Discrepancy between Nucleotides and Amino Acids in Deep-Level Arthropod Phylogenomics: Differentiating Serine Codons in 21-Amino-Acid Models. PLoS ONE 2012, 7, e47450. [Google Scholar] [CrossRef] [Green Version]
- Noah, K.E.; Hao, J.; Li, L.; Sun, X.; Foley, B.; Yang, Q.; Xia, X. Major Revisions in Arthropod Phylogeny Through Improved Supermatrix, with Support for Two Possible Waves of Land Invasion by Chelicerates. Evol. Bioinform. 2020, 16, 1–12. [Google Scholar] [CrossRef]
- Lockhart, P.J.; Steel, M.A.; Hendy, M.D.; Penny, D. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol. Biol. Evol. 1994, 11, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Lake, J.A. Reconstructing evolutionary trees from DNA and protein sequences: Paralinear distances. In Proceedings of the Proceedings of the National Academy of Sciences. Proc. Natl. Acad. Sci. USA 1994, 91, 1455–1459. [Google Scholar] [CrossRef] [Green Version]
- Forterre, P.; Benachenhou-Lafha, N.; Labedan, B. Universal tree of life. Nature 1993, 362, 795. [Google Scholar] [CrossRef]
- Wang, H.C.; Xia, X.; Hickey, D.A. Thermal adaptation of ribosomal RNA genes: A comparative study. J. Mol. Evol. 2006, 63, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Weisburg, W.; Giovannoni, S.; Woese, C. The Deinococcus-Thermus Phylum and the Effect of rRNA Composition on Phylogenetic Tree Construction. Syst. Appl. Microbiol. 1989, 11, 128–134. [Google Scholar] [CrossRef]
- Foster, P.G. Modeling Compositional Heterogeneity. Syst. Biol. 2004, 53, 485–495. [Google Scholar] [CrossRef] [Green Version]
- Galtier, N.; Gouy, M. Inferring pattern and process: Maximum-likelihood implementation of a nonhomogeneous model of DNA sequence evolution for phylogenetic analysis. Mol. Biol. Evol. 1998, 15, 871–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galtier, N. A Nonhyperthermophilic Common Ancestor to Extant Life Forms. Science 1999, 283, 220–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanquart, S.; Lartillot, N. A Bayesian Compound Stochastic Process for Modeling Nonstationary and Nonhomogeneous Sequence Evolution. Mol. Biol. Evol. 2006, 23, 2058–2071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanquart, S.; Lartillot, N. A Site- and Time-Heterogeneous Model of Amino Acid Replacement. Mol. Biol. Evol. 2008, 25, 842–858. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.A.P.; Cox, C.J.; Foster, P.G.; Szöllősi, G.J.; Embley, T.M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 2019, 4, 138–147. [Google Scholar] [CrossRef]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [Green Version]
- Regier, J.C.; Shultz, J.W.; Zwick, A.; Hussey, A.; Ball, B.; Wetzer, R.; Martin, J.W.; Cunningham, C.W. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 2010, 463, 1079–1083. [Google Scholar] [CrossRef]
- Ishikawa, S.A.; Inagaki, Y.; Hashimoto, T. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences from Nucleotide Sequence Data with Parallel Compositional Heterogeneity. Evol. Bioinform. 2012, 8, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Xia, X. DAMBE6: New Tools for Microbial Genomics, Phylogenetics, and Molecular Evolution. J. Hered. 2017, 108, 431–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chithambaram, S.; Prabhakaran, R.; Xia, X. Differential Codon Adaptation between dsDNA and ssDNA Phages in Escherichia coli. Mol. Biol. Evol. 2014, 31, 1606–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chithambaram, S.; Prabhakaran, R.; Xia, X. The effect of mutation and selection on codon adaptation in Escherichia coli bacteriophage. Genetics 2014, 197, 301–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhakaran, R.; Chithambaram, S.; Xia, X. Aeromonas phages encode tRNAs for their overused codons. Int. J. Comput. Biol. Drug Des. 2014, 7, 168–182. [Google Scholar] [CrossRef]
- Grosjean, H.; De Crécy-Lagard, V.; Marck, C. Deciphering synonymous codons in the three domains of life: Co-evolution with specific tRNA modification enzymes. FEBS Lett. 2009, 584, 252–264. [Google Scholar] [CrossRef]
- Xia, X. Rapid evolution of animal mitochondria. In Evolution in the Fast Lane: Rapidly Evolving Genes and Genetic Systems; Singh, R.S., Xu, J., Kulathinal, R.J., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 73–82. [Google Scholar]
- Xia, X.; Huang, H.; Carullo, M.; Betrán, E.; Moriyama, E.N. Conflict between Translation Initiation and Elongation in Vertebrate Mitochondrial Genomes. PLoS ONE 2007, 2, e227. [Google Scholar] [CrossRef]
- Muto, A.; Osawa, S. The guanine and cytosine content of genomic DNA and bacterial evolution. In Proceedings of the Proceedings of the National Academy of Sciences. Proc. Natl. Acad. Sci. USA 1987, 84, 166–169. [Google Scholar] [CrossRef] [Green Version]
- Clark, M.A.; Moran, N.A.; Baumann, P. Sequence evolution in bacterial endosymbionts having extreme base compositions. Mol. Biol. Evol. 1999, 16, 1586–1598. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Palidwor, G. Palidwor Genomic Adaptation to Acidic Environment: Evidence from Helicobacter pylori. Am. Nat. 2005, 166, 776. [Google Scholar] [CrossRef]
- Li, W.-H.; Gojobori, T.; Nei, M. Pseudogenes as a paradigm of neutral evolution. Nature 1981, 292, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-H.; Wu, C.-I.; Luo, C.-C. Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J. Mol. Evol. 1984, 21, 58–71. [Google Scholar] [CrossRef] [PubMed]
- LaLonde, M.M.; Marcus, J.M. How old can we go? Evaluating the age limit for effective DNA recovery from historical insect specimens. Syst. Èntomol. 2019, 45, 505–515. [Google Scholar] [CrossRef]
- Xia, X. DNA Replication and Strand Asymmetry in Prokaryotic and Mitochondrial Genomes. Curr. Genom. 2012, 13, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marín, A.; Xia, X. GC skew in protein-coding genes between the leading and lagging strands in bacterial genomes: New substitution models incorporating strand bias. J. Theor. Biol. 2008, 253, 508–513. [Google Scholar] [CrossRef]
- Nikbakht, H.; Xia, X.; Hickey, D. The evolution of genomic GC content undergoes a rapid reversal within the genus Plasmodium. Genome 2014, 57, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Förstner, K.U.; Von Mering, C.; Hooper, S.D.; Bork, P. Environments shape the nucleotide composition of genomes. EMBO Rep. 2005, 6, 1208–1213. [Google Scholar] [CrossRef]
- Xia, X. Bioinformatics and Translation Elongation. In Bioinformatics and the Cell: Modern Computational Approaches in Genomics, Proteomics and Transcriptomics; Springer: Cham, Switzerland, 2018; pp. 197–238. [Google Scholar]
- Foster, P.G.; Hickey, D.A. Compositional Bias May Affect both DNA-Based and Protein-Based Phylogenetic Reconstructions. J. Mol. Evol. 1999, 48, 284–290. [Google Scholar] [CrossRef]
- Tarrio, R.; Rodríguez-Trelles, F.; Ayala, F.J. Shared nucleotide composition biases among species and their impact on phylogenetic reconstructions of the Drosophilidae. Mol. Biol. Evol. 2001, 18, 1464–1473. [Google Scholar] [CrossRef] [Green Version]
- Johannsson, S.; Neumann, P.; Wulf, A.; Welp, L.M.; Gerber, H.-D.; Krull, M.; Diederichsen, U.; Urlaub, H.; Ficner, R. Structural insights into the stimulation of S. pombe Dnmt2 catalytic efficiency by the tRNA nucleoside queuosine. Sci. Rep. 2018, 8, 8880. [Google Scholar] [CrossRef]
- Miyata, T.; Miyazawa, S.; Yasunaga, T. Two types of amino acid substitutions in protein evolution. J. Mol. Evol. 1979, 12, 219–236. [Google Scholar] [CrossRef] [PubMed]
- Xia, X. Protein Substitution Model and Evolutionary Distance. In Bioinformatics and the Cell: Modern Computational Approaches in Genomics, Proteomics and Transcriptomics; Springer: Cham, Switzerland, 2018; pp. 315–326. [Google Scholar]
- Xia, X. DAMBE7: New and Improved Tools for Data Analysis in Molecular Biology and Evolution. Mol. Biol. Evol. 2018, 35, 1550–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Asimenos, G.; Toh, H. Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 2009, 537, 39–64. [Google Scholar] [PubMed]
- Katoh, K.; Kuma, K.-I.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef]
- Xia, X. Is there a mutation gradient along vertebrate mitochondrial genome mediated by genome replication? Mitochondrion 2019, 46, 30–40. [Google Scholar] [CrossRef]
- Dev, R.R.; Ganji, R.; Singh, S.P.; Mahalingam, S.; Banerjee, S.; Khosla, S. Cytosine methylation by DNMT2 facilitates stability and survival of HIV-1 RNA in the host cell during infection. Biochem. J. 2017, 474, 2009–2026. [Google Scholar] [CrossRef]
- Cooper, A.; Lalueza-Fox, C.; Anderson, S.G.; Rambaut, A.; Austin, J.J.; Ward, R. Complete mitochondrial genome sequences of two extinct moas clarify ratite evolution. Nature 2001, 409, 704–707. [Google Scholar] [CrossRef]
- Mitchell, K.J.; Llamas, B.; Soubrier, J.; Rawlence, N.J.; Worthy, T.H.; Wood, J.R.; Lee, M.S.Y.; Cooper, A. Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution. Science 2014, 344, 898–900. [Google Scholar] [CrossRef] [Green Version]
- Baker, A.J.; Haddrath, O.; McPherson, J.D.; Cloutier, A. Genomic Support for a Moa–Tinamou Clade and Adaptive Morphological Convergence in Flightless Ratites. Mol. Biol. Evol. 2014, 31, 1686–1696. [Google Scholar] [CrossRef] [Green Version]
- Cloutier, A.; Sackton, T.B.; Grayson, P.; Clamp, M.; Baker, A.J.; Edwards, S.V. Whole-Genome Analyses Resolve the Phylogeny of Flightless Birds (Palaeognathae) in the Presence of an Empirical Anomaly Zone. Syst. Biol. 2019, 68, 937–955. [Google Scholar] [CrossRef]
- Xia, X. Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes. Gene 2005, 345, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Xia, X. PGT: Visualizing temporal and spatial biogeographic patterns. Glob. Ecol. Biogeogr. 2019, 28, 1195–1199. [Google Scholar]
- Xia, X. Extreme Genomic CpG Deficiency in SARS-CoV-2 and Evasion of Host Antiviral Defense. Mol. Biol. Evol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Xia, X. DNA Methylation and Mycoplasma Genomes. J. Mol. Evol. 2003, 57, S21–S28. [Google Scholar] [CrossRef]
Case 1 | Similarity 2 | No 3 | Third Only 4 | Principled 5 |
---|---|---|---|---|
(A) | 0 | 22 | 37 | |
60 | 30 | 22 | ||
(B) | −30 | −8 | 22 | |
30 | 30 | 0 | ||
(C) | −30 | −8 | 22 | |
60 | 60 | 30 | ||
(D) | 30 | 45 | 60 | |
60 | 60 | 45 | ||
(E) | 0 | 22 | 37 | |
60 | 30 | 22 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, X. Improving Phylogenetic Signals of Mitochondrial Genes Using a New Method of Codon Degeneration. Life 2020, 10, 171. https://doi.org/10.3390/life10090171
Xia X. Improving Phylogenetic Signals of Mitochondrial Genes Using a New Method of Codon Degeneration. Life. 2020; 10(9):171. https://doi.org/10.3390/life10090171
Chicago/Turabian StyleXia, Xuhua. 2020. "Improving Phylogenetic Signals of Mitochondrial Genes Using a New Method of Codon Degeneration" Life 10, no. 9: 171. https://doi.org/10.3390/life10090171
APA StyleXia, X. (2020). Improving Phylogenetic Signals of Mitochondrial Genes Using a New Method of Codon Degeneration. Life, 10(9), 171. https://doi.org/10.3390/life10090171