Was There Land on the Early Earth?
Abstract
:1. Introduction
2. A Most Likely Scenario
3. Points of Discussion
3.1. Magma Ocean Solidification
3.2. Onset of Plate Tectonics
3.3. Tempo of Plate Tectonics
3.4. Continental Growth
3.5. Mountain Ranges and Ocean Islands
3.6. History of Ocean Volume
3.7. Global vs. Local Emergence of Continents
3.8. Comments on Russell (2021)
4. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ball, P. Water is an active matrix of life for cell and molecular biology. Proc. Nat. Acad. Sci. USA 2017, 114, 13327–13335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westall, F.; Brack, A. The importance of water for life. Space Sci. Rev. 2018, 214, 50. [Google Scholar] [CrossRef]
- Frenkel-Pinter, M.; Rajaei, V.; Glass, J.B.; Hud, N.V.; Williams, L.D. Water and life: The medium is the message. J. Mol. Evol. 2021, 89, 2–11. [Google Scholar] [CrossRef]
- Runnels, C.M.; Lanier, K.A.; Williams, J.K.; Bowman, J.C.; Petrov, A.S.; Hud, N.V.; Williams, L.D. Folding, assembly, and persistence: The essential nature and origins of biopolymers. J. Mol. Evol. 2018, 86, 598–610. [Google Scholar] [CrossRef] [Green Version]
- Mamajanov, I.; MacDonald, P.J.; Ying, J.; Duncanson, D.M.; Dowdy, G.R.; Walker, C.A.; Engelhart, A.E.; Fernandez, F.M.; Grover, M.A.; Hud, N.V.; et al. Ester formation and hydrolysis during wet-dry cycles: Generation of far-from-equilibrium polymers in a model prebiotic reaction. Macromolecules 2014, 47, 1334–1343. [Google Scholar] [CrossRef]
- Forsythe, J.G.; Yu, S.S.; Mamajanov, I.; Grover, M.A.; Krishnamurthy, R.; Fernandez, F.M.; Hud, N.V. Ester-mediated amide bond formation driven by wet-dry cycles: A possible path to polypeptides on the prebiotic Earth. Angew. Chem. Int. Ed. 2015, 54, 9871–9875. [Google Scholar] [CrossRef] [Green Version]
- Deamer, D. Assembling Life: How Can Life Begin on Earth and Other Habitable Planets? Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Damer, B.; Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology 2020, 20, 429–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, R.B. Free energies and equilibria of peptide bond hydrolysis and formation. Biopolymers 1998, 45, 351–353. [Google Scholar] [CrossRef]
- Deamer, D.; Weber, A.L. Bioenergetics and life’s origins. Cold Spring Harb. Perspect. Biol. 2010, 2, a004929. [Google Scholar] [CrossRef] [Green Version]
- Bada, J.L.; Korenaga, J. Exposed areas above sea level on Earth >3.5 Gyr ago: Implications for prebiotic and primitive biotic chemistry. Life 2018, 8, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longo, A.; Damer, B. Factoring origin of life hypothesis into the search for life in the solar system and beyond. Life 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Brunk, C.F.; Marshall, C.R. ‘Whole organisim’, systems biology, and top-down criteria for evaluating scenarios for the origin of life. Life 2021, 11, 690. [Google Scholar] [CrossRef]
- Russell, M.J. The “Water Problem” (sic), the illusory ond and life’s submarine emergence—A review. Life 2021, 11, 429. [Google Scholar] [CrossRef]
- Windley, B.F. The Evolving Continents, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Condie, K.C. Plate Tectonics and Crustal Evolution, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1997. [Google Scholar]
- Van Kranendonk, M.J.; Djokic, T.; Poole, G.; Tadbiri, S.; Steller, L.; Baumgartner, R. Depositional setting of the fossiliferous, c.3480 Ma Dresser Formation, Pilbara Craton: A review. In Earth’s Oldest Rocks, 2nd ed.; Van Kranendonk, M.J., Bennett, V.C., Hoffmann, J.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 985–1006. [Google Scholar]
- Westall, F.; de Ronde, C.E.J.; Southam, G.; Grassineau, N.; Colas, M.; Cockell, C.; Lammer, H. Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Phil. Trans. R. Soc. B 2006, 361, 1857–1875. [Google Scholar] [CrossRef]
- Byerly, G.R.; Lower, D.R.; Walsh, M.M. Stromatolites from the 3300–3500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 1986, 319, 489–491. [Google Scholar] [CrossRef]
- Byerly, G.R.; Palmer, M.R. Tourmaline mineralization in the Barberton greenstone belt, South Africa: Early Archean metasomatism by evaporite-derived boron. Contrib. Mineral. Petrol. 1991, 107, 387–402. [Google Scholar] [CrossRef]
- Korenaga, J.; Planavsky, N.J.; Evans, D.A.D. Global water cycle and the coevolution of Earth’s interior and surface environment. Phil. Trans. R. Soc. A 2017, 375, 20150393. [Google Scholar] [CrossRef]
- Goodwin, A.M. Principles of Precambrian Geology; Academic Press: London, UK, 1996. [Google Scholar]
- Rosas, J.C.; Korenaga, J. Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics. Earth Planet. Sci. Lett. 2018, 494, 42–49. [Google Scholar] [CrossRef]
- Guo, M.; Korenaga, J. Argon constraints on the early growth of felsic continental crust. Sci. Adv. 2020, 6, eaaz6234. [Google Scholar] [CrossRef] [PubMed]
- Bowring, S.A.; Williams, I.S. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib. Mineral. Petrol. 1999, 135, 3–16. [Google Scholar] [CrossRef]
- Roth, A.S.G.; Bourdon, B.; Mojzsis, S.J.; Touboul, M.; Sprung, P.; Guitreau, M.; Blichert-Toft, J. Inherited 142Nd anomalies in Eoarchean protoliths. Earth Planet. Sci. Lett. 2013, 361, 50–57. [Google Scholar] [CrossRef]
- O’Neil, J.; Boyet, M.; Carlson, R.W.; Paquette, J.L. Half a billion years of reworking of Hadean mafic crust to produce the Nuvvuagittuq Eoarchean felsic crust. Earth Planet. Sci. Lett. 2013, 379, 13–25. [Google Scholar] [CrossRef]
- Cavosie, A.J.; Valley, J.W.; Wilde, S.A. The oldest terrestrial minral record: A review of 4400 to 4000 Ma detrital zircons from Jack Hills, Western Australia. In Precambrian Ophiolites and Related Rocks; Van Kranendonk, M.J., Smithies, R.H., Bennett, V.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 91–111. [Google Scholar]
- Harrison, T.M. Hadean Earth; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Trail, D.; Tailby, N.; Wang, Y.; Harrison, T.M.; Boehnke, P. Aluminum in zircon as evidence for peraluminous and metaluminous melts from the Hadean to present. Geochem. Geophys. Geosys. 2017, 18, 1580–1593. [Google Scholar] [CrossRef]
- Pearce, B.K.D.; Pudritz, R.E.; Semenov, D.A.; Henning, T.K. Origin of the RNA world: The fate of nucleobases in warm little ponds. Proc. Nat. Acad. Sci. USA 2017, 114, 11327–11332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wise, D.U. Continental margins, freeboard and the volumes of continents and oceans through time. In Geology of Continental Margins; Burk, C.A., Drake, C.L., Eds.; Springer: New York, NY, USA, 1974; pp. 45–58. [Google Scholar]
- Schubert, G.; Reymer, A.P.S. Continental volume and freeboard through geological time. Nature 1985, 316, 336–339. [Google Scholar] [CrossRef]
- Galer, S.J.G. Interrelationships between continental freeboard, tectonics and mantle temperature. Earth Planet. Sci. Lett. 1991, 105, 214–228. [Google Scholar] [CrossRef]
- Harrison, C.G.A. Constraints on ocean volume change since the Archean. Geophys. Res. Lett. 1999, 26, 1913–1916. [Google Scholar] [CrossRef]
- Hynes, A. Freeboard revisited: Continental growth, crustal thickness change and Earth’s thermal efficiency. Earth Planet. Sci. Lett. 2001, 185, 161–172. [Google Scholar] [CrossRef]
- Flament, N.; Coltice, N.; Rey, P.F. A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth Planet. Sci. Lett. 2008, 275, 326–336. [Google Scholar] [CrossRef]
- Ito, E.; Harris, D.M.; Anderson, A.T. Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim. Cosmochim. Acta 1983, 47, 1613–1624. [Google Scholar] [CrossRef]
- McGovern, P.J.; Schubert, G. Thermal evolution of the Earth: Effects of volatile exchange between atmosphere and interior. Earth Planet. Sci. Lett. 1989, 96, 27–37. [Google Scholar] [CrossRef]
- Rüpke, L.H.; Phipps Morgan, J.; Hort, M.; Connolly, J.A.D. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett. 2004, 223, 17–34. [Google Scholar] [CrossRef]
- Korenaga, J. Plate tectonics, flood basalts, and the evolution of Earth’s oceans. Terra Nova 2008, 20, 419–439. [Google Scholar] [CrossRef]
- Magni, V.; Bouihol, P.; van Hunen, J. Deep water recycling through time. Geochem. Geophys. Geosys. 2014, 15, 4203–4216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarrard, R.D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosys. 2003, 4, 8905. [Google Scholar] [CrossRef]
- Abe, Y. Thermal evolution and chemical differentiation of the terrestrial magma ocean. In Evolution of the Earth and Planets; Takahashi, E., Jeanloz, R., Rudie, R., Eds.; AGU: Washington, DC, USA, 1993; pp. 41–54. [Google Scholar]
- Solomatov, V.S.; Stevenson, D.J. Nonfractional crystallization of a terrestrial magma ocean. J. Geophys. Res. 1993, 98, 5391–5406. [Google Scholar] [CrossRef] [Green Version]
- Hier-Majumder, S.; Hirschmann, M.M. The origin of volatiles in the Earth’s mantle. Geochem. Geophys. Geosys. 2017, 18, 3078–3092. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, Y.; Korenaga, J. Does detecting water vapors on rocky planets indicate the presence of oceans? An insght from self-consistent mantle degassing models. arXiv 2021, arXiv:2108.03759. [Google Scholar]
- Oxburgh, E.R.; Parmentier, E.M. Compositional and density stratification in oceanic lithosphere-causes and consequences. J. Geol. Soc. Lond. 1977, 133, 343–355. [Google Scholar] [CrossRef] [Green Version]
- Jordan, T.H. Structure and formation of the continental tectosphere. J. Petrol. Spec. 1988, 1, 11–37. [Google Scholar] [CrossRef]
- Carlson, R.W.; Pearson, D.G.; James, D.E. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 2005, 43, RG1001. [Google Scholar] [CrossRef]
- Pasyanos, M.E.; Masters, T.G.; Laske, G.; Ma, Z. LITHO 1.0: An updated crust and lithospheic model of the Earth. J. Geophys. Res. 2014, 119, 2153–2173. [Google Scholar] [CrossRef]
- Abbott, D.; Burgess, L.; Longhi, J.; Smith, W.H.F. An empirical thermal history of the Earth’s upper mantle. J. Geophys. Res. 1994, 99, 13835–13850. [Google Scholar] [CrossRef]
- Herzberg, C.; Condie, K.; Korenaga, J. Thermal evolution of the Earth and its petrological expression. Earth Planet. Sci. Lett. 2010, 292, 79–88. [Google Scholar] [CrossRef]
- Armstrong, R.L. Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A 1981, 301, 443–472. [Google Scholar]
- McLennan, S.M.; Taylor, R.S. Geochemical constraints on the growth of the continental crust. J. Geol. 1982, 90, 347–361. [Google Scholar] [CrossRef]
- Reymer, A.; Schubert, G. Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 1984, 3, 63–77. [Google Scholar] [CrossRef]
- Jacobsen, S.B. Isotopic constraints on crustal growth and recyling. Earth Planet. Sci. Lett. 1988, 90, 315–329. [Google Scholar] [CrossRef]
- McCulloch, M.T.; Bennett, V.C. Progressive growth of the Earth’s continental crust and depleted mantle: Geochemical constraints. Geochim. Cosmochim. Acta 1994, 58, 4717–4738. [Google Scholar] [CrossRef]
- Collerson, K.D.; Kamber, B.S. Evolution of the continents and the atmosphere Inferred from Th-U-Nb systematics of the depleted mantle. Science 1999, 283, 1519–1522. [Google Scholar] [CrossRef]
- Campbell, I.H. Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. Am. J. Sci. 2003, 303, 319–351. [Google Scholar] [CrossRef]
- Richards, M.A.; Duncan, R.A.; Courtillot, V.E. Flood basalts and hot-spot tracks: Plume heads and tails. Science 1989, 246, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Ballmer, M.D.; van Keken, P.E.; Ito, G. Hotspots, large igneous provinces, and melting anomalies. In Treatise on Geophysics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 7, pp. 393–459. [Google Scholar]
- Davies, G.F. Ocean bathymetry and mantle convection: 1. large-scale flow and hotspots. J. Geophys. Res. 1988, 93, 10467–10480. [Google Scholar] [CrossRef]
- Labrosse, S. Hotspots, mantle plumes and core heat loss. Earth Planet. Sci. Lett. 2002, 199, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Rey, P.F.; Houseman, G. Lithospheric scale gravitational flow: The impact of body forces on orogenic processes from Archean to Phanerozoic. In Analogue and Numerical Modelling of the Crustal-Scale Processes; Buiter, S.J.H., Schreurs, G., Eds.; Geological Society of London: London, UK, 2006; Volume 253, pp. 153–167. [Google Scholar]
- Rey, P.F.; Coltice, N. Neoarchean lithospheric strengthening and the coupling of Earth’s geochemical reservoirs. Geology 2008, 36, 635–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, B. Causes and consequences of the relation between area and age of the ocean floor. J. Geophys. Res. 1982, 87, 289–302. [Google Scholar] [CrossRef]
- Turcotte, D.L.; Oxburgh, E.R. Finite amplitude convective cells and continental drift. J. Fluid Mech. 1967, 28, 29–42. [Google Scholar] [CrossRef]
- Davis, E.E.; Lister, C.R.B. Fundamentals of ridge crest topography. Earth Planet. Sci. Lett. 1974, 21, 405–413. [Google Scholar] [CrossRef]
- Komiya, T.; Maruyama, S.; Masuda, T.; Nohda, S.; Hayashi, M.; Okamotmo, K. Plate tectonics at 3.8–3.7 Ga: Field evidence from the Isua accretionary complex, southern west Greenland. J. Geol. 1999, 107, 515–554. [Google Scholar] [CrossRef]
- Stern, R.J. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 2005, 33, 557–560. [Google Scholar] [CrossRef] [Green Version]
- Van Kranendonk, M.J.; Smithies, R.H.; Hickman, A.H.; Champion, D. Review: Secular tectonic evolution of Archean continental crust: Interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 2007, 19, 1–38. [Google Scholar] [CrossRef]
- Hopkins, M.; Harrison, T.M.; Manning, C.E. Low heat flow inferred from >4 Gyr zircons suggest Hadean plate boundary interactions. Nature 2008, 456, 493–496. [Google Scholar] [CrossRef]
- Condie, K.C.; Kröner, A. When did plate tectonics begin? Evidence from the geologic record. In When Did Plate Tectonics Begin on Planet Earth? Condie, K.C., Pease, V., Eds.; Geological Society of America: Boulder, CO, USA, 2008; pp. 281–294. [Google Scholar]
- Shirey, S.B.; Richardson, S.H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 2011, 333, 434–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cawood, P.A.; Hawkesworth, C.J.; Pisarevsky, S.A.; Dhuime, B.; Capitanio, F.A.; Nebel, O. Geological archive of the onset of plate tectonics. Phil. Trans. R. Soc. A 2018, 376, 20170405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smit, K.V.; Shirey, S.B.; Hauri, E.H.; Stern, R.A. Sulfur isotopes in diamonds reveal differences in continent construction. Science 2019, 364, 383–385. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.; Wilde, S.; Wörner, G.; Schaefer, B.; Lai, Y.J. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nat. Comm. 2020, 11, 1241. [Google Scholar] [CrossRef] [PubMed]
- Korenaga, J. Hadean geodynamics and the nature of early continental crust. Precambrian Res. 2021, 359, 106178. [Google Scholar] [CrossRef]
- Kamber, B.S. The evolving nature of terrestrial curst from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res. 2015, 258, 48–82. [Google Scholar] [CrossRef]
- Bedard, J.H. Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 2018, 9, 19–49. [Google Scholar] [CrossRef]
- Stern, R.J. The evolution of plate tectonics. Phil. Trans. R. Soc. A 2018, 376, 20170406. [Google Scholar] [CrossRef] [Green Version]
- Solomatov, V.S. Initiation of subduction by small-scale convection. J. Geophys. Res. 2004, 109, B01412. [Google Scholar] [CrossRef]
- O’Neill, C.; Lenardic, A.; Moresi, L.; Torsvik, T.H.; Lee, C.T. Episodic Precambrian subduction. Earth Planet. Sci. Lett. 2007, 262, 552–562. [Google Scholar] [CrossRef]
- Elkins-Tanton, L.T. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 2008, 271, 181–191. [Google Scholar] [CrossRef]
- Korenaga, J. Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. J. Geophys. Res. 2011, 116, B12403. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.B.; Webb, A.A.G. Heat-pipe Earth. Nature 2013, 501, 501–505. [Google Scholar] [CrossRef]
- Plesa, A.C.; Tosi, N.; Breuer, D. Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars? Earth Planet. Sci. Lett. 2014, 403, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.B.; Lenardic, A. The efficiency of plate tectonics and nonequilibrium dynamical evolution of planetary mantles. Geophys. Res. Lett. 2015, 42, 9255–9260. [Google Scholar] [CrossRef] [Green Version]
- Sizova, E.; Gerya, T.; Stuwe, K.; Brown, M. Generation of felsic crust in the Archean: A geodynamic modeling perspective. Precambrian Res. 2015, 271, 198–224. [Google Scholar] [CrossRef]
- Monteux, J.; Andrault, D.; Samuel, H. On the cooling of a deep terrestrial magma ocean. Earth Planet. Sci. Lett. 2016, 448, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Andrault, D.; Monteux, J.; Le Bars, M.; Samuel, H. The deep Earth may not be cooling down. Earth Planet. Sci. Lett. 2016, 443, 195–203. [Google Scholar] [CrossRef]
- Korenaga, J. Can mantle convection be self-regulated? Sci. Adv. 2016, 2, e1601168. [Google Scholar] [CrossRef] [Green Version]
- Maurice, M.; Tosi, N.; Samuel, H.; Plesa, A.C.; Hüttig, C.; Breuer, D. Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res. Planets 2017, 122, 577–598. [Google Scholar] [CrossRef]
- Korenaga, J. Pitfalls in modeling mantle convection with internal heating. J. Geophys. Res. Solid Earth 2017, 122, 4064–4085. [Google Scholar] [CrossRef]
- Boukaré, C.E.; Parmentier, E.M.; Parman, S.W. Timing of mantle overturn during magma ocean solidification. Earth Planet. Sci. Lett. 2018, 491, 216–225. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Korenaga, J. On the timescale of magma ocean solidification and its chemical consequences: 2. Compoositional differentiation under crystal accumulation and matrix compaction. J. Geophys. Res. Solid Earth 2019, 124, 3399–3419. [Google Scholar] [CrossRef]
- Chambers, J.E. Planet formation. In Treatise on Geochemistry, 2nd ed.; Chapter 4; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 55–72. [Google Scholar]
- Canup, R.M. Simulations of a late lunar-forming impact. Icarus 2004, 168, 433–456. [Google Scholar] [CrossRef]
- Cuk, M.; Stewart, S.T. Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science 2012, 338, 1047–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canup, R.M. Forming a Moon with an Earth-like composition via a giant impact. Science 2012, 338, 1052–1055. [Google Scholar] [CrossRef]
- Asphaug, E. Impact origin of the Moon? Annu. Rev. Earth Planet. Sci. 2014, 42, 551–578. [Google Scholar] [CrossRef]
- Lock, S.J.; Stewart, S.T. The structure of terrestrial bodies: Impact heating, corotation limits, and synastias. J. Geophys. Res. Planets 2017, 122, 950–982. [Google Scholar] [CrossRef] [Green Version]
- Solomatov, V. Magma oceans and primordial mantle differentiation. In Treatise on Geophysics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 9, pp. 81–104. [Google Scholar]
- Fiquet, G.; Auzende, A.L.; Siebert, J.; Corgne, A.; Bureau, H.; Ozawa, H.; Garbarino, G. Melting of peridotite to 140 gigapascals. Science 2010, 329, 1516–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blank, J.G.; Brooker, R.A. Experimental studies of carbon dioxide in silicate melts: Solubility, speciation, and stable carbon isotope behavior. In Volatiles in Magmas; Carroll, M.R., Holloway, J.R., Eds.; Mineralogical Society of America: Washington, DC, USA, 1994; pp. 157–186. [Google Scholar]
- Papale, P. Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids. Contrib. Mineral. Petrol. 1997, 126, 237–251. [Google Scholar] [CrossRef]
- Gardner, J.E.; Hilton, M.; Carroll, M.R. Experimental constraints on degassing of magma: Isothermal bubble growth during continuous decompression from high pressure. Earth Planet. Sci. Lett. 1999, 168, 201–218. [Google Scholar] [CrossRef]
- Schubert, G.; Turcotte, D.L.; Olson, P. Mantle Convection in the Earth and Planets; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Karato, S.; Wu, P. Rheology of the upper mantle: A synthesis. Science 1993, 260, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Hirth, G.; Kohlstedt, D. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In Inside the Subduction Factory; Eiler, J., Ed.; American Geophysical Union: Washington, DC, USA, 2003; pp. 83–105. [Google Scholar]
- Jain, C.; Korenaga, J.; Karato, S. Global analysis of experimental data on the rheology of olivine aggregates. J. Geophys. Res. Solid Earth 2019, 124, 310–334. [Google Scholar] [CrossRef] [Green Version]
- Korenaga, J. On the likelihood of plate tectonics on super-Earths: Does size matter? Astrophys. J. Lett. 2010, 725, L43–L46. [Google Scholar] [CrossRef] [Green Version]
- Korenaga, J. Plate tectonics and surface environment: Role of the oceanic upper mantle. Earth-Sci. Rev. 2020, 205, 103185. [Google Scholar] [CrossRef]
- Sleep, N.H.; Zahnle, K.; Neuhoff, P.S. Initiation of clement surface conditions on the earliest Earth. Proc. Nat. Acad. Sci. USA 2001, 98, 3666–3672. [Google Scholar] [CrossRef] [Green Version]
- Zahnle, K.; Arndt, N.; Cockell, C.; Halliday, A.; Nisbet, E.; Selsis, F.; Sleep, N.H. Emergence of a habitable planet. Space Sci. Rev. 2007, 129, 35–78. [Google Scholar] [CrossRef]
- Sleep, N.H.; Zahnle, K.J.; Lupu, R.E. Terrestrial aftermath of the Moon-forming impact. Phil. Trans. R. Soc. A 2014, 372, 20130172. [Google Scholar] [CrossRef] [Green Version]
- Rosas, J.C.; Korenaga, J. Archean seafloor shallowed with age due to radiogenic heating in the mantle. Nat. Geosci. 2021, 14, 51–56. [Google Scholar] [CrossRef]
- Korenaga, J. Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics? J. Geophys. Res. 2007, 112, B05408. [Google Scholar] [CrossRef]
- Campbell, I.H.; Taylor, S.R. No water, no granites—No oceans, no continents. Geophys. Res. Lett. 1983, 10, 1061–1064. [Google Scholar] [CrossRef]
- Nimmo, F. Thermal and compositional evolution of the core. In Treatise on Geophysics; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- O’Rourke, J.G.; Korenaga, J.; Stevenson, D.J. Thermal evolution of Earth with magnesium precipitation in the core. Earth Planet. Sci. Lett. 2017, 458, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Marchi, S.; Bottke, W.F.; Elkins-Tanton, L.T.; Bierhaus, M.; Wuennermann, K.; Morbidelli, A.; Kring, D.A. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 2014, 511, 578–582. [Google Scholar] [CrossRef]
- Marchi, S.; Canup, R.M.; Walker, R.J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 2018, 11, 77–81. [Google Scholar] [CrossRef]
- Collins, G.S.; Melosh, H.J.; Marcus, R.A. Earth Impact Effects Program A Web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci. 2005, 40, 817–840. [Google Scholar] [CrossRef] [Green Version]
- Korenaga, J. Initiation and evolution of plate tectonics on Earth: Theories and observations. Annu. Rev. Earth Planet. Sci. 2013, 41, 117–151. [Google Scholar] [CrossRef]
- Korenaga, J. Crustal evolution and mantle dynamics through Earth history. Phil. Trans. R. Soc. A 2018, 376, 20170408. [Google Scholar] [CrossRef] [PubMed]
- Bindeman, I.N.; Zakharov, D.O.; Palandri, J.; Greber, N.D.; Dauphas, N.; Retallack, G.J.; Hofmann, A.; Lackey, J.S.; Bekker, A. Rapid emergence of subaerial landmasses and onset of a modern hydrologic cycle 2.5 billion years ago. Nature 2018, 557, 545–548. [Google Scholar] [CrossRef]
- Johnson, B.W.; Wing, B.A. Limited Archean continental emergence reflected in an early Archean 18O-enriched ocean. Nat. Geosci. 2020, 13, 243–248. [Google Scholar] [CrossRef]
- Korenaga, J. Eustasy, supercontinental insulation, and the temporal variability of terrestrial heat flux. Earth Planet. Sci. Lett. 2007, 257, 350–358. [Google Scholar] [CrossRef]
- Hardebeck, J.; Anderson, D.L. Eustasy as a test of a Cretaceous superplume hypothesis. Earth Planet. Sci. Lett. 1996, 137, 101–108. [Google Scholar] [CrossRef]
- Gurnis, M. Phanerozoic marine inundation of continents driven by dynamic topography above subducting slabs. Nature 1993, 364, 589–593. [Google Scholar] [CrossRef] [Green Version]
- Conrad, C.P. The sold Earth’s influence on sea level. GSA Bull. 2013, 125, 1027–1052. [Google Scholar] [CrossRef]
- Lebrun, T.; Massol, H.; Chassefière, E.; Davaille, A.; Marcq, E.; Sarda, P.; Leblanc, F.; Brandeis, G. Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res. Planets 2013, 118, 1155–1176. [Google Scholar] [CrossRef] [Green Version]
- Solomatov, V.S. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 1995, 7, 266–274. [Google Scholar] [CrossRef]
- Debaille, V.; O’Neill, C.; Brandon, A.D.; Haenecour, P.; Yin, Q.Z.; Mattielli, N.; Treiman, A.H. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 2013, 373, 83–92. [Google Scholar] [CrossRef]
- Piper, J.D.A. A planetary perspective on Earth evolution: Lid tectonics before plate tectonics. Tectonophysics 2013, 589, 44–56. [Google Scholar] [CrossRef]
- Tang, M.; Chen, K.; Rudnick, R.L. Archean upper crust transition from mafit to felsic marks the onset of plate tectonics. Science 2016, 351, 372–375. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, M.D.; Harrison, T.M.; Manning, C.E. Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth Planet. Sci. Lett. 2010, 298, 367–376. [Google Scholar] [CrossRef]
- Greber, N.D.; Dauphas, N.; Bekker, A.; Ptacek, M.P.; Bindeman, I.N.; Hofmann, A. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago. Science 2017, 357, 1271–1274. [Google Scholar] [CrossRef] [Green Version]
- Keller, C.B.; Harrison, T.M. Constraining crustal silica on ancient Earth. Proc. Nat. Acad. Sci. USA 2020, 117, 21101–21107. [Google Scholar] [CrossRef] [PubMed]
- Windley, B.F.; Kusky, T.; Polat, A. Onset of plate tectonics by the Eoarchean. Precambrian Res. 2021, 352, 105980. [Google Scholar] [CrossRef]
- Hirschmann, M.M. Magma ocean influence on early atmosphere mass and composition. Earth Planet. Sci. Lett. 2012, 314–344, 48–57. [Google Scholar] [CrossRef]
- Moresi, L.; Solomatov, V. Mantle convection with a brittle lithosphere: Thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int. 1998, 133, 669–682. [Google Scholar] [CrossRef]
- Regenauer-Lieb, K.; Yuen, D.A.; Branlund, J. The initiation of subduction: Criticality by addition of water? Science 2001, 294, 578–580. [Google Scholar] [CrossRef] [Green Version]
- Korenaga, J. Scaling of plate-tectonic convection with pseudoplastic rheology. J. Geophys. Res. 2010, 115, B11405. [Google Scholar] [CrossRef] [Green Version]
- Wilde, S.A.; Valley, J.W.; Peck, W.H.; Graham, C.M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 2001, 409, 175–178. [Google Scholar] [CrossRef]
- Mojzsis, S.J.; Harrison, T.M.; Pidgeon, R.T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4300 Myr ago. Nature 2001, 409, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Rozel, A.B.; Golabek, G.J.; Jain, C.; Tackley, P.J.; Gerya, T. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 2017, 545, 332–335. [Google Scholar] [CrossRef]
- Piccolo, A.; Palin, R.M.; Kaus, B.J.P.; White, R.W. Generation of Earth’s early continents from a relatively cool Archean mantle. Geochem. Geophys. Geosys. 2019, 20, 1679–1697. [Google Scholar] [CrossRef] [Green Version]
- Korenaga, J. Energetics of mantle convection and the fate of fossil heat. Geophys. Res. Lett. 2003, 30, 1437. [Google Scholar] [CrossRef] [Green Version]
- Lyubetskaya, T.; Korenaga, J. Chemical composition of Earth’s primitive mantle and its variance, 2, Implications for global geodynamics. J. Geophys. Res. 2007, 112, B03212. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D.C. Passive margins through earth history. Earth-Sci. Rev. 2008, 91, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Padhi, C.M.; Korenaga, J.; Ozima, M. Thermal evolution of Earth with xenon degassing: A self-consistent approach. Earth Planet. Sci. Lett. 2012, 341–344, 1–9. [Google Scholar] [CrossRef]
- Condie, K.; Pisarevsky, S.; Korenaga, J.; Gardoll, S. Is the rate of supercontinent assembly changing with time? Precambrian Res. 2015, 259, 278–289. [Google Scholar] [CrossRef]
- Pehrsson, S.J.; Eglington, B.M.; Evans, D.A.D.; Huston, D.; Reddy, S.M. Metallogeny and its link to orogenic style during the Nuna supercontinent cycle. In Supercontinent Cycles Through Earth History; Li, Z.-X., Evans, D.A.D., Murphy, J.B., Eds.; Geological Society of London: London, UK, 2016; pp. 83–94. [Google Scholar] [CrossRef]
- Allegre, C.J.; Rousseau, D. The growth of the continent through geological time studied by Nd isotope analysis of shales. Earth Planet. Sci. Lett. 1984, 67, 19–34. [Google Scholar] [CrossRef]
- Nelson, B.K.; DePaolo, D.J. Rapid production of continental crust 1.7 to 1.9 b.y. ago: Nd isotopic evidence from the basament of the North American mid-continent. Geol. Soc. Am. Bull. 1985, 96, 746–754. [Google Scholar] [CrossRef]
- Patchett, P.J.; Arndt, N.T. Nd isotopes and tectonics of 1.9-1.7 Ga crustal genesis. Earth Planet. Sci. Lett. 1986, 78, 329–338. [Google Scholar] [CrossRef]
- Condie, K.C.; Aster, R.C. Episodic zircon age spectra of orogenic granitoids: The supercontinent connection and continental growth. Precambrian Res. 2010, 180, 227–236. [Google Scholar] [CrossRef]
- Pujol, M.; Marty, B.; Burgess, R.; Turner, G.; Philippot, P. Argon isotopic composition of Archaean atmosphere probes early Earth geodynamics. Nature 2013, 498, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Dhuime, B.; Hawkesworth, C.J.; Cawood, P.A.; Storey, C.D. A change in the geodynamics of continental growth 3 billion years ago. Science 2012, 335, 1334–1336. [Google Scholar] [CrossRef] [PubMed]
- Cawood, P.A.; Hawkesworth, C.J.; Dhuime, B. The continental record and the generation of continental crust. GSA Bull. 2013, 125, 14–32. [Google Scholar] [CrossRef] [Green Version]
- Kemp, A.I.S.; Hawkesworth, C.J. Growth and differentiation of the continental crust from isotope studies of accessory minerals. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4, pp. 379–421. [Google Scholar]
- Hawkesworth, C.J.; Cawood, P.A.; Dhuime, B. Tectonics and crustal evolution. GSA Today 2016, 9, 4–11. [Google Scholar] [CrossRef]
- Hawkesworth, C.J.; Cawood, P.A.; Dhuime, B.; Kemp, A.I.S. Earth’s continental lithosphere through time. Annu. Rev. Earth. Sci. 2017, 45, 169–198. [Google Scholar] [CrossRef] [Green Version]
- Dhuime, B.; Hawkesworth, C.J.; Delavault, H.; Cawood, P.A. Continental growth seen through the sedimentary record. Sed. Geol. 2017, 357, 16–32. [Google Scholar] [CrossRef] [Green Version]
- Hawkesworth, C.; Cawood, P.A.; Dhuime, B. Rates of generation and growth of the continental crust. Geosci. Front. 2019, 10, 165–173. [Google Scholar] [CrossRef]
- Korenaga, J. Estimating the formation age distribution of continental crust by unmixing zircon age data. Earth Planet. Sci. Lett. 2018, 482, 388–395. [Google Scholar] [CrossRef]
- Armstrong, R.L. The persistent myth of crustal growth. Aust. J. Earth Sci. 1991, 38, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Harrison, T.M. The Hadean crust: Evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 2009, 37, 479–505. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Boston, FL, USA, 1985; p. 312. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Christensen, N.I.; Mooney, W.D. Seismic velocity structure and composition of the continental crust: A global view. J. Geophys. Res. 1995, 100, 9761–9788. [Google Scholar] [CrossRef]
- Watson, S.; McKenzie, D. Melt generation by plumes: A study of Hawaiian volcanism. J. Petrol. 1991, 32, 501–537. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, A.W. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 2, pp. 61–101. [Google Scholar]
- Watts, A.B. Isostasy and Flexure of the Lithosphere; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Courtney, R.C.; Beaumont, C. Thermally-activated creep and flexure of the oceanic lithosphere. Nature 1983, 305, 201–204. [Google Scholar] [CrossRef]
- Watts, A.B.; Zhong, S. Observations of flexture and the rheology of oceanic lithosphere. Geophys. J. Int. 2000, 142, 855–875. [Google Scholar] [CrossRef] [Green Version]
- Sleep, N.H. Hotspots and mantle plumes: Some phenomenology. J. Geophys. Res. 1990, 95, 6715–6736. [Google Scholar] [CrossRef]
- Parai, R.; Mukhopadhyay, S. How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet. Sci. Lett. 2012, 317–318, 396–406. [Google Scholar] [CrossRef]
- Eriksson, P.G.; Mazumder, R.; Catuneanu, O.; Bumby, A.J.; Ountsche Ilondo, B. Precambrian continental freeboard and geological evolution: A time perspective. Earth-Sci. Rev. 2006, 79, 165–204. [Google Scholar] [CrossRef]
- Dong, J.; Fischer, R.A.; Stixrude, L.P.; Lithgow-Bertelloni, C.R. Temperature-dependent mantle water stroage capacity model. AGU Adv. 2021, 2, 32020AV00323. [Google Scholar] [CrossRef]
- Hirschmann, M.M.; Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 2009, 262, 4–16. [Google Scholar] [CrossRef]
- Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 2012, 313–314, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Beukes, N.J.; Cairncross, B. A lithostratigraphic-sedimentological reference profile for the Late Archaean Mozaan Group, Pongola Sequence: Application to sequence stratigraphy and correlation with the Witwatersrand Supergroup. S. Afr. J. Geol. 1991, 94, 44–69. [Google Scholar]
- Gutzmer, J.; Nhleko, N.; Beukes, N.J.; Pickard, A.; Barley, M.E. Geochemistry and ion microprobe (SHRIMP) age of a quartz porphyry sill in the Mozaan Group of the Pongola Supergroup: Implications for the Pongola and Witwatersrand Supergroups. S. Afr. J. Geol. 1999, 102, 139–146. [Google Scholar]
- Gumsley, A.P.; de Kock, M.O.; Rajesh, H.M.; Knoper, M.W.; Söderlund, U.; Ernst, R.E. The Hlagothi Complex: The identification of fragments from a Mesoarchaean large igneous province on the Kaapvaal Craton. Lithos 2013, 174, 333–348. [Google Scholar] [CrossRef]
- Sumner, D.Y.; Bowring, S.A. U-Pb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa. Precambrian Res. 1996, 79, 25–35. [Google Scholar] [CrossRef]
- Altermann, W.; Nelson, D.R. Sedimentation rates, basin analysis and regional correlations of three Neoarchaean and Palaeoproterozoic sub-basins of the Kaapvaal craton as inferred from precise U-Pb zircon ages from volcaniclastic sediments. Sed. Geol. 1998, 120, 225–256. [Google Scholar] [CrossRef]
- Knoll, A.H.; Beukes, N.J. Introduction: Initial investigation of a Neoarchean shel margin-basin transition (Transvaal Supergroup, South Africa). Precambrian Res. 2009, 169, 1–14. [Google Scholar] [CrossRef]
- Trendall, A.F.; Compston, W.; Nelson, D.R.; De Laeter, J.R.; Bennett, V.C. SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western Australia. Aust. J. Earth Sci. 2004, 51, 621–644. [Google Scholar] [CrossRef]
- Grandstaff, D.E.; Edelman, M.J.; Foster, R.W.; Zbinden, E.; Kimberley, M.M. Chemistry and mineralogy of Precambrian paleosols at the base of the Dominion and Pongola Groups (Transvaal, South Africa). Precambrian Res. 1986, 32, 97–131. [Google Scholar] [CrossRef]
- Nhleko, N. The Pongola Supergroup in Swaziland. Ph.D. Thesis, University Johannesburg, Johannesburg, South Africa, 2003. [Google Scholar]
- Bolhar, R.; Hofmann, A.; Siahi, M.; Feng, Y.X.; Delvigne, C. A trace element and Pb isotopic investigation into the provenance and deposition of stromatolitic carbonates, ironstones and associated shales of the ∼3.0 Ga Pongola Supergroup, Kaapvaal Craton. Geochim. Cosmochim. Acta 2015, 158, 57–78. [Google Scholar] [CrossRef]
- Hickman-Lewis, K.; Gourcerol, B.; Westall, F.; Manzini, D.; Cavalazzi, B. Reconstructing Palaeoarchaean microbial biomes flourshing in the presence of emergent landmasses using trace and rare element systematics. Precambrian Res. 2020, 342, 105689. [Google Scholar] [CrossRef]
- Viehmann, S.; Hoffmann, J.E.; Münker, C.; Bau, M. Decoupled Hf-Nd isotopes in Neoarchean seawater reveal weathering of emerged continents. Geology 2014, 42, 115–118. [Google Scholar] [CrossRef]
- Galili, N.; Shemesh, A.; Yam, R.; Brailovsky, I.; Sela-Adler, M.; Schuster, E.M.; Collom, C.; Bekker, A.; Planavsky, N.; Macdonald, F.A.; et al. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 2019, 365, 469–473. [Google Scholar] [CrossRef]
- Herwartz, D.; Pack, A.; Nagel, T.J. A CO2 greenhouse efficiently warmed the early Earth and decreased seawater 18O/16O before the onset of plate tectonics. Proc. Nat. Acad. Sci. USA 2021, 118, e2023617118. [Google Scholar] [CrossRef]
- Morbidelli, A.; Chambers, J.; Lunine, J.I.; Petit, J.M.; Robert, F.; Valsecchi, G.B.; Cyr, K.E. Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci. 2000, 35, 1309–1320. [Google Scholar] [CrossRef]
- Bounama, C.; Franck, S.; von Bloh, W. The fate of Earth’s ocean. Hydrol. Earth Sys. Sci. 2001, 5, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Valley, J.W.; Lackey, J.S.; Cavosie, A.J.; Clechenko, C.C.; Spicuzza, M.J.; Basei, M.A.S.; Bindeman, I.N.; Ferreira, V.P.; Sial, A.N.; King, E.M.; et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 2005, 150, 561–580. [Google Scholar] [CrossRef]
- Pope, E.C.; Bird, D.K.; Rosing, M.T. Isotope composition and volume of Earth’s early oceans. Proc. Nat. Acad. Sci. USA 2012, 109, 4371–4376. [Google Scholar] [CrossRef] [Green Version]
- Genda, H. Origin of Earth’s oceans: An assessment of the total amount, history and supply of water. Geochem. J. 2016, 50, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Ueda, H.; Shibuya, T. Composition of the primordial ocean just after its formation: Constraints from the reactions between the primitive crust and a strongly acidic, CO2-rich fluids at elevated temperatures and pressures. Minerals 2021, 11, 389. [Google Scholar] [CrossRef]
- Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 2008, 46, RG2007. [Google Scholar] [CrossRef] [Green Version]
- Monteux, J.; Andrault, D.; Guitreau, M.; Samuel, H.; Demouchy, S. A mushy Earth’s mantle for more than 500 Myr after the magma ocean solidification. Geophys. J. Int. 2020, 221, 1165–1181. [Google Scholar] [CrossRef]
- Andrault, D.; Bolfan-Casanova, N.; Lo Nigro, G.; Bouhifd, M.A.; Garbarino, G.; Mezouar, M. Solidus and liquidus profiles of chondritic mantle: Implication for melting of the Earth across its history. Earth Planet. Sci. Lett. 2011, 304, 251–259. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Korenaga, J. On the timescale of magma ocean solidification and its chemical consequences: 1. Thermodynamic database for liquid at high pressures. J. Geophys. Res. Solid Earth 2019, 124, 3382–3398. [Google Scholar] [CrossRef]
- Van Kranendonk, M.J. Two types of Archean continental crust: Plume and plate tectonics on early Earth. Am. J. Sci 2010, 310, 1187–1209. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korenaga, J. Was There Land on the Early Earth? Life 2021, 11, 1142. https://doi.org/10.3390/life11111142
Korenaga J. Was There Land on the Early Earth? Life. 2021; 11(11):1142. https://doi.org/10.3390/life11111142
Chicago/Turabian StyleKorenaga, Jun. 2021. "Was There Land on the Early Earth?" Life 11, no. 11: 1142. https://doi.org/10.3390/life11111142
APA StyleKorenaga, J. (2021). Was There Land on the Early Earth? Life, 11(11), 1142. https://doi.org/10.3390/life11111142