The Impact of Dehydration and Hyperthermia on Circulatory Glutathione Metabolism after Exercise in the Heat with Insights into the Role of Erythrocytes
Abstract
:1. Introduction
2. Materials and Method
2.1. Ethical Compliance and Participants
2.1.1. Preliminary Visit
2.1.2. Experimental Visits
2.1.3. Blood Preparation and Assays
2.1.4. Blood Preparation, Heating, and Assays
2.2. Statistical Analysis
3. Results
3.1. Experiment 1
3.1.1. Body Temperature, Hydration Status and Heart Rate
3.1.2. Effects of Exercise, Heat, and Dehydration on Circulating Glutathione
3.2. Experiment 2
Effects of Heat Stress on Erythrocytes on Glutathione Release
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Souza-Silva, A.A.; Moreira, E.; de Melo-Marins, D.; Schöler, C.M.; de Bittencourt, P.I.H., Jr.; Laitano, O. High intensity interval training in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation in physically active men. Temperature 2015, 3, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-Y.; Kwak, Y.-S. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. J. Exerc. Rehabil. 2016, 12, 113. [Google Scholar] [CrossRef]
- Reid, M.B.; Haack, K.E.; Franchek, K.M.; Valberg, P.A.; Kobzik, L.; West, M.S. Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J. Appl. Physiol. 1992, 73, 1797–1804. [Google Scholar] [CrossRef]
- Reid, M.B.; Shoji, T.; Moody, M.R.; Entman, M.L. Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals. J. Appl. Physiol. 1992, 73, 1805–1809. [Google Scholar] [CrossRef]
- Hillman, A.R.; Vince, R.; Taylor, L.; McNaughton, L.; Mitchell, N.; Siegler, J. Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress. Appl. Physiol. Nutr. Metab. 2011, 36, 698–706. [Google Scholar] [CrossRef]
- Mestre-Alfaro, A.; Ferrer, M.D.; Banquells, M.; Riera, J.; Drobnic, F.; Sureda, A.; Tur, J.A.; Pons, A. Body temperature modulates the antioxidant and acute immune responses to exercise. Free Radic. Res. 2012, 46, 799–808. [Google Scholar] [CrossRef]
- Quindry, J.; Miller, L.; McGinnis, G.; Kliszczewiscz, B.; Slivka, D.; Dumke, C.; Cuddy, J.; Ruby, B. Environmental temperature and exercise-induced blood oxidative stress. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 128–136. [Google Scholar] [CrossRef]
- Laitano, O.; Kalsi, K.K.; Pearson, J.; Lotlikar, M.; Reischak-Oliveira, A.; González-Alonso, J. Effects of graded exercise-induced dehydration and rehydration on circulatory markers of oxidative stress across the resting and exercising human leg. Eur. J. Appl. Physiol. 2012, 112, 1937–1944. [Google Scholar] [CrossRef] [PubMed]
- Sureda, A.; Mestre-Alfaro, A.; Banquells, M.; Riera, J.; Drobnic, F.; Camps, J.; Joven, J.; Tur, J.A.; Pons, A. Exercise in a hot environment influences plasma anti-inflammatory and antioxidant status in well-trained athletes. J. Therm. Biol. 2015, 47, 91–98. [Google Scholar] [CrossRef]
- Le Moal, E.; Pialoux, V.; Juban, G.; Groussard, C.; Zouhal, H.; Chazaud, B.; Mounier, R. Redox Control of Skeletal Muscle Regeneration. Antioxid. Redox Signal. 2017, 27, 276–310. [Google Scholar] [CrossRef]
- Ferreira, L.F.; Reid, M.B. Muscle-derived ROS and thiol regulation in muscle fatigue. J. Appl. Physiol. 2008, 104, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Powers, S.K.; Jackson, M.J. Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [Green Version]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Markers of Oxidative Status in Plasma and Erythrocytes of Transition Dairy Cows During Hot Season. J. Dairy Sci. 2002, 85, 2173–2179. [Google Scholar] [CrossRef] [Green Version]
- Kusmic, C.; Picano, E.; Busceti, C.L.; Petersen, C.; Barsacchi, R. The antioxidant drug dipyridamole spares the vitamin E and thiols in red blood cells after oxidative stress. Cardiovasc. Res. 2000, 47, 510–514. [Google Scholar] [CrossRef] [Green Version]
- Gohil, K.; Viguie, C.; Stanley, W.C.; Brooks, G.A.; Packer, L. Blood glutathione oxidation during human exercise. J. Appl. Physiol. 1988, 64, 115–119. [Google Scholar] [CrossRef]
- Laitano, O.; Kalsi, K.K.; Pook, M.; Oliveira, A.R.; González-Alonso, J. Separate and combined effects of heat stress and exercise on circulatory markers of oxidative stress in euhydrated humans. Eur. J. Appl. Physiol. 2010, 110, 953–960. [Google Scholar] [CrossRef]
- Inayama, T.; Oka, J.; Kashiba, M.; Saito, M.; Higuchi, M.; Umegaki, K.; Yamamoto, Y.; Matsuda, M. Moderate physical exercise induces the oxidation of human blood protein thiols. Life Sci. 2002, 70, 2039–2046. [Google Scholar] [CrossRef]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative Stress. Sports Med. 2006, 36, 327–358. [Google Scholar] [CrossRef]
- Laitano, O.; Ahn, B.; Patel, N.; Coblentz, P.D.; Smuder, A.J.; Yoo, J.-K.; Christou, D.D.; Adhihetty, P.J.; Ferreira, L.F. Pharmacological targeting of mitochondrial reactive oxygen species counteracts diaphragm weakness in chronic heart failure. J. Appl. Physiol. 2016, 120, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.S.; Oliveira, L.P., Jr.; Silveira, E.M.S.; Vianna, D.R.; Rossato, J.S.; Almeida, B.S.; Rodrigues, M.F.; Fernandes, A.J.M.; Costa, J.A.B.; Curi, R.; et al. MRP1/GS-X pump ATPase expression: Is this the explanation for the cytoprotection of the heart against oxidative stress-induced redox imbalance in comparison to skeletal muscle cells? Cell Biochem. Funct. 2007, 25, 23–32. [Google Scholar] [CrossRef]
- Ohtsuka, Y.; Yabunaka, N.; Fujisawa, H.; Watanabe, I.; Agishi, Y. Effect of thermal stress on glutathione metabolism in human erythrocytes. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 68, 87–91. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Pumerantz, A.C.; Fiala, K.A.; Roti, M.W.; Kavouras, S.; Casa, D.J.; Maresh, C.M. Human Hydration Indices: Acute and Longitudinal Reference Values. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 1970, 2, 92–98. [Google Scholar] [PubMed]
- Dill, D.B.; Costill, D.L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J. Appl. Physiol. 1974, 37, 247–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Heuvel, A.M.; Haberley, B.J.; Hoyle, D.J.; Croft, R.J.; Peoples, G.E.; Taylor, N.A. Hyperthermia and dehydration: Their independent and combined influences on physiological function during rest and exercise. Eur. J. Appl. Physiol. 2020, 120, 2813–2834. [Google Scholar] [CrossRef]
- Sen, C.K.; Marin, E.; Kretzschmar, M.; Hanninen, O. Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J. Appl. Physiol. 1992, 73, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Leeuwenburgh, C.; Ji, L. Glutathione Depletion in Rested and Exercised Mice: Biochemical Consequence and Adaptation. Arch. Biochem. Biophys. 1995, 316, 941–949. [Google Scholar] [CrossRef]
- Leeuwenburgh, C.; Ji, L.L. Alteration of glutathione and antioxidant status with exercise in unfed and refed rats. J. Nutr. 1996, 126, 1833–1843. [Google Scholar] [PubMed]
- Ellison, I.; Richie, J.P. Mechanisms of glutathione disulfide efflux from erythrocytes. Biochem. Pharmacol. 2012, 83, 164–169. [Google Scholar] [CrossRef]
- Stein, U.; Jürchott, K.; Walther, W.; Bergmann, S.; Schlag, P.M.; Royer, H.-D. Hyperthermia-induced Nuclear Translocation of Transcription Factor YB-1 Leads to Enhanced Expression of Multidrug Resistance-related ABC Transporters. J. Biol. Chem. 2001, 276, 28562–28569. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Mean ± SD |
---|---|
Age (years) | 26 ± 3.7 |
Height (cm) | 177 ± 0.1 |
Body mass (kg) | 79.7 ± 8.8 |
Body fat (%) | 22.3 ± 4.5 |
BMI (kg/m2) | 25.5 ± 2.6 |
VO2peak (mL/kg/min) | 40.81 ± 4.7 |
Peak work rate (W) | 288 ± 40.5 |
Temperate | Heat | |||||||
---|---|---|---|---|---|---|---|---|
Euhydration (EU-T) | Dehydration (DE-T) | Euhydration (EU-H) | Dehydration (DE-H) | |||||
Rest | Exercise | Rest | Exercise | Rest | Exercise | Rest | Exercise | |
USG | 1.020 ± 0.006 | 1.018 ± 0.009 | 1.027 ± 0.006 | 1.028 ± 0.005 | 1.019 ± 0.008 | 1.022 ± 0.008 | 1.026 ± 0.004 | 1.027 ± 0.004 |
Hb (g/dL) | 15.6 ± 0.7 | 16.9 ± 1.1 * | 16.1 ± 1.6 | 17.8 ± 1.2 * | 15.9 ± 1.6 | 17.8 ± 1.4 * | 15.6 ± 2.9 | 17.3 ± 3.1 * |
Htc (%) | 45.1 ± 1.1 | 46.2 ± 2.5 | 45.7 ± 3.2 | 46.8 ± 2.6 | 45.3 ± 2.6 | 47.2 ± 2.3 * | 45.9 ± 2.8 | 47.2 ± 2.8 * |
PV (%) | _ | −9.4 ± 7.5 | _ | −11.4 ± 4.1 | _ | −13.6 ± 7.8 | _ | −12.3 ± 6.3 |
BM (kg) | 80.1 ± 9.1 | 79.2 ± 9.1 * | 79.4 ± 9.4 | 78.7 ± 9.5 * | 79.9 ± 8.8 | 78.8 ± 8.8 * | 79.4 ± 8.9 | 78.4 ± 8.9 * |
SR (L/h) | _ | 0.83 ± 0.3 | _ | 0.65 ± 0.2 | _ | 1.2 ± 0.5 ¥ | _ | 1.03 ± 0.43 |
Dehydr (%) | 0 ± 0.6 | 1.04 ± 0.9 * | 0.91 ± 0.8 | 1.75 ± 1.1 * | 0.1 ± 0.7 | 1.6 ± 0.7 * | 0.81 ± 1.2 | 2.10 + 1.2 * |
Trectal (°C) | 36.9 ± 0.4 | 37.6 ± 0.5 * | 37.0 ± 0.3 | 37.8 ± 0.3 * | 37.0 ± 0.4 | 38.0 ± 0.5 * | 36.8 ± 0.2 | 38.0 ± 0.5 * |
35 °C | 41 °C | |||
---|---|---|---|---|
Plasma | Erythrocytes | Plasma | Erythrocytes | |
GSH (µmol/L) | 0.0 ± 0.0 | 1.51 ± 1.46 | 0.04 ± 0.09 | 2.82 ± 1.14 * |
GSSG (µmol/L) | 0.17 ± 0.06 | 2.90 ± 0.78 | 0.17 ± 0.08 | 3.03 ± 0.83 |
GSH/GSSG ratio | 0.0 ± 0.0 | 0.55 ± 0.52 | 0.19 ± 0.38 | 0.95 ± 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Melo-Marins, D.; Farinha, J.B.; Boeno, F.P.; Vieira, A.F.; Munhoz, S.V.; dos Santos, G.C.; Krause, M.; Laitano, O.; Reischak-Oliveira, A. The Impact of Dehydration and Hyperthermia on Circulatory Glutathione Metabolism after Exercise in the Heat with Insights into the Role of Erythrocytes. Life 2021, 11, 1144. https://doi.org/10.3390/life11111144
de Melo-Marins D, Farinha JB, Boeno FP, Vieira AF, Munhoz SV, dos Santos GC, Krause M, Laitano O, Reischak-Oliveira A. The Impact of Dehydration and Hyperthermia on Circulatory Glutathione Metabolism after Exercise in the Heat with Insights into the Role of Erythrocytes. Life. 2021; 11(11):1144. https://doi.org/10.3390/life11111144
Chicago/Turabian Stylede Melo-Marins, Denise, Juliano Boufleur Farinha, Franccesco Pinto Boeno, Alexandra Ferreira Vieira, Samuel Vargas Munhoz, Gabriela Cristina dos Santos, Mauricio Krause, Orlando Laitano, and Alvaro Reischak-Oliveira. 2021. "The Impact of Dehydration and Hyperthermia on Circulatory Glutathione Metabolism after Exercise in the Heat with Insights into the Role of Erythrocytes" Life 11, no. 11: 1144. https://doi.org/10.3390/life11111144
APA Stylede Melo-Marins, D., Farinha, J. B., Boeno, F. P., Vieira, A. F., Munhoz, S. V., dos Santos, G. C., Krause, M., Laitano, O., & Reischak-Oliveira, A. (2021). The Impact of Dehydration and Hyperthermia on Circulatory Glutathione Metabolism after Exercise in the Heat with Insights into the Role of Erythrocytes. Life, 11(11), 1144. https://doi.org/10.3390/life11111144