Machine Learning Use for Prognostic Purposes in Multiple Sclerosis
Abstract
:1. Introduction
2. What Can Be Gained from Machine Learning
3. Machine Learning and Multiple Sclerosis
3.1. Clinical Data
3.2. Patient-Derived Data
4. Problems and Future Hope
4.1. Amount of Data
4.2. Class Imbalance
4.3. Missing or Incorrect Data
4.4. Generalizability
4.5. Data Fusion
4.6. Explainable Machine Learning
5. Brief Description of Commonly Used Models
5.1. Linear and Logistic Models for Regression/Classification
5.2. k-Nearest Neighbors
5.3. Support Vector Machine
5.4. Decision Trees
5.5. Ensemble Methods
5.5.1. Bagging
5.5.2. Boosting
5.6. Neural Networks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Meskó, B.; Görög, M. A short guide for medical professionals in the era of artificial intelligence. NPJ Digit. Med. 2020, 3, 126. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. Lancet Digit. Health 2019, 1, e271–e297. [Google Scholar] [CrossRef]
- Myszczynska, M.A.; Ojamies, P.N.; Lacoste, A.M.B.; Neil, D.; Saffari, A.; Mead, R.; Hautbergue, G.M.; Holbrook, J.D.; Ferraiuolo, L. Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 2020, 16, 440–456. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Yamada, K. Machine learning studies on major brain diseases: 5-year trends of 2014–2018. Jpn. J. Radiol. 2019, 37, 34–72. [Google Scholar] [CrossRef]
- Stafford, I.S.; Kellermann, M.; Mossotto, E.; Beattie, R.M.; MacArthur, B.D.; Ennis, S. A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ Digit. Med. 2020, 3, 30. [Google Scholar] [CrossRef]
- Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Bordi, I.; Umeton, R.; Ricigliano, V.A.G.; Annibali, V.; Mechelli, R.; Ristori, G.; Grassi, F.; Salvetti, M.; Sutera, A. A Mechanistic, Stochastic Model Helps Understand Multiple Sclerosis Course and Pathogenesis. Int. J. Genom. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Lorscheider, J.; Buzzard, K.; Jokubaitis, V.; Spelman, T.; Havrdova, E.; Horakova, D.; Trojano, M.; Izquierdo, G.; Girard, M.; Duquette, P.; et al. Defining secondary progressive multiple sclerosis. Brain 2016, 139, 2395–2405. [Google Scholar] [CrossRef] [Green Version]
- Rotstein, D.; Montalban, X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat. Rev. Neurol. 2019, 15, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, R. Can we predict the evolution of an unpredictable disease like multiple sclerosis? Eur. J. Neurol. 2013, 20, 995–996. [Google Scholar] [CrossRef]
- Amato, M.P.; Derfuss, T.; Hemmer, B.; Liblau, R.; Montalban, X.; Soelberg Sørensen, P.; Miller, D.H.; For the 2016 ECTRIMS Focused Workshop Group; Alfredsson, L.; Aloisi, F.; et al. Environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Mult. Scler. 2018, 24, 590–603. [Google Scholar] [CrossRef] [Green Version]
- Briggs, F.B.S.; Thompson, N.R.; Conway, D.S. Prognostic factors of disability in relapsing remitting multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 30, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, W.J.; Altmann, D.R.; Prados, F.; Miszkiel, K.A.; Eshaghi, A.; Gandini Wheeler-Kingshott, C.A.M.; Barkhof, F.; Ciccarelli, O. Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis. Brain 2019, 142, 2276–2287. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, R.; Montomoli, C.; Mallucci, G.; Lugaresi, A.; Izquierdo, G.; Grand’Maison, F.; Duquette, P.; Shaygannejad, V.; Alroughani, R.; Grammond, P.; et al. BREMSO: A simple score to predict early the natural course of multiple sclerosis. Eur. J. Neurol. 2015, 22, 981–989. [Google Scholar] [CrossRef]
- Galea, I.; Lederer, C.; Neuhaus, A.; Muraro, P.A.; Scalfari, A.; Koch-Henriksen, N.; Heesen, C.; Koepke, S.; Stellmann, P.; Albrecht, H.; et al. A Web-based tool for personalized prediction of long-term disease course in patients with multiple sclerosis. Eur. J. Neurol. 2013, 20, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Weideman, A.M.; Barbour, C.; Tapia-Maltos, M.A.; Tran, T.; Jackson, K.; Kosa, P.; Komori, M.; Wichman, A.; Johnson, K.; Greenwood, M.; et al. New Multiple Sclerosis Disease Severity Scale Predicts Future Accumulation of Disability. Front. Neurol. 2017, 8, 598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosa, P.; Ghazali, D.; Tanigawa, M.; Barbour, C.; Cortese, I.; Kelley, W.; Snyder, B.; Ohayon, J.; Fenton, K.; Lehky, T.; et al. Development of a Sensitive Outcome for Economical Drug Screening for Progressive Multiple Sclerosis Treatment. Front. Neurol. 2016, 7, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bzdok, D.; Altman, N.; Krzywinski, M. Statistics versus machine learning. Nat. Methods 2018, 15, 233–234. [Google Scholar] [CrossRef]
- Palagi, L. Global optimization issues in deep network regression: An overview. J. Glob. Optim. 2019, 73, 239–277. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; pp. 96–161. [Google Scholar]
- Foster, K.R.; Koprowski, R.; Skufca, J.D. Machine learning, medical diagnosis, and biomedical engineering research—commentary. Biomed. Eng. Online 2014, 13, 94. [Google Scholar] [CrossRef] [Green Version]
- Van Kuijk, S.M.J.; Dankers, F.J.W.M.; Traverso, A.; Wee, L. Preparing Data for Predictive Modelling. In Fundamentals of Clinical Data Science; Kubben, P., Dumontier, M., Dekker, A., Eds.; Springer International Publishing: Cham, Germany, 2019; pp. 75–84. ISBN 978-3-319-99712-4. [Google Scholar]
- Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical Pattern Recognition: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 4–37. [Google Scholar] [CrossRef] [Green Version]
- Auger, S.D.; Jacobs, B.M.; Dobson, R.; Marshall, C.R.; Noyce, A.J. Big data, machine learning and artificial intelligence: A neurologist’s guide. Pract. Neurol. 2020, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kaka, H.; Zhang, E.; Khan, N. Artificial Intelligence and Deep Learning in Neuroradiology: Exploring the New Frontier. Can. Assoc. Radiol. J. 2020, 72, 084653712095429. [Google Scholar] [CrossRef] [PubMed]
- Afzal, H.M.R.; Luo, S.; Ramadan, S.; Lechner-Scott, J. The emerging role of artificial intelligence in multiple sclerosis imaging. Mult. Scler. J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Goldberg-Zimring, D.; Achiron, A.; Miron, S.; Faibel, M.; Azhari, H. Automated Detection and Characterization of Multiple Sclerosis Lesions in Brain MR Images. Magn. Reson. Imaging 1998, 16, 311–318. [Google Scholar] [CrossRef]
- Weinstock-Guttman, B.; Medin, J.; Khan, N.; Korn, J.R.; Lahti, E.; Silversteen, J.; Calkwood, J.; Silva, D.; Zivadinov, R. Assessing ‘No Evidence of Disease Activity’ status in patients with relapsing-remitting multiple sclerosis receiving fingolimod in routine clinical practice: A retrospective analysis of the multiple sclerosis clinical and magnetic resonance imaging outcomes in the USA (MS-MRIUS) Study. CNS Drugs 2018, 32, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, P.; Zhang, Q.; Zhu, Z.; Huang, Z.; Li, K. Mining Gene Expression Data of Multiple Sclerosis. PLoS ONE 2014, 9, e100052. [Google Scholar] [CrossRef]
- Jackson, K.C.; Sun, K.; Barbour, C.; Hernandez, D.; Kosa, P.; Tanigawa, M.; Weideman, A.M.; Bielekova, B. Genetic model of MS severity predicts future accumulation of disability. Ann. Hum. Genet. 2020, 84, 1–10. [Google Scholar] [CrossRef]
- Sugrue, L.P.; Desikan, R.S. What Are Polygenic Scores and Why Are They Important? JAMA 2019, 321, 1820–1821. [Google Scholar] [CrossRef]
- Yperman, J.; Becker, T.; Valkenborg, D.; Popescu, V.; Hellings, N.; Wijmeersch, B.V.; Peeters, L.M. Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis. BMC Neurol. 2020, 20, 105. [Google Scholar] [CrossRef] [Green Version]
- Trojano, M.; Tintore, M.; Montalban, X.; Hillert, J.; Kalincik, T.; Iaffaldano, P.; Spelman, T.; Sormani, M.P.; Butzkueven, H. Treatment decisions in multiple sclerosis—Insights from real-world observational studies. Nat. Rev. Neurol. 2017, 13, 105–118. [Google Scholar] [CrossRef]
- Matthews, P.M.; Block, V.J.; Leocani, L. E-health and multiple sclerosis. Curr. Opin. Neurol. 2020, 33, 271–276. [Google Scholar] [CrossRef]
- Goodin, D.S.; Reder, A.T.; Traboulsee, A.L.; Li, D.K.; Langdon, D.; Cutter, G.; Cook, S.; O’Donnell, T.; Kremenchutzky, M.; Oger, J.; et al. Predictive validity of NEDA in the 16- and 21-year follow-up from the pivotal trial of interferon beta-1b. Mult. Scler. 2019, 25, 837–847. [Google Scholar] [CrossRef]
- Bejarano, B.; Bianco, M.; Gonzalez-Moron, D.; Sepulcre, J.; Goñi, J.; Arcocha, J.; Soto, O.; Carro, U.D.; Comi, G.; Leocani, L.; et al. Computational classifiers for predicting the short-term course of Multiple sclerosis. BMC Neurol. 2011, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Wottschel, V.; Alexander, D.C.; Kwok, P.P.; Chard, D.T.; Stromillo, M.L.; Stefano, N.D.; Thompson, A.J.; Miller, D.H.; Ciccarelli, O. Predicting outcome in clinically isolated syndrome using machine learning. Neuroimage Clin. 2015, 7, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Yoo, Y.; Tang, L.Y.W.; Li, D.K.B.; Metz, L.; Kolind, S.; Traboulsee, A.L.; Tam, R.C. Deep learning of brain lesion patterns and user-defined clinical and MRI features for predicting conversion to multiple sclerosis from clinically isolated syndrome. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2017, 7, 250–259. [Google Scholar] [CrossRef]
- Zhao, Y.; Healy, B.C.; Rotstein, D.; Guttmann, C.R.G.; Bakshi, R.; Weiner, H.L.; Brodley, C.E.; Chitnis, T. Exploration of machine learning techniques in predicting multiple sclerosis disease course. PLoS ONE 2017, 12, e0174866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, M.T.; Traboulsee, A.L.; Li, D.K.; Carruthers, R.L.; Freedman, M.S.; Kolind, S.H.; Tam, R. Machine learning in secondary progressive multiple sclerosis: An improved predictive model for short-term disability progression. Mult. Scler. J. Exp. Transl. Clin. 2019, 5, 205521731988598. [Google Scholar] [CrossRef] [PubMed]
- Seccia, R.; Gammelli, D.; Dominici, F.; Romano, S.; Landi, A.C.; Salvetti, M.; Tacchella, A.; Zaccaria, A.; Crisanti, A.; Grassi, F.; et al. Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis. PLoS ONE 2020, 15, e0230219. [Google Scholar] [CrossRef] [Green Version]
- Brichetto, G.; Monti Bragadin, M.; Fiorini, S.; Battaglia, M.A.; Konrad, G.; Ponzio, M.; Pedullà, L.; Verri, A.; Barla, A.; Tacchino, A. The hidden information in patient-reported outcomes and clinician-assessed outcomes: Multiple sclerosis as a proof of concept of a machine learning approach. Neurol. Sci. 2020, 41, 459–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; SUMMIT Investigators; Wang, T.; Bove, R.; Cree, B.; Henry, R.; Lokhande, H.; Polgar-Turcsanyi, M.; Anderson, M.; Bakshi, R.; et al. Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study. NPJ Digit. Med. 2020, 3, 135. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.F.; Oliveira, H.; Batista, S.; Cruz, L.; Pinto, M.; Correia, I.; Martins, P.; Teixeira, C. Prediction of Disease Progression and Outcomes in Multiple Sclerosis with Machine Learning. Sci. Rep. 2020, 10, 21038. [Google Scholar] [CrossRef] [PubMed]
- Myers, P.D.; Ng, K.; Severson, K.; Kartoun, U.; Dai, W.; Huang, W.; Anderson, F.A.; Stultz, C.M. Identifying unreliable predictions in clinical risk models. NPJ Digit. Med. 2020, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruffaerts, R. Machine learning in neurology: What neurologists can learn from machines and vice versa. J. Neurol. 2018, 265, 2745–2748. [Google Scholar] [CrossRef] [PubMed]
- Chitnis, T.; Glanz, B.I.; Gonzalez, C.; Healy, B.C.; Saraceno, T.J.; Sattarnezhad, N.; Diaz-Cruz, C.; Polgar-Turcsanyi, M.; Tummala, S.; Bakshi, R.; et al. Quantifying neurologic disease using biosensor measurements in-clinic and in free-living settings in multiple sclerosis. NPJ Digit. Med. 2019, 2, 123. [Google Scholar] [CrossRef] [Green Version]
- Mondschein, C.F.; Monda, C. The EU’s General Data Protection Regulation (GDPR) in a Research Context. In Fundamentals of Clinical Data Science; Kubben, P., Dumontier, M., Dekker, A., Eds.; Springer International Publishing: Cham, Germany, 2019; pp. 55–71. ISBN 978-3-319-99712-4. [Google Scholar]
- Available online: https://www.cnil.fr/en/data-protection-around-the-world (accessed on 25 December 2020).
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. Jair 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Wachter, R.M.; Murray, S.G.; Adler-Milstein, J. Restricting the Number of Open Patient Records in the Electronic Health Record: Is the Record Half Open or Half Closed? JAMA 2019, 321, 1771–1773. [Google Scholar] [CrossRef]
- Kiiski, H.; Jollans, L.; Donnchadha, S.Ó.; Nolan, H.; Lonergan, R.; Kelly, S.; O’Brien, M.C.; Kinsella, K.; Bramham, J.; Burke, T.; et al. Machine Learning EEG to Predict Cognitive Functioning and Processing Speed Over a 2-Year Period in Multiple Sclerosis Patients and Controls. Brain Topogr. 2018, 31, 346–363. [Google Scholar] [CrossRef]
- Khaligh-Razavi, S.-M.; Sadeghi, M.; Khanbagi, M.; Kalafatis, C.; Nabavi, S.M. A Self-Administered, Artificial Intelligence (AI) Platform for Cognitive Assessment in Multiple Sclerosis (MS). BMC Neurol. 2020, 20, 193. [Google Scholar] [CrossRef]
- De Meo, E.; Portaccio, E.; Giorgio, A.; Ruano, L.; Goretti, B.; Niccolai, C.; Patti, F.; Chisari, C.G.; Gallo, P.; Grossi, P.; et al. Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis. JAMA Neurol. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Futoma, J.; Simons, M.; Panch, T.; Doshi-Velez, F.; Celi, L.A. The myth of generalisability in clinical research and machine learning in health care. Lancet Digit. Health 2020, 2, e489–e492. [Google Scholar] [CrossRef]
- Wottschel, V.; Chard, D.T.; Enzinger, C.; Filippi, M.; Frederiksen, J.L.; Gasperini, C.; Giorgio, A.; Rocca, M.A.; Rovira, A.; De Stefano, N.; et al. SVM recursive feature elimination analyses of structural brain MRI predicts near-term relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage Clin. 2019, 24, 102011. [Google Scholar] [CrossRef] [PubMed]
- Aslani, S.; Murino, V.; Dayan, M.; Tam, R.; Sona, D.; Hamarneh, G. Scanner invariant multiple sclerosis lesion segmentation from MRI. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 781–785. [Google Scholar] [CrossRef]
- Huang, S.-C.; Pareek, A.; Seyyedi, S.; Banerjee, I.; Lungren, M.P. Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. NPJ Digit. Med. 2020, 3, 136. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, A.; Riyahi-Alam, S.; Saeedi, R.; Roostaei, T.; Nazeri, A.; Aghsaei, A.; Doosti, R.; Ganjgahi, H.; Bodini, B.; Shakourirad, A.; et al. Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis. Neuroimage 2015, 7, 306–314. [Google Scholar] [CrossRef]
- Tacchella, A.; Romano, S.; Ferraldeschi, M.; Salvetti, M.; Zaccaria, A.; Crisanti, A.; Grassi, F. Collaboration between a human group and artificial intelligence can improve prediction of multiple sclerosis course: A proof-of- principle study. F1000Research 2017, 6, 2172. [Google Scholar] [CrossRef]
- Kurvers, R.H.; Herzog, S.M.; Hertwig, R.; Krause, J.; Carney, P.A.; Bogart, A.; Argenziano, G.; Zalaudek, I.; Wolf, M. Boosting medical diagnostics by pooling independent judgments. Proc. Natl. Acad. Sci. USA 2016, 113, 8777–8782. [Google Scholar] [CrossRef] [Green Version]
- Shmueli, G. To explain or to predict? Stat. Sci. 2010, 25, 289–310. [Google Scholar] [CrossRef]
- Tonekaboni, S.; Joshi, S.; McCradden, M.D.; Goldenberg, A. What Clinicians Want: Contextualizing Explainable Machine Learning for Clinical End Use. Proc. Mach. Learn. Res. 2019, 106, 359–380. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?” Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar] [CrossRef]
- Shrikumar, A.; Greenside, P.; Kundaje, A. Learning Important Features through Propagating Activation Differences. Proc. Mach. Learn. Res. 2017, 70, 3145–3153. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural Information Processing Systems 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 4765–4774. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 821. [Google Scholar]
- Kleinbaum, D.G.; Dietz, K.; Gail, M.; Klein, M.; Klein, M. Logistic Regression; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Xu, H.; Caramanis, C.; Mannor, S. Robust regression and lasso. IEEE Trans. Inf. Theory 2010, 56, 3561–3574. [Google Scholar] [CrossRef] [Green Version]
- Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185. [Google Scholar]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural. Inf. Process. Syst. 1996, 9, 155–161. [Google Scholar]
- Shawe-Taylor, J.; Cristianini, N. ; others. Kernel Methods for Pattern Analysis; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Gaonkar, B.; Shinohara, R.T.; Davatzikos, C. Interpreting support vector machine models for multivariate group wise analysis in neuroimaging. Med. Image Anal. 2015, 24, 190–204. [Google Scholar] [CrossRef] [Green Version]
- Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 1999, 10, 61–74. [Google Scholar]
- Rokach, L.; Maimon, O. Decision trees. In Data Mining and Knowledge Discovery Handbook; Springer: Berlin/Heidelberg, Germany, 2005; pp. 165–192. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 112. [Google Scholar]
- Qi, Y. Random forest for bioinformatics. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 307–323. [Google Scholar]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Schapire, R.E. Explaining adaboost. In Empirical Inference; Springer: Berlin/Heidelberg, Germany, 2013; pp. 37–52. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Rosenblatt, F. The Perceptron, a Perceiving and Recognizing Automaton Project Para; Cornell Aeronautical Laboratory: Buffalo, NY, USA, 1957. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Obermeyer, Z.; Lee, T.H. Lost in Thought—The Limits of the Human Mind and the Future of Medicine. N. Engl. J. Med. 2017, 377, 1209–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz Rivera, S.; Liu, X.; Chan, A.-W.; Denniston, A.K.; Calvert, M.J.; SPIRIT-AI and CONSORT-AI Working Group; SPIRIT-AI and CONSORT-AI Steering Group; SPIRIT-AI and CONSORT-AI Consensus Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: The SPIRIT-AI extension. Nat. Med. 2020, 26, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Mateen, B.A.; Liley, J.; Denniston, A.K.; Holmes, C.C.; Vollmer, S.J. Improving the quality of machine learning in health applications and clinical research. Nat. Mach. Intell. 2020, 2, 554–556. [Google Scholar] [CrossRef]
- Kolachalama, V.B.; Garg, P.S. Machine learning and medical education. NPJ Digit. Med. 2018, 1, 54. [Google Scholar] [CrossRef] [PubMed]
- Brouillette, M. AI added to the curriculum for doctors-to-be. Nat. Med. 2019, 25, 1808–1809. [Google Scholar] [CrossRef] [PubMed]
Reference | Subjects (Records) | Endpoint. Data Used | Model (Best Performing in Bold) | Most Informative Features for the Best Performing Model | Metrics for the Best Model |
---|---|---|---|---|---|
Bejarano, 2011 [37] | 71 + 96 (1/patient) | ΔEDSS > 1 + EDSS range 2 years later + relapse occurrence. Clinical, MRI, MEPs | Naïve Bayes, DT, LogR, NN | EDSS, MEPs | EDSS range: Acc = 80%, Sens = 92%, Spec = 61% AUC = 76 % ΔEDSS > 1: Acc = 75%, Sens = 87%, Spec = 52%, AUC = 74 Relapses: Acc = 67%, Sens = 53%, Spec = 77%, AUC = 65% |
Wottschel, 2015 [38] | 74 (1/patient) | CIS converts to MS in 1 or 3 years. Clinical, MRI | L-SVM | CIS to MS at 1 year: lesion load, type of presentation, gender CIS to MS at 3 years: age, EDSS at onset; lesion characteristics: count, average proton density, average distance from brain center, shortest horizontal distance from the vertical axis | CIS to MS in 1 y: Sens = 77%, Spec = 66% CIS to MS in 3 y: Sens = 60%, Spec = 66% |
Yoo, 2017 [39] | 140 (1/patient) | CIS converts to MS in 2 years. Clinical, MRI | LogR, RF, CNN | Not assessed | Spec = 70.4%, Sens = 78.7%, Acc = 75.0%, AUC = 74.6% |
Zhao, 2017 [40] | up to 1693 (1/patient) | ΔEDSS ≥ 1.5 at 5 years. Clinical, ±MRI | LogR, L-SVM | Non progressive cases: EDSS at 0, 6, 12 months; disease activity at 0, 6, 12 months; race, ethnicity, family history, brain parenchymal fraction Progressive cases: ΔEDSS; disease activity; pyramidal function and change at 1 y; disease active at baseline, T2 lesion volume | Spec = 59%, Sens = 81%, Acc = 67% |
Law, 2019 [41] | 485 (1/patient) | ΔEDSS ≥ 1 at 2 years in SP MS. Clinical, MRI | Individual and ensemble LogR, L-SVM, DT, RF, ADB | EDSS, 9-Hole Peg Test, Timed 25-Foot Walk | Spec = 61% (RF), Sens = 59%, PPV = 32.1%, NPV = 82.8 |
Seccia, 2020 [42] | up to 1515 (up to 14,923) | RR converts to SP at 0.5 to 2 years. Clinical, ±MRI | NL-SVM, RF, ADB, KNN, CNN | Not assessed | RR to SP at 2 y (RF): Spec = 86.2%, Sens = 84.1%, Acc = 86.2%, PPV = 8.9% RR to SP at 2 y (NN): Spec = 98.5%, Sens = 67.3%, Acc = 98%, PPV =42.7% |
Brichetto, 2020 [43] | 810 (up to 3398) | RR converts to SP within 4 months. Clinical, patient reported outcomes | LogR, L-SVM, KNN and other linear classifiers | Not reported | Acc = 82.6% |
Zhao, 2020 [44] | 724 (CLIMB dataset) + 400 (EPIC dataset) (1/patient) | ΔEDSS ≥ at 5 years. Clinical, MRI | LogR, L-SVM, ensemble models (RF, boosting methods) | Value at a given time or change in 2 years of: EDSS, pyramidal function, disease category (RR, SP etc.), MRI lesions, ambulatory index, cerebellar function | CLIMB dataset, XGBoost Spec = 69%, Sens = 79%, Acc = 71%, AUC = 78% |
Pinto, 2020 [45] | up to 187 | RR to SP @ 5 years and EDSS > 3 at 6 or 10 years. Clinical, MRI | KNN, DT, LogR, L-SVM | SP development: EDSS, FS scores (sensory, brainstem, cerebellar and mental), CNS involvement in relapses (pyramidal tract, neuropsychological and brainstem), age at onset. Disease severity:EDSS, FS scores and CNS affected functions during relapses | RR to SP: Spec = 77%, Sens = 76%, AUC = 86%, EDSS > 3 @ 6 y: Spec = 81%, Sens = 84%, AUC = 89% EDSS > 3 at 10 y: Spec = 79%, Sens = 77%, AUC = 85% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seccia, R.; Romano, S.; Salvetti, M.; Crisanti, A.; Palagi, L.; Grassi, F. Machine Learning Use for Prognostic Purposes in Multiple Sclerosis. Life 2021, 11, 122. https://doi.org/10.3390/life11020122
Seccia R, Romano S, Salvetti M, Crisanti A, Palagi L, Grassi F. Machine Learning Use for Prognostic Purposes in Multiple Sclerosis. Life. 2021; 11(2):122. https://doi.org/10.3390/life11020122
Chicago/Turabian StyleSeccia, Ruggiero, Silvia Romano, Marco Salvetti, Andrea Crisanti, Laura Palagi, and Francesca Grassi. 2021. "Machine Learning Use for Prognostic Purposes in Multiple Sclerosis" Life 11, no. 2: 122. https://doi.org/10.3390/life11020122
APA StyleSeccia, R., Romano, S., Salvetti, M., Crisanti, A., Palagi, L., & Grassi, F. (2021). Machine Learning Use for Prognostic Purposes in Multiple Sclerosis. Life, 11(2), 122. https://doi.org/10.3390/life11020122