Complete Mitochondrial Genome of Trichuristrichiura from Macaca sylvanus and Papio papio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Parasites, DNA Extraction and Genotyping of Worms
2.3. Mitochondrial Genome Amplification and Sequencing
2.4. Assembly, Annotation, and Genome Sequence Analyses
2.5. Phylogenetic Analysis
3. Results
3.1. Annotation and Features of Mitochondrial Genomes
3.2. Comparative Sequence Analyses
3.3. Phylogenetic Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections. (accessed on 2 March 2020).
- Mogaji, H.O.; Dedeke, G.A.; Bada, B.S.; Bankole, S.; Adeniji, A.; Fagbenro, M.T.; Omitola, O.O.; Oluwole, A.S.; Odoemene, N.S.; Abe, E.M.; et al. Distribution of ascariasis, trichuriasis and hookworm infections in Ogun State, Southwestern Nigeria. PLoS ONE 2020, 15, e0233423. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.H.; Gasser, R.B.; Su, A.; Nejsum, P.; Peng, L.; Lin, R.Q.; Li, M.W.; Xu, M.J.; Zhu, X.Q. Clear genetic distinctiveness between human-and pig-derived Trichuris based on analysis of mitochondrial datasets. PLoS Negl. Trop. Dis. 2012, 6, e1539. [Google Scholar] [CrossRef] [Green Version]
- Summers, R.W.; Elliott, D.E.; Urban, J.F., Jr.; Thompson, R.; Weinstock, J.V. Trichuris suis therapy in Crohn’s disease. Gut 2005, 54, 87–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summers, R.W.; Elliott, D.E.; Urban, J.F., Jr.; Thompson, R.A.; Weinstock, J.V. Trichuris suis therapy for active ulcerative colitis: A randomized controlled trial. Gastroenterology 2005, 128, 825–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summers, R.W.; Elliott, D.E.; Qadir, K.; Urban, J.F., Jr.; Thompson, R.; Weinstock, J.V. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am. J. Gastroenterol. 2003, 98, 2034–2041. [Google Scholar] [CrossRef] [PubMed]
- Bager, P.; Arnved, J.; Rønborg, S.; Wohlfahrt, J.; Poulsen, L.K.; Westergaard, T.; Petersen, H.W.; Kristensen, B.; Thamsborg, S.; Roepstorff, A.; et al. Trichuris suis ova therapy for allergic rhinitis: A randomized, double-blind, placebo-controlled clinical trial. J. Allergy Clin. Immunol. 2010, 125, 123–130.e3. [Google Scholar] [CrossRef]
- Hepworth, M.R.; Hamelmann, E.; Lucius, R.; Hartmann, S. Looking into the future of Trichuris suis therapy. J. Allergy Clin. Immunol. 2010, 125, 767–769. [Google Scholar] [CrossRef]
- Cantacessi, C.; Young, N.D.; Nejsum, P.; Jex, A.R.; Campbell, B.E.; Hall, R.S.; Thamsborg, S.M.; Scheerlinck, J.P.; Gasser, R.B. The transcriptome of Trichuris suis—First molecular insights into a parasite with curative properties for key immune diseases of humans. PLoS ONE 2011, 6, e23590. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.; Fried, B. The use of Trichuris suis and other helminth therapies to treat Crohn’s disease. Parasitol. Res. 2007, 100, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Elliott, D.E.; Weinstock, J.; Summers, R.W.; Landry-Wheeler, A.; Silver, N.; Harnett, M.D.; Hanauer, S.B. Randomised clinical trial: The safety and tolerability of Trichuris suis ova in patients with Crohn’s disease. Aliment. Pharmacol. Ther. 2013, 38, 255–263. [Google Scholar] [CrossRef]
- Hiemstra, I.H.; Klaver, E.J.; Vrijland, K.; Kringel, H.; Andreasen, A.; Bouma, G.; Kraal, G.; van Die, I.; den Haan, J.M. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells. Mol. Immunol. 2014, 60, 1–7. [Google Scholar] [CrossRef]
- Kern, E.M.A.; Kim, T.; Park, J.-K. The Mitochondrial Genome in Nematode Phylogenetics. Front. Ecol. Evol. 2020, 8, 250. [Google Scholar] [CrossRef]
- Egger, B.; Bachmann, L.; Fromm, B. Atp8 is in the ground pattern of flatworm mitochondrial genomes. BMC Genomics 2017, 18, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavrov, D.V.; Brown, W.M. Trichinella spiralis mtDNA: A nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAS and has a gene arrangement relatable to those of coelomate metazoans. Genetics 2001, 157, 621–637. [Google Scholar]
- Liu, G.H.; Wang, Y.; Xu, M.J.; Zhou, D.H.; Ye, Y.G.; Li, J.Y.; Li, J.; Song, H.; Lin, R.; Zhu, X.Q. Characterization of the complete mitochondrial genomes of two whipworms Trichuris ovis and Trichuris discolor (Nematoda: Trichuridae). Infect. Genet. Evol. 2012, 12, 1635–1641. [Google Scholar] [CrossRef]
- Liu, G.H.; Gasser, R.B.; Nejsum, P.; Wang, Y.; Chen, Q.; Song, H.Q.; Zhu, X.Q. Mitochondrial and nuclear ribosomal DNA evidence supports the existence of a new Trichuris species in the endangered françois’ leaf-monkey. PLoS ONE 2013, 8, e66249. [Google Scholar] [CrossRef] [Green Version]
- Mohandas, N.; Pozio, E.; La Rosa, G.; Korhonen, P.K.; Young, N.D.; Koehler, A.V.; Hall, R.S.; Sternberg, P.W.; Boag, P.R.; Jex, A.R.; et al. Mitochondrial genomes of Trichinella species and genotypes—A basis for diagnosis, and systematic and epidemiological explorations. Int. J. Parasitol. 2014, 44, 1073–1080. [Google Scholar] [CrossRef]
- Hawash, M.B.; Andersen, L.O.; Gasser, R.B.; Stensvold, C.; Nejsum, P. Mitochondrial genome analyses suggest multiple Trichuris species in humans, baboons, and pigs from different geographical regions. PLoS Negl. Trop. Dis. 2015, 9, e0004059. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Song, L.; Zhu, L.; Chen, M.; Ren, G.; Liu, G.H.; Zhao, G.H. Morphological and molecular confirmation of the validity of Trichuris rhinopiptheroxella in the endangered golden snub-nosed monkey (Rhinopithecus roxellana). J. Helminthol. 2019, 93, 601–607. [Google Scholar] [CrossRef]
- Kim, J.; Kern, E.; Kim, T.; Sim, M.; Kim, J.; Kim, Y.; Park, C.; Nadler, S.A.; Park, J.K. Phylogenetic analysis of two Plectus mitochondrial genomes (Nematoda: Plectida) supports a sister group relationship between Plectida and Rhabditida within Chromadorea. Mol. Phylogenet. Evol. 2017, 107, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.A.; Shabbir, M.A.B.; Xin, Y.; Ikram, M.; Hafeez, M.A.; Wang, C.; Zhang, T.; Zhou, C.; Yan, X.; Hassan, M.; et al. Characterization of the Complete Mitochondrial Genome of a Whipworm Trichuris skrjabini (Nematoda: Trichuridae). Genes 2019, 10, 438. [Google Scholar] [CrossRef] [Green Version]
- Rivero, J.; Cutillas, C.; Callejón, R. Trichuris trichiura (Linnaeus, 1771) from human and non-human primates: Morphology, biometry, host specificity, molecular characterization, and phylogeny. Front. Vet. Parasitol. (in press).
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phyl. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Laslett, D.; Canbäck, B. ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 2008, 24, 172–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, T.; Chan, P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Talavera, G.; Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007, 56, 564–577. [Google Scholar] [CrossRef] [Green Version]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefort, V.; Longueville, J.; Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Huelsenbeck, J.P. MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [Green Version]
- Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008, 25, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Posada, D.; Buckley, T.R. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst. Biol. 2004, 53, 793–808. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Cavallero, S.; De Liberato, C.; Friedrich, K.G.; Di Cave, D.; Masella, V.; D’Amelio, S.; Berrilli, F. Genetic heterogeneity and phylogeny of Trichuris spp. from captive non-human primates based on ribosomal DNA sequence data. Infect. Genet. Evol. 2015, 34, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Cavallero, S.; Nejsum, P.; Cutillas, C.; Callejón, R.; Doležalová, J.; Modrý, D.; D’Amelio, S. Insights into the molecular systematics of Trichuris infecting captive primates based on mitochondrial DNA analysis. Vet. Parasitol. 2019, 272, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhao, B.; Hoberg, E.P.; Li, M.; Zhou, X.; Gu, X.; Lai, W.; Peng, X.; Yang, G. Genetic characterisation and phylogenetic status of whipworms (Trichuris spp.) from captive non-human primates in China, determined by nuclear and mitochondrial sequencing. Parasit. Vectors 2018, 11, 516. [Google Scholar] [CrossRef] [PubMed]
- Rivero, J.; García-Sánchez, Á.M.; Zurita, A.; Cutillas, C.; Callejón, R. Trichuris trichiura isolated from Macaca sylvanus: Morphological, biometrical, and molecular study. BMC Vet. Res. 2020, 16, 445. [Google Scholar] [CrossRef]
- Ramesh, A.; Small, S.T.; Kloos, Z.A.; Kazura, J.W.; Nutman, T.B.; Serre, D.; Zimmerman, P.A. The complete mitochondrial genome sequence of the filarial nematode Wuchereria bancrofti from three geographic isolates provides evidence of complex demographic history. Mol. Biochem. Parasitol. 2012, 183, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.H.; Zhao, L.; Song, H.Q.; Zhao, G.H.; Cai, J.Z.; Zhao, Q.; Zhu, X. Chabertia erschowi (Nematoda) is a distinct species based on nuclear ribosomal DNA sequences and mitochondrial DNA sequences. Parasit. Vectors 2014, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Jex, A.R.; Waeschenbach, A.; Hu, M.; van Wyk, J.A.; Beveridge, I.; Littlewood, D.T.; Gasser, R.B. The mitochondrial genomes of Ancylostoma caninum and Bunostomum phlebotomum—two hookworms of animal health and zoonotic importance. BMC Genomics 2009, 10, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blouin, M.S. Molecular prospecting for cryptic species of nematodes: Mitochondrial DNA versus internal transcribed spacer. Int. J. Parasitol. 2002, 32, 527–531. [Google Scholar] [CrossRef]
- Hu, M.; Chilton, N.B.; Gasser, R.B. The mitochondrial genomes of the human hookworms, Ancylostoma duodenale and Necator americanus (Nematoda: Secernentea). Int. J. Parasitol. 2002, 32, 145–158. [Google Scholar] [CrossRef]
- Wasmuth, J.; Schmid, R.; Hedley, A.; Blaxter, M. On the extent and origins of genic novelty in the phylum Nematoda. PLOS Negl. Trop. Dis. 2008, 2, e258. [Google Scholar] [CrossRef]
- Ravasi, D.F.; O’Riain, M.J.; Davids, F.; Illing, N. Phylogenetic evidence that two distinct Trichuris genotypes infect both humans and non-human primates. PLoS ONE 2012, 7, e44187. [Google Scholar] [CrossRef] [Green Version]
- Nadler, S.A.; DE León, G.P. Integrating molecular and morphological approaches for characterizing parasite cryptic species: Implications for parasitology. Parasitology 2011, 138, 1688–1709. [Google Scholar] [CrossRef] [PubMed]
- Cutillas, C.; De Rojas, M.; Zurita, A.; Oliveros, R.; Callejón, R. Trichuris colobae n. sp. (Nematoda: Trichuridae), a new species of Trichuris from Colobus guereza kikuyensis. Parasitol. Res. 2014, 113, 2725–2732. [Google Scholar] [CrossRef] [PubMed]
- Callejón, R.; Halajian, A.; Cutillas, C. Description of a new species, Trichuris ursinus n. sp. (Nematoda: Trichuridae) from Papio ursinus Keer, 1792 from South Africa. Infect. Genet. Evol. 2017, 51, 182–193. [Google Scholar] [CrossRef]
- Betson, M.; Søe, M.; Nejsum, P. Human trichuriasis: Whipworm genetics, phylogeny, transmission and future research directions. Curr. Trop. Med. Rep. 2015, 2, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Saijuntha, W.; Sithithaworn, P.; Wongkham, S.; Laha, T.; Pipitgool, V.; Tesana, S.; Chilton, N.B.; Petney, T.N.; Andrews, R.H. Evidence of a species complex within the food-borne trematode Opisthorchis viverrini and possible co-evolution with their first intermediate hosts. Int. J. Parasitol. 2007, 37, 695–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Species | Host Species/Geographical Origin | GenBank Accession Number |
---|---|---|
Trichuris trichiura | Macaca sylvanus/Spain | MW448470 |
Trichuris sp. | Macaca sylvanus/Spain | MW448471 |
Trichuris trichiura | Papio papio/Spain | MW448472 |
Trichuris trichiura | Homo sapiens/(unknown geographical location) | AP017704 |
Trichuris trichiura | Homo sapiens/China | NC_017750 |
Trichuris trichiura | Homo sapiens/China | GU385218 |
Trichuris trichiura | Homo sapiens/Uganda | KT449826 |
Trichuris sp. | Papio anubis/USA | KT449825 |
Trichuris sp. | Papio hamadryas/Denmark | KT449824 |
Trichuris sp. | Trachypithecus francoisi/China | KC461179 |
1Trichinella pseudospiralis | Coragypus atratus/USA | KM357411 |
Species | Host Species/Geographical Origin | Order | GenBank Accession Number |
---|---|---|---|
Trichuris trichiura | Macaca sylvanus/Spain | Trichinellida | MW448470 |
Trichuris sp. | Macaca sylvanus/Spain | Trichinellida | MW448471 |
Trichuris trichiura | Papio papio/Spain | Trichinellida | MW448472 |
Trichuris trichiura | Homo sapiens/(unknown geographical location) | Trichinellida | AP017704 |
Trichuris trichiura | Homo sapiens/China | Trichinellida | NC_017750 |
Trichuris trichiura | Homo sapiens/China | Trichinellida | GU385218 |
Trichuris trichiura | Homo sapiens/Uganda | Trichinellida | KT449826 |
Trichuris sp. | Papio anubis/USA | Trichinellida | KT449825 |
Trichuris sp. | Papio hamadryas/Denmark | Trichinellida | KT449824 |
Trichuris sp. | Trachypithecus francoisi/China | Trichinellida | KC461179 |
Trichuris rhinopiptheroxella | Rhinopithecus roxellana/China | Trichinellida | MG189593 |
Trichuris ovis | Addax nasomaculatus/China | Trichinellida | NC_018597 |
Trichuris discolor | Bos grunniens mutus/China | Trichinellida | NC_018596 |
Trichuris muris | - /United Kingdom | Trichinellida | LC050561 |
Trichuris suis | Sus scrofa/Uganda | Trichinellida | KT449823 |
Trichuris suis | Sus scrofa/China | Trichinellida | GU070737 |
Trichinella pseudospiralis | Coragypus atratus/USA | Trichinellida | KM357411 |
Xiphinema americanum | Plant ectoparasite | Dorylaimida | NC_005928 |
Hexamermis agrotis | - | Mermithida | NC_008828 |
Agamermis sp. | - | Mermithida | NC_008231 |
Romanomermis culicivorax | - | Mermithida | NC_008640 |
Romanomermis iyengari | - | Mermithida | NC_008693 |
Romanomermis nielseni | - | Mermithida | NC_008692 |
Strelkovimermis spiculatus | - | Mermithida | NC_008047 |
Thaumamermis cosgrovei | - | Mermithida | NC_008046 |
1Brugia malayi | - | Rhabditida | NC_004298 |
1Ascaris suum | - | Rhabditida | HQ704901 |
Genes | Positions | Lengths | Codons | Strand | |||
---|---|---|---|---|---|---|---|
TMF31 | TMM5 | TPM1 | nt | Initiation | Termination | ||
cox1 | 1–1545 | 1–1545 | 1–1545 | 1545 | ATG | TAA (TAG) | + |
cox2 | 1558–2232 | 1556–2230 | 1558–2232 | 675 | ATG | TAG (TAA) | + |
tRNA-leu (L2) | 2255–2317 | 2252–2311 | 2255–2317 | 63 (60) | + | ||
tRNA-glu (E) | 2324–2384 | 2320–2377 | 2324–2384 | 61 (58) | + | ||
nad1 | 2406–3305 | 2401–3300 | 2406–3305 | 900 | ATA (ATG) | TAG (TAA) | + |
Non-coding region (NCR-L) | 3306–3435 | 3303–3442 | 3306–3430 | ||||
tRNA-lys (K) | 3436–3501 | 3441–3502 | 3431–3496 | 66 (62) | + | ||
nad2 | 3499–4395 | 3505–4401 | 3494–4390 | 897 | ATA | TAA (TAG) | − |
tRNA-met (M) | 4396–4456 | 4402–4462 | 4391–4451 | 61 | − | ||
tRNA-phe (F) | 4451–4507 | 4457–4513 | 4446–4502 | 57 | − | ||
nad5 | 4499–6055 | 4520–6067 | 4494–6050 | 1557 (1553) | ATA | TAG (TAA) | − |
tRNA-his (H) | 6049–6106 | 6065–6118 | 6044–6101 | 58 (54) | − | ||
tRNA-arg (R) | 6108–6171 | 6115–6181 | 6103–6166 | 64 (67) | − | ||
nad4 | 6176–7396 | 6183–7394 | 6171–7391 | 1221 (1212) | ATG (ATA) | TAA | − |
nad4L | 7419–7631 | 7425–7673 | 7414–7626 | 213 (249) | ATA | TAA (TAG) | − |
tRNA-thr (T) | 7672–7729 | 7679–7736 | 7667–7724 | 58 | + | ||
tRNA-pro (P) | 7729–7787 | 7736–7795 | 7724–7782 | 59 (60) | − | ||
nad6 | 7780–8256 | 7788–8264 | 7775–8251 | 477 | ATT | TAA (TAG) | + |
cob | 8263–9369 | 8272–9378 | 8258–9364 | 1107 | ATG | TAG | + |
tRNA-ser (S1) | 9368–9420 | 9377–9426 | 9363–9415 | 53 (50) | + | ||
rrnS | 9413–10116 | 9419–10112 | 9408–10,111 | 704 (694) | + | ||
tRNA-val (V) | 10,118–10,174 | 10,114–10,170 | 10,113–10,169 | 57 | + | ||
rrnL | 10,176–11,184 | 10,170–11,180 | 10,171–11,179 | 1009 (1011) | + | ||
atp6 | 11,155–11,967 | 11,151–11,990 | 11,150–11,962 | 813 (840) | ATG | TAA | + |
cox3 | 11,973–12,746 | 11,965–12,738 | 11,968–12,741 | 774 | ATG | TAA (TAG) | + |
tRNA-trp (W) | 12,759–12,821 | 12,743–12,805 | 12,754–12,816 | 63 | − | ||
tRNA-gln (Q) | 12,825–12,880 | 12,807–12,862 | 12,820–12,875 | 56 | + | ||
tRNA-Ile (I) | 12,883–12,943 | 12,864–12,925 | 12,878–12,938 | 61 (62) | − | ||
tRNA-gly (G) | 12,957–13,013 | 12,934–12,989 | 12,952–13,008 | 57 (56) | − | ||
tRNA-asp (D) | 13,020–13,077 | 12,996–13,060 | 13,015–13,072 | 58 (65) | + | ||
atp8 | 13,066–13,233 | 13,042–13,209 | 13,061–13,228 | 168 | ATT (ATA) | TAG | + |
nad3 | 13,243–13,584 | 13,219–13,560 | 13,238–13,579 | 342 | ATT | TAA | + |
Non-coding region NCR-S) | 13,585–13,676 | 13,561–13,659 | 13,580–13,672 | ||||
tRNA-ser (S2) | 13,677–13,726 | 13,660–13,709 | 13,673–13,723 | 50 (50/51) | + | ||
tRNA-asn (N) | 13,727–13,781 | 13,710–13,763 | 13,724–13,778 | 55 (54) | + | ||
tRNA-leu (L1) | 13,789–13,848 | 13,770–13,835 | 13,786–13,845 | 60 (66) | + | ||
tRNA-ala (A) | 13,860–13,917 | 13,842–13,897 | 13,857–13,914 | 58 (56) | + | ||
tRNA-cys (C) | 13,960–14,013 | 13,924–13,976 | 13,957–14,010 | 54 (53) | − | ||
tRNA-tyr (Y) | 14,014–14,074 | 13,977–14,038 | 14,011–14,071 | 61 (62) | − | ||
Total length | 14,091 | 14,047 | 14,089 |
TMF31 | TPM1 | TMM5 | AP017704 T. trichiura H. sapiens (Unknown Geographical Location) | NC_017750 T. trichiura H. sapiens China | GU385218 T. trichiura H. sapiens China | KT2449826 T. trichiura H. sapiens Uganda | KT449825 Trichuris sp. TTB2 P. anubis USA | KT449824 Trichuris sp. P. hamadryas Denmark | KC461179 Trichuris sp. GHL T. francoisi China | |
---|---|---|---|---|---|---|---|---|---|---|
TMF31 | 0.41 | 14.5 | 14.7 | 14.8 | 14.8 | 0.6 | 14.6 | 0.49 | 26.9 | |
TPM1 | 0.25 | 14.6 | 14.8 | 14.9 | 14.9 | 0.7 | 14.6 | 0.34 | 26.8 | |
TMM5 | 18.7 | 18.7 | 10.9 | 11.1 | 11.1 | 14.5 | 10.3 | 14.6 | 28.2 | |
AP017704 T. trichiura H. sapiens (unknown geographical location) | 18.7 | 18.7 | 15.7 | 4.68 | 4.68 | 14.7 | 3.47 | 14.9 | 28.3 | |
NC_017750 T. trichiura H. sapiens China | 18.6 | 18.6 | 15.9 | 6.51 | 0 | 14.8 | 4.66 | 14.9 | 27.8 | |
GU385218 T. trichiura H. sapiens China | 18.6 | 18.6 | 15.9 | 6.51 | 0 | 14.8 | 4.66 | 14.9 | 27.8 | |
KT2449826 T. trichiura H. sapiens Uganda | 0.4 | 0.47 | 18.8 | 18.7 | 18.6 | 18.6 | 14.5 | 0.78 | 26.8 | |
KT449825 Trichuris sp. TTB2 P. anubis USA | 18.8 | 18.8 | 15.8 | 4.7 | 6.48 | 6.48 | 18.8 | 14.7 | 28.2 | |
KT449824 Trichuris sp. P. hamadryas Denmark | 0.34 | 0.28 | 18.8 | 18.7 | 18.6 | 18.6 | 0.55 | 18.8 | 26.8 | |
KC461179 Trichuris sp. GHL T. francoisi China | 27.1 | 27.1 | 28.4 | 28.3 | 28 | 28 | 27.1 | 28.6 | 27.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivero, J.; Callejón, R.; Cutillas, C. Complete Mitochondrial Genome of Trichuristrichiura from Macaca sylvanus and Papio papio. Life 2021, 11, 126. https://doi.org/10.3390/life11020126
Rivero J, Callejón R, Cutillas C. Complete Mitochondrial Genome of Trichuristrichiura from Macaca sylvanus and Papio papio. Life. 2021; 11(2):126. https://doi.org/10.3390/life11020126
Chicago/Turabian StyleRivero, Julia, Rocío Callejón, and Cristina Cutillas. 2021. "Complete Mitochondrial Genome of Trichuristrichiura from Macaca sylvanus and Papio papio" Life 11, no. 2: 126. https://doi.org/10.3390/life11020126
APA StyleRivero, J., Callejón, R., & Cutillas, C. (2021). Complete Mitochondrial Genome of Trichuristrichiura from Macaca sylvanus and Papio papio. Life, 11(2), 126. https://doi.org/10.3390/life11020126