Prevalence and Risk Factors of Internet Addiction among Hungarian High School Teachers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Baseline Characteristics
3.2. Risk Factors and Previous Diseases
3.3. Duration and Goal of Internet Use
3.4. Internet Addiction
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, Y.C.; Chiu, Y.C.; Lin, Y.H. Systematic review and meta-analysis of epidemiology of internet addiction. Neurosci. Biobehav. Rev. 2020, 118, 612–622. [Google Scholar] [CrossRef]
- Stevens, M.W.; Dorstyn, D.; Delfabbro, P.H.; King, D.L. Global prevalence of gaming disorder: A systematic review and meta-analysis. Aust. N. Z. J. Psychiatry 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Chia, D.X.Y.; Ng, C.W.L.; Kandasami, G.; Seow, M.Y.L.; Choo, C.C.; Chew, P.K.H.; Lee, C.; Zhang, A.M.W. Prevalence of Internet Addiction and Gaming Disorders in Southeast Asia: A Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 2582. [Google Scholar] [CrossRef] [Green Version]
- Zsidó, A.N.; Darnai, G.; Inhóf, O.; Perlaki, G.; Orsi, G.; Nagy, S.A.; Lábadi, B.; Lénárd, K.; Kovács, N.; Dóczi, T.; et al. Differentiation between young adult Internet addicts, smokers, and healthy controls by the interaction between impulsivity and temporal lobe thickness. J. Behav. Addict. 2019, 8, 35–47. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Tseng, P.T.; Lin, P.Y.; Chen, T.Y.; Stubbs, B.; Carvalho, A.F.; Wu, C.K.; Chen, Y.W.; Wu, M.K. Internet Addiction and Its Relationship With Suicidal Behaviors: A Meta-Analysis of Multinational Observational Studies. J. Clin. Psychiatry 2018, 79, 17r11761. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Petruzelka, B.; Vacek, J.; Gavurova, B.; Kubak, M.; Gabrhelik, R.; Rogalewicz, V.; Bartak, M. Interaction of Socioeconomic Status with Risky Internet Use, Gambling and Substance Use in Adolescents from a Structurally Disadvantaged Region in Central Europe. Int. J. Environ. Res. Public Health 2020, 17, 4803. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Li, A.Y.-L. Internet Addiction Prevalence and Quality of (Real) Life: A Meta-Analysis of 31 Nations Across Seven World Regions. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 755–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, X.; Hong, X.; Chen, X. Profiles and sociodemographic correlates of Internet addiction in early adolescents in southern China. Addict. Behav. 2020, 106, 106385. [Google Scholar] [CrossRef]
- Hinojo-Lucena, F.J.; Aznar-Díaz, I.; Cáceres-Reche, M.P.; Trujillo-Torres, J.M.; Romero-Rodríguez, J.M. Problematic Internet Use as a Predictor of Eating Disorders in Students: A Systematic Review and Meta-Analysis Study. Nutrients 2019, 11, 2151. [Google Scholar] [CrossRef] [Green Version]
- Ioannidis, K.; Hook, R.; Goudriaan, A.E.; Vlies, S.; Fineberg, N.A.; Grant, J.E.; Chamberlain, S.R. Cognitive deficits in problematic internet use: Meta-analysis of 40 studies. Br. J. Psychiatry 2019, 215, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwaibara, A.; Fukuda, M.; Tsumura, H.; Kanda, H. At-risk Internet addiction and related factors among junior high school teachers—based on a nationwide cross-sectional study in Japan. Environ. Health Prev. Med. 2019, 24, 3. [Google Scholar] [CrossRef]
- Throuvala, M.A.; Griffiths, M.D.; Rennoldson, M.; Kuss, D.J. School-based Prevention for Adolescent Internet Addiction: Prevention is the Key. A Systematic Literature Review. Curr. Neuropharmacol. 2019, 17, 507–525. [Google Scholar] [CrossRef]
- Demetrovics, Z.; Szeredi, B.; Rózsa, S. The three-factor model of Internet addiction: The development of the Problematic Internet Use Questionnaire. Behav. Res. Methods 2008, 40, 563–574. [Google Scholar] [CrossRef] [Green Version]
- Kovács, M.; Makkos, A.; Pintér, D.; Juhász, A.; Darnai, G.; Karádi, K.; Janszky, J.; Kovács, N. Screening for Problematic Internet Use May Help Identify Impulse Control Disorders in Parkinson’s Disease. Behav. Neurol. 2019, 2019, 4925015. [Google Scholar] [CrossRef] [PubMed]
- Toth, G.; Kapus, K.; Hesszenberger, D.; Pohl, M.; Kosa, G.; Kiss, J.; Pusch, G.; Fejes, E.; Tibold, A.; Feher, G. Internet Addiction and Burnout in A Single Hospital: Is There Any Association? Int. J. Environ. Res. Public Health 2021, 18, 615. [Google Scholar] [CrossRef] [PubMed]
- Kern, L.; Acier, D. French adaptation of the Problematic Internet Use Questionnaire. L’Évolution Psychiatri. 2013, 78, 357–371. [Google Scholar] [CrossRef]
- Weinstein, A.; Lejoyeux, M. Internet addiction or excessive internet use. Am. J. Drug Alcohol. Abuse 2010, 36, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Tomaszek, K.; Muchacka-Cymerman, A. Sex Differences in the Relationship between Student School Burnout and Problematic Internet Use among Adolescents. Int. J. Environ. Res. Public Health 2019, 16, 4107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grover, S.; Sahoo, S.; Bhalla, A.; Avasthi, A. Problematic internet use and its correlates among resident doctors of a tertiary care hospital of North India: A cross-sectional study. Asian J. Psychiatry 2019, 39, 42–47. [Google Scholar] [CrossRef]
- Chiu, C.-J. Relationship between Internet Behaviors and Social Engagement in Middle-Aged and Older Adults in Taiwan. Int. J. Environ. Res. Public Health 2019, 16, 416. [Google Scholar] [CrossRef] [Green Version]
- Avci, D.K.; Sahin, H.A. Relationship Between Burnout Syndrome and Internet Addiction, and the Risk Factors in Healthcare Employees in a University Hospital. Konuralp Tıp Derg. 2017, 9, 78–85. [Google Scholar]
- Kim, K.M.; Kim, H.; Choi, J.-W.; Kim, S.Y.; Kim, J.W. What Types of Internet Services Make Adolescents Addicted? Correlates of Problematic Internet Use. Neuropsychiatr. Dis. Treat. 2020, 16, 1031–1041. [Google Scholar] [CrossRef] [Green Version]
- Mamun, M.; Griffiths, M.D. The assessment of internet addiction in Bangladesh: Why are prevalence rates so different? Asian J. Psychiatry 2019, 40, 46–47. [Google Scholar] [CrossRef] [Green Version]
- Chandrima, R.M.; Kircaburun, K.; Kabir, H.; Riaz, B.K.; Kuss, D.J.; Griffiths, M.D.; Mamun, M.A. Adolescent problematic internet use and parental mediation: A Bangladeshi structured interview study. Addict. Behav. Rep. 2020, 12, 100288. [Google Scholar] [CrossRef] [PubMed]
- Tenzin, K.; Dorji, T.; Choeda, T.; Wangdi, P.; Oo, M.M.; Tripathy, J.P.; Tenzin, T.; Tobgay, T. Internet Addiction among Secondary School Adolescents: A Mixed Methods Study. J. Nepal Med. Assoc. 2019, 57, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Yen, J.-Y.; Ko, C.-H.; Yen, C.-F.; Chen, S.-H.; Chung, W.-L.; Chen, C.-C. Psychiatric symptoms in adolescents with Internet addiction: Comparison with substance use. Psychiatry Clin. Neurosci. 2008, 62, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Baroni, S.; Marazziti, D.; Mucci, F.; Diadema, E.; Dell’Osso, L. Problematic Internet use in drug addicts under treatment in public rehab centers. World J. Psychiatry 2019, 9, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Aghasi, M.; Matinfar, A.; Golzarand, M.; Salari-Moghaddam, A.; Ebrahimpour-Koujan, S. Internet Use in Relation to Overweight and Obesity: A Systematic Review and Meta-Analysis of Cross-Sectional Studies. Adv. Nutr. 2019, 11, 349–356. [Google Scholar] [CrossRef]
- Subramaniam, M.; Chua, B.Y.; Abdin, E.; Pang, S.; Satghare, P.; Vaingankar, J.A.; Verma, S.; Ong, S.H.; Picco, L.; Chong, S.A. Prevalence and Correlates of Internet Gaming Problem among Internet Users: Results from an Internet Survey. Ann. Acad. Med. Singap. 2016, 45, 174–183. [Google Scholar]
- Qin, K.; Zhang, F.; Chen, T.; Li, L.; Li, W.; Suo, X.; Lei, D.; Kemp, G.J.; Gong, Q. Shared gray matter alterations in individuals with diverse behavioral addictions: A voxel-wise meta-analysis. J. Behav. Addict. 2020, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Cao, J.; Li, Y.; Cheng, P.; Liu, B.; Hao, Z.; Yao, H.; Shi, D.; Peng, L.; Guo, L.; et al. Association Between Internet Addiction and the Risk of Musculoskeletal Pain in Chinese College Freshmen—A Cross-Sectional Study. Front. Psychol. 2019, 10, 1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahl, D.; Bergmark, K.H. Persistence in Problematic Internet Use—A Systematic Review and Meta-Analysis. Front. Sociol. 2020, 5, 30. [Google Scholar] [CrossRef]
Gender | |
Female | 1194 (65.7%) |
Male | 623 (34.3%) |
Age | |
18–25 years | 46 (2.5%) |
26–35 years | 217(11.9%) |
36–45 years | 577 (31.8%) |
46–55 years | 602 (33.1%) |
56–62 years | 285 (15.7%) |
more than 62 years | 90 (5.0%) |
Marital Status | |
single | 263 (14.5%) |
relationship | 257 (14.1%) |
married | 1082 (59.5%) |
divorced/widow | 215 (11.9%) |
Number of Children | |
have no children | 419 (23.1%) |
1 child | 414 (22.8%) |
2 children | 706 (38.9%) |
more than 3 children | 278 (15.2%) |
Work Schedule | |
regular | 1735 (95.5%) |
shifts | 82 (4.5%) |
Graduation | |
elementary | 9 (0.5%) |
secondary education | 105 (5.8%) |
higher education | 1703 (93.7%) |
Years Spent with Work | |
1–12 months | 54 (2.9%) |
1–5 years | 205 (11.3%) |
6–10 years | 263 (14.5%) |
11–20 years | 584 (32.1%) |
21–30 years | 383 (21.1%) |
31–40 years | 288 (15.9%) |
more than 40 years | 40 (2.2%) |
Secondary Employment | |
no | 1584 (87.2%) |
yes | 233 (12.8%) |
Concomitant Diseases (%) | |
taking any medications regularly | 495 (27.2%) |
smoker | 275 (15.1%) |
taking alcohol | 93 (5.1%) |
taking drugs | 52 (2.9%) |
diabetes | 135 (7.4%) |
hypertension | 414 (22.8%) |
cardiovascular disease | 186 (10.2%) |
musculoskeletal pain | 146 (8.0%) |
history of depression | 27 (1.5%) |
Daily Internet Use (Approximately) (%) | |
1 h | 696 (38.3%) |
2 h | 569 (31.3%) |
3 h | 287 (15.8%) |
4 h | 132 (7.9%) |
5 h | 54 (2.9%) |
6 h | 44 (2.4%) |
>6 h | 35 (2.0%) |
Daily Time Interval of Internet Use (Multiply Answer) (%) | |
between 0 and 3 a.m. | 186 (10.2%) |
between 3 and 6 a.m. | 75 (4.1%) |
between 6 and 9 a.m. | 233 (12.8%) |
between 9 and 12 a.m. | 349 (19.2%) |
12–3 p.m. | 209 (11.5%) |
3–6 p.m. | 441 (24.3%) |
6–9 p.m. | 943 (51.9%) |
9–12 p.m. | 357 (19.6%) |
Goal of internet use (multiply answer) (%) | |
learning/working | 1689 (93.0%) |
internet gaming | 159 (8.7%) |
chat | 410 (22.6%) |
community portal (Facebook, Twitter, etc.) | 773 (42.5%) |
matchmaking | 52 (2.9%) |
movies | 328 (18.1%) |
music | 539 (30.0%) |
other | 196 (10.8%) |
Not Addicted to Internet (n = 1722) | Internet Addiction (n = 95) | |
---|---|---|
Gender | ||
Male | 564 (32.7%) | 59 (62.1%) * |
Female | 1158 (67.2%) | 36 (37.9%) |
Age (Years) | ||
18–25 years | 39 (2.3%) | 7 (7.4%) * |
26–35 years | 196 (11.4%) | 21 (22.1%) * |
36–45 years | 543 (31.5%) | 34 (35.8%) |
46–55 years | 585 (34%) | 17 (17.9%) * |
56–62 years | 273 (15.8%) | 12 (12.6%) |
more than 62 years | 86 (5%) | 4 (4.2%) |
Marital Status (%) | ||
single | 241 (14%) | 22 (23.1%) * |
relationship | 240 (14%) | 17 (17.9%) |
married | 1037 (60.2%) | 43 (45.3%) * |
divorced / widow | 202(11.7%) | 13 (13.7%) |
Number of Children | ||
having no children | 386 (22.4%) | 33 (34.7%) * |
1 child | 390 (22.6%) | 24 (25.3%) |
2 children | 683 (39.7%) | 23 (24.2%) * |
more than 3 children | 263 (15.3%) | 15 (15.8%) |
Work Schedule | ||
regular | 1643 (95.4%) | 92 (96.8%) |
shifts | 79 (4.6%) | 3 (3.2%) |
Graduation | ||
elementary | 6 (0.3%) | 3 (3.2%) ** |
secondary education | 108 (6.3%) | 7 (7.4%) |
higher education | 1618 (96.9%) | 85 (89.5%) |
Years Spent with Work | ||
1–12 months | 47 (2.7%) | 7 (7.3%) * |
1–5 years | 191 (11.1%) | 14 (14.7%) |
6–10 years | 246 (14.3%) | 17 (17.9%) |
11–20 years | 547 (31.8%) | 37 (38.9%) |
21–30 years | 373 (21.7%) | 10 (10.5%) * |
31–40 years | 281 (16.3%) | 7 (7.4%) * |
more than 40 years | 37 (2.1%) | 3 (3.2%) |
Secondary Employment | ||
no | 1503 (87.3%) | 14 (14.7%) |
yes | 219 (12.7%) | 81 (85.3%) ** |
Not Addicted to Internet (n = 1722) | Internet Addiction (n = 95) | |
---|---|---|
Concomitant Diseases | ||
taking any medication regularly | 475 (27.6%) | 20 (21.1%) |
smoker | 242 (14.1%) | 33 (34.7%) ** |
taking alcohol | 76 (4.4%) | 17 (17.9%) ** |
taking drugs | 37 (2.1%) | 15 (15.8%) ** |
diabetes | 122 (7.1%) | 13 (13.7%) * |
hypertension | 387 (22.5%) | 27 (28.4%) |
cardiovascular disease | 175 (10.2%) | 11 (11.6%) |
musculoskeletal pain | 136 (7.9%) | 10 (10.5%) |
history of depression | 19 (1.1%) | 8 (8.4%) ** |
Daily Internet Use (Approximately) | ||
1 h | 684 (39.7%) | 12 (12.6%) ** |
2 h | 552 (32.1%) | 17 (17.9%) * |
3 h | 265 (15.4%) | 22 (23.2%) * |
4 h | 114 (6.6%) | 18 (18.9%) * |
5 h | 46 (2.7%) | 14 (14.7%) ** |
6 h | 30 (1.7%) | 4 (4.2%) |
>6 h | 31 (1.7%) | 8 (8.4%) ** |
Daily Time Interval of Internet Use (Multiply Answer) | ||
between 0 and 3 a.m. | 178 (10.3%) | 8 (8.4%) |
between 3 and 6 a.m. | 69 (4%) | 6 (6.3%) |
between 6 and 9 a.m. | 218 (12.7%) | 15 (15.8%) |
between 9 and 12 a.m. | 335 (19.5%) | 14 (14.7%) |
12–3 p.m. | 196 (11.4%) | 13 (13.7%) |
3–6 p.m. | 410 (23.8%) | 31 (32.6%) |
6–9 p.m. | 894 (51.9%) | 49 (51.6%) |
9.12 p.m. | 332 (19.3%) | 25 (26.3%) |
Goal of Internet Use (Multiply Answer) | ||
learning/working | 1613 (93.7%) | 76 (80%) ** |
internet gaming | 135 (7.8%) | 24 (25.2%) ** |
chat | 372 (21.6%) | 38 (40) ** |
community portal (Facebook, Twitter, etc.) | 724 (42%) | 49 (51.6%) |
matchmaking | 41 (2.4%) | 11 (11.6%) ** |
movies | 308 (17.9%) | 20 (21%) |
music | 514 (29.8%) | 25 (26.3%) |
other | 188 (10.9%) | 8 (8.4%) |
Risk Factor | OR | CI | p Value |
---|---|---|---|
age < 35 years | 6.098 | 5.09–7.08 | <0.001 |
male gender | 5.413 | 4.39–6.18 | 0.002 |
>5 h daily internet use | 2.568 | 2.03–3.39 | <0.001 |
having no children | 1.353 | 1.13–1.99 | 0.0248 |
having secondary employment | 11.377 | 8.67–13.07 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, G.; Kapus, K.; Hesszenberger, D.; Pohl, M.; Kósa, G.; Kiss, J.; Pusch, G.; Fejes, É.; Tibold, A.; Feher, G. Prevalence and Risk Factors of Internet Addiction among Hungarian High School Teachers. Life 2021, 11, 194. https://doi.org/10.3390/life11030194
Tóth G, Kapus K, Hesszenberger D, Pohl M, Kósa G, Kiss J, Pusch G, Fejes É, Tibold A, Feher G. Prevalence and Risk Factors of Internet Addiction among Hungarian High School Teachers. Life. 2021; 11(3):194. https://doi.org/10.3390/life11030194
Chicago/Turabian StyleTóth, Gábor, Krisztian Kapus, David Hesszenberger, Marietta Pohl, Gábor Kósa, Julianna Kiss, Gabriella Pusch, Éva Fejes, Antal Tibold, and Gergely Feher. 2021. "Prevalence and Risk Factors of Internet Addiction among Hungarian High School Teachers" Life 11, no. 3: 194. https://doi.org/10.3390/life11030194
APA StyleTóth, G., Kapus, K., Hesszenberger, D., Pohl, M., Kósa, G., Kiss, J., Pusch, G., Fejes, É., Tibold, A., & Feher, G. (2021). Prevalence and Risk Factors of Internet Addiction among Hungarian High School Teachers. Life, 11(3), 194. https://doi.org/10.3390/life11030194