Longitudinal T2 Mapping and Texture Feature Analysis in the Detection and Monitoring of Experimental Post-Traumatic Cartilage Degeneration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cartilage Sample Preparations
2.2. Cartilage Sample Impaction
2.3. MRI Measurements
2.4. MRI Data Analysis
- Contrast assesses the extent of local variation. Cartilage areas with high contrast values display strong contrasts, i.e., pronounced differences between the highest and lowest T2 values.
- Homogeneity serves as a measure of uniformity by indicating similarities between pixels and their neighbours. Cartilage areas with mostly similar T2 values have high homogeneity values.
- Energy as computed based on the GLCM provides a measure of uniformity and orderliness. Cartilage areas with high energy values display similar T2 values and small T2 value differences in neighbouring pixels.
- Variance is a measure of local variation around the mean. High variance values indicate high heterogeneity and large differences in T2 values, i.e., variation from their mean.
2.5. Histologic Reference Analysis
2.6. Statistical Analysis
3. Results
3.1. Macroscopic Reference Evaluation
3.2. Histologic Reference Evaluation
3.3. MRI Data—Descriptive Statistics
3.4. MRI Data—Texture Feature Analysis
3.5. MRI Data—Image Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hjelle, K.; Solheim, E.; Strand, T.; Muri, R.; Brittberg, M. Articular cartilage defects in 1000 knee arthroscopies. Arthroscopy 2002, 18, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Widuchowski, W.; Lukasik, P.; Kwiatkowski, G.; Faltus, R.; Szyluk, K.; Widuchowski, J.; Koczy, B. Isolated full thickness chondral injuries. Prevalance and outcome of treatment. A retrospective study of 5233 knee arthroscopies. Acta Chir. Orthop. Traumatol. Cech. 2008, 75, 382–386. [Google Scholar] [PubMed]
- Widuchowski, W.; Widuchowski, J.; Trzaska, T. Articular cartilage defects: Study of 25,124 knee arthroscopies. Knee 2007, 14, 177–182. [Google Scholar] [CrossRef]
- Curl, W.W.; Krome, J.; Gordon, E.S.; Rushing, J.; Smith, B.P.; Poehling, G.G. Cartilage injuries: A review of 31,516 knee arthroscopies. Arthroscopy 1997, 13, 456–460. [Google Scholar] [CrossRef]
- Brown, T.D.; Johnston, R.C.; Saltzman, C.L.; Marsh, J.L.; Buckwalter, J.A. Posttraumatic osteoarthritis: A first estimate of incidence, prevalence, and burden of disease. J. Orthop. Trauma 2006, 20, 739–744. [Google Scholar] [CrossRef]
- Vollnberg, B.; Koehlitz, T.; Jung, T.; Scheffler, S.; Hoburg, A.; Khandker, D.; Hamm, B.; Wiener, E.; Diederichs, G. Prevalence of cartilage lesions and early osteoarthritis in patients with patellar dislocation. Eur. Radiol. 2012, 22, 2347–2356. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.C.; Hubbard-Turner, T.; Wikstrom, E.A.; Palmieri-Smith, R.M. Epidemiology of posttraumatic osteoarthritis. J. Athl. Train. 2017, 52, 491–496. [Google Scholar] [CrossRef] [Green Version]
- De Maeseneer, M.; Shahabpour, M.; Pouders, C. MRI spectrum of medial collateral ligament injuries and pitfalls in diagnosis. JBR-BTR 2010, 93, 97–103. [Google Scholar]
- Halinen, J.; Koivikko, M.; Lindahl, J.; Hirvensalo, E. The efficacy of magnetic resonance imaging in acute multi-ligament injuries. Int. Orthop. 2009, 33, 1733. [Google Scholar] [CrossRef] [Green Version]
- Farshad-Amacker, N.A.; Potter, H.G. MRI of knee ligament injury and reconstruction. J. Magn. Reson. Imaging 2013, 38, 757–773. [Google Scholar] [CrossRef]
- Von Engelhardt, L.V.; Kraft, C.N.; Pennekamp, P.H.; Schild, H.H.; Schmitz, A.; von Falkenhausen, M. The evaluation of articular cartilage lesions of the knee with a 3-Tesla magnet. Arthrosc. J. Arthrosc. Relat. Surg. 2007, 23, 496–502. [Google Scholar] [CrossRef]
- Figueroa, D.; Calvo, R.; Vaisman, A.; Carrasco, M.A.; Moraga, C.; Delgado, I. Knee chondral lesions: Incidence and correlation between arthroscopic and magnetic resonance findings. Arthrosc. J. Arthrosc. Relat. Surg. 2007, 23, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Kajabi, A.W.; Casula, V.; Ojanen, S.; Finnila, M.A.; Herzog, W.; Saarakkala, S.; Korhonen, R.K.; Nissi, M.J.; Nieminen, M.T. Multiparametric MR imaging reveals early cartilage degeneration at 2 and 8 weeks after ACL transection in a rabbit model. J. Orthop. Res. 2020, 38, 1974–1986. [Google Scholar] [CrossRef] [Green Version]
- Nebelung, S.; Post, M.; Knobe, M.; Tingart, M.; Emans, P.; Thuring, J.; Kuhl, C.; Truhn, D. Detection of early-stage degeneration in human articular cartilage by multiparametric mr imaging mapping of tissue functionality. Sci. Rep. 2019, 9, 5895. [Google Scholar] [CrossRef] [PubMed]
- Kijowski, R.; Blankenbaker, D.G.; Munoz Del Rio, A.; Baer, G.S.; Graf, B.K. Evaluation of the articular cartilage of the knee joint: Value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 2013, 267, 503–513. [Google Scholar] [CrossRef]
- Neu, C.P. Functional imaging in OA: Role of imaging in the evaluation of tissue biomechanics. Osteoarthr. Cartil. 2014, 22, 1349–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eagle, S.; Potter, H.G.; Koff, M.F. Morphologic and quantitative magnetic resonance imaging of knee articular cartilage for the assessment of post-traumatic osteoarthritis. J. Orthop. Res. 2017, 35, 412–423. [Google Scholar] [CrossRef]
- Bengtsson Mostrom, E.; Lammentausta, E.; Finnbogason, T.; Weidenhielm, L.; Janarv, P.M.; Tiderius, C.J. Pre- and postcontrast T1 and T2 mapping of patellar cartilage in young adults with recurrent patellar dislocation. Magn. Res. Med. 2015, 74, 1363–1369. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Kuo, D.; Theologis, A.; Carballido-Gamio, J.; Stehling, C.; Link, T.M.; Ma, C.B.; Majumdar, S. Cartilage in anterior cruciate ligament–reconstructed knees: MR imaging T1ρ and T2—initial experience with 1-year follow-up. Radiology 2011, 258, 505–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, F.; Hilton, J.F.; Nardo, L.; Wu, S.; Liang, F.; Link, T.M.; Ma, C.B.; Li, X. Cartilage morphology and T1ρ and T2 quantification in ACL-reconstructed knees: A 2-year follow-up. Osteoarthr. Cartil. 2013, 21, 1058–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.-H.; Hosseini, A.; Wang, Y.; Torriani, M.; Gill, T.J.; Grodzinsky, A.J.; Li, G. Articular cartilage of the knee 3 years after ACL reconstruction: A quantitative T2 relaxometry analysis of 10 knees. Acta Orthop. 2015, 86, 605–610. [Google Scholar] [CrossRef] [Green Version]
- Årøen, A.; Brøgger, H.; Røtterud, J.H.; Sivertsen, E.A.; Engebretsen, L.; Risberg, M.A. Evaluation of focal cartilage lesions of the knee using MRI T2 mapping and delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC). BMC Musculoskelet. Disord. 2016, 17, 73. [Google Scholar] [CrossRef] [Green Version]
- Kretzschmar, M.; Nevitt, M.C.; Schwaiger, B.J.; Joseph, G.B.; McCulloch, C.E.; Link, T.M. Spatial distribution and temporal progression of T2 relaxation time values in knee cartilage prior to the onset of cartilage lesions—Data from the Osteoarthritis Initiative (OAI). Osteoarthr. Cartil. 2019, 27, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Saarakkala, S.; Julkunen, P.; Kiviranta, P.; Makitalo, J.; Jurvelin, J.S.; Korhonen, R.K. Depth-wise progression of osteoarthritis in human articular cartilage: Investigation of composition, structure and biomechanics. Osteoarthr. Cartil. 2010, 18, 73–81. [Google Scholar] [CrossRef] [Green Version]
- Joseph, G.B.; Baum, T.; Carballido-Gamio, J.; Nardo, L.; Virayavanich, W.; Alizai, H.; Lynch, J.A.; McCulloch, C.E.; Majumdar, S.; Link, T.M. Texture analysis of cartilage T2 maps: Individuals with risk factors for OA have higher and more heterogeneous knee cartilage MR T2 compared to normal controls—Data from the osteoarthritis initiative. Arthr. Res. Ther. 2011, 13, R153. [Google Scholar] [CrossRef] [Green Version]
- Joseph, G.; Baum, T.; Alizai, H.; Carballido-Gamio, J.; Nardo, L.; Virayavanich, W.; Lynch, J.; Nevitt, M.; McCulloch, C.; Majumdar, S. Baseline mean and heterogeneity of MR cartilage T2 are associated with morphologic degeneration of cartilage, meniscus, and bone marrow over 3 years—Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2012, 20, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Peuna, A.; Hekkala, J.; Haapea, M.; Podlipská, J.; Guermazi, A.; Saarakkala, S.; Nieminen, M.T.; Lammentausta, E. Variable angle gray level co-occurrence matrix analysis of T2 relaxation time maps reveals degenerative changes of cartilage in knee osteoarthritis: Oulu knee osteoarthritis study. J. Magne. Reson. Imaging 2018, 47, 1316–1327. [Google Scholar] [CrossRef]
- Baum, T.; Joseph, G.B.; Nardo, L.; Virayavanich, W.; Arulanandan, A.; Alizai, H.; Carballido-Gamio, J.; Nevitt, M.C.; Lynch, J.; McCulloch, C.E. Correlation of magnetic resonance imaging–based knee cartilage T2 measurements and focal knee lesions with body mass index: Thirty-six–month followup data from a longitudinal, observational multicenter study. Arthr. Care Res. 2013, 65, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, A.; Winalski, C.S.; Chu, C.R. Early articular cartilage MRI T2 changes after anterior cruciate ligament reconstruction correlate with later changes in T2 and cartilage thickness. J. Orthop. Res. 2017, 35, 699–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Repo, R.U.; Finlay, J.B. Survival of articular cartilage after controlled impact. J. Bone Joint Surg. Am. 1977, 59, 1068–1076. [Google Scholar] [CrossRef]
- Torzilli, P.A.; Grigiene, R.; Borrelli, J., Jr.; Helfet, D.L. Effect of impact load on articular cartilage: Cell metabolism and viability, and matrix water content. J. Biomech. Eng. 1999, 121, 433–441. [Google Scholar] [CrossRef] [PubMed]
- De Bont, F.; Brill, N.; Schmitt, R.; Tingart, M.; Rath, B.; Pufe, T.; Jahr, H.; Nebelung, S. Evaluation of single-impact-induced cartilage degeneration by optical coherence tomography. BioMed Res. Int. 2015, 2015, 486794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linka, K.; Itskov, M.; Truhn, D.; Nebelung, S.; Thuring, J. T2 MR imaging vs. computational modeling of human articular cartilage tissue functionality. J. Mech. Behav. Biomed. Mater. 2017, 74, 477–487. [Google Scholar] [CrossRef]
- Nebelung, S.; Brill, N.; Tingart, M.; Pufe, T.; Kuhl, C.; Jahr, H.; Truhn, D. Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration. Skelet. Radiol. 2016, 45, 505–516. [Google Scholar] [CrossRef]
- Nebelung, S.; Post, M.; Knobe, M.; Shah, D.; Schleich, C.; Hitpass, L.; Kuhl, C.; Thuring, J.; Truhn, D. Human articular cartilage mechanosensitivity is related to histological degeneration—A functional MRI study. Osteoarthr. Cartil. 2019, 27, 1711–1720. [Google Scholar] [CrossRef]
- Nebelung, S.; Post, M.; Raith, S.; Fischer, H.; Knobe, M.; Braun, B.; Prescher, A.; Tingart, M.; Thuring, J.; Bruners, P.; et al. Functional in situ assessment of human articular cartilage using MRI: A whole-knee joint loading device. Biomech. Model. Mechanobiol. 2017, 16, 1971–1986. [Google Scholar] [CrossRef]
- Nebelung, S.; Sondern, B.; Jahr, H.; Tingart, M.; Knobe, M.; Thuring, J.; Kuhl, C.; Truhn, D. Non-invasive T1rho mapping of the human cartilage response to loading and unloading. Osteoarthr. Cartil. 2018, 26, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Nebelung, S.; Sondern, B.; Oehrl, S.; Tingart, M.; Rath, B.; Pufe, T.; Raith, S.; Fischer, H.; Kuhl, C.; Jahr, H.; et al. Functional MR imaging mapping of human articular cartilage response to loading. Radiology 2017, 282, 464–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafner, T.; Schock, J.; Post, M.; Abrar, D.B.; Sewerin, P.; Linka, K.; Knobe, M.; Kuhl, C.; Truhn, D.; Nebelung, S. A serial multiparametric quantitative magnetic resonance imaging study to assess proteoglycan depletion of human articular cartilage and its effects on functionality. Sci. Rep. 2020, 10, 15106. [Google Scholar] [CrossRef] [PubMed]
- Outerbridge, R.E. The etiology of chondromalacia patellae. J. Bone Joint Surg. Br. 1961, 43, 752–757. [Google Scholar] [CrossRef]
- Jeffrey, J.E.; Gregory, D.W.; Aspden, R.M. Matrix damage and chondrocyte viability following a single impact load on articular cartilage. Arch. Biochem. Biophys. 1995, 322, 87–96. [Google Scholar] [CrossRef]
- Huser, C.A.; Davies, M.E. Validation of an in vitro single-impact load model of the initiation of osteoarthritis-like changes in articular cartilage. J. Orthop. Res. 2006, 24, 725–732. [Google Scholar] [CrossRef]
- Truhn, D.; Brill, N.; Braun, B.; Merhof, D.; Kuhl, C.; Knobe, M.; Thuring, J.; Nebelung, S. A multi-purpose force-controlled loading device for cartilage and meniscus functionality assessment using advanced MRI techniques. J. Mech. Behav. Biomed. Mater. 2020, 101, 103428. [Google Scholar] [CrossRef]
- Wilson, K.J.; Surowiec, R.K.; Ho, C.P.; Devitt, B.M.; Fripp, J.; Smith, W.S.; Spiegl, U.J.; Dornan, G.J.; Laprade, R.F. Quantifiable imaging biomarkers for evaluation of the posterior cruciate ligament using 3-T magnetic resonance imaging. Orthop. J. Sports Med. 2016, 4, 232596711663904. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Nebelung, S.; Marx, U.; Brill, N.; Arbab, D.; Quack, V.; Jahr, H.; Tingart, M.; Zhou, B.; Stoffel, M.; Schmitt, R.; et al. Morphometric grading of osteoarthritis by optical coherence tomography—An ex vivo study. J. Orthop. Res. 2014, 32, 1381–1388. [Google Scholar] [CrossRef]
- Mankin, H.J.; Dorfman, H.; Lippiello, L.; Zarins, A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J. Bone Joint Surg. Am. 1971, 53, 523–537. [Google Scholar] [CrossRef]
- Verteramo, A.; Seedhom, B.B. Effect of a single impact loading on the structure and mechanical properties of articular cartilage. J. Biomech. 2007, 40, 3580–3589. [Google Scholar] [CrossRef]
- Pritzker, K.P.; Gay, S.; Jimenez, S.A.; Ostergaard, K.; Pelletier, J.P.; Revell, P.A.; Salter, D.; van den Berg, W.B. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthr. Cartil. 2006, 14, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Van de Loo, A.A.; Arntz, O.J.; Otterness, I.G.; van den Berg, W.B. Proteoglycan loss and subsequent replenishment in articular cartilage after a mild arthritic insult by IL-1 in mice: Impaired proteoglycan turnover in the recovery phase. Ag. Act. 1994, 41, 200–208. [Google Scholar]
- Hamerman, D.; Klagsbrun, M. Osteoarthritis. Emerging evidence for cell interactions in the breakdown and remodeling of cartilage. Am. J. Med. 1985, 78, 495–499. [Google Scholar] [CrossRef]
- Kurz, B.; Lemke, A.K.; Fay, J.; Pufe, T.; Grodzinsky, A.J.; Schünke, M. Pathomechanisms of cartilage destruction by mechanical injury. Ann. Anat. Anat. Anz. 2005, 187, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Menezes, N.M.; Gray, M.L.; Hartke, J.R.; Burstein, D. T2 and T1rho MRI in articular cartilage systems. Magn. Reson. Med. 2004, 51, 503–509. [Google Scholar] [CrossRef]
- Shao, H.; Pauli, C.; Li, S.; Ma, Y.; Tadros, A.S.; Kavanaugh, A.; Chang, E.Y.; Tang, G.; Du, J. Magic angle effect plays a major role in both T1rho and T2 relaxation in articular cartilage. Osteoarthr. Cartil. 2017. [Google Scholar] [CrossRef] [Green Version]
- Duda, G.N.; Eilers, M.; Loh, L.; Hoffman, J.E.; Kaab, M.; Schaser, K. Chondrocyte death precedes structural damage in blunt impact trauma. Clin. Orthop. Relat. Res. 2001, 393, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Mansour, J. Biomechanics of cartilage. In Kinesiology: The Mechanics and Pathomechanics of Human Movement; Oatis, C.A., Ed.; Lippincott Williams and Wilkins: Baltimore, MD, USA, 2004; pp. 66–79. [Google Scholar]
- Borrelli, J., Jr.; Ricci, W.M. Acute effects of cartilage impact. Clin. Orthop. Relat. Res. 2004, 33–39. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Harrison, D.; Wang, H.M.; Shultz, S.J. Sagittal-plane knee moment during gait and knee cartilage thickness. J. Athl. Train. 2017, 52, 560–566. [Google Scholar] [CrossRef]
- Linka, K.; Thuring, J.; Rieppo, L.; Aydin, R.C.; Cyron, C.J.; Kuhl, C.; Merhof, D.; Truhn, D.; Nebelung, S. Machine learning-augmented and microspectroscopy-informed multiparametric MRI for the non-invasive prediction of articular cartilage composition. Osteoarthr. Cartil. 2021. [Google Scholar] [CrossRef]
- MacKay, J.W.; Low, S.B.L.; Smith, T.O.; Toms, A.P.; McCaskie, A.W.; Gilbert, F.J. Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthr. Cartil. 2018, 26, 1140–1152. [Google Scholar] [CrossRef] [Green Version]
- Guermazi, A.; Alizai, H.; Crema, M.D.; Trattnig, S.; Regatte, R.R.; Roemer, F.W. Compositional MRI techniques for evaluation of cartilage degeneration in osteoarthritis. Osteoarthr. Cartil. 2015, 23, 1639–1653. [Google Scholar] [CrossRef] [Green Version]
- Abrar, D.B.; Schleich, C.; Frenken, M.; Vordenbaumen, S.; Richter, J.; Schneider, M.; Ostendorf, B.; Nebelung, S.; Sewerin, P. DGEMRIC in the assessment of pre-morphological cartilage degeneration in rheumatic disease: Rheumatoid arthritis vs. psoriatic arthritis. Diagnostics 2021, 11, 147. [Google Scholar] [CrossRef]
- Muller-Lutz, A.; Kamp, B.; Nagel, A.M.; Ljimani, A.; Abrar, D.; Schleich, C.; Wollschlager, L.; Nebelung, S.; Wittsack, H.J. Sodium MRI of human articular cartilage of the wrist: A feasibility study on a clinical 3T MRI scanner. MAGMA 2020. [Google Scholar] [CrossRef]
- Abrar, D.B.; Schleich, C.; Radke, K.L.; Frenken, M.; Stabinska, J.; Ljimani, A.; Wittsack, H.J.; Antoch, G.; Bittersohl, B.; Hesper, T.; et al. Detection of early cartilage degeneration in the tibiotalar joint using 3 T gagCEST imaging: A feasibility study. MAGMA 2020. [Google Scholar] [CrossRef]
- Wang, L.; Regatte, R.R. T1rho MRI of human musculoskeletal system. J. Magn. Reson. Imaging JMRI 2015, 41, 586–600. [Google Scholar] [CrossRef] [Green Version]
- Link, T.M.; Neumann, J.; Li, X. Prestructural cartilage assessment using MRI. J. Magn. Reson. Imaging JMRI 2017, 45, 949–965. [Google Scholar] [CrossRef] [Green Version]
- Van Tiel, J.; Kotek, G.; Reijman, M.; Bos, P.K.; Bron, E.E.; Klein, S.; Nasserinejad, K.; van Osch, G.J.; Verhaar, J.A.; Krestin, G.P.; et al. Is T1rho mapping an alternative to delayed gadolinium-enhanced mr imaging of cartilage in the assessment of sulphated glycosaminoglycan content in human osteoarthritic knees? An in vivo validation study. Radiology 2016, 279, 523–531. [Google Scholar] [CrossRef]
- Thuring, J.; Linka, K.; Itskov, M.; Knobe, M.; Hitpass, L.; Kuhl, C.; Truhn, D.; Nebelung, S. Multiparametric MRI and computational modelling in the assessment of human articular cartilage properties: A comprehensive approach. BioMed Res. Int. 2018, 2018, 9460456. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.S.; Yan, C.H.; Gong, N.J.; Li, T.; Chan, Q.; Chu, Y.C. Imaging biomarker with T1rho and T2 mappings in osteoarthritis—In vivo human articular cartilage study. Eur. J. Radiol. 2013, 82, 647–650. [Google Scholar] [CrossRef]
- Hamada, H.; Nishii, T.; Tamura, S.; Tanaka, H.; Wakayama, T.; Sugano, N. Comparison of load responsiveness of cartilage T1rho and T2 in porcine knee joints: An experimental loading MRI study. Osteoarthr. Cartil. 2015, 23, 1776–1779. [Google Scholar] [CrossRef] [Green Version]
- Pastrama, M.I.; Ortiz, A.C.; Zevenbergen, L.; Famaey, N.; Gsell, W.; Neu, C.P.; Himmelreich, U.; Jonkers, I. Combined enzymatic degradation of proteoglycans and collagen significantly alters intratissue strains in articular cartilage during cyclic compression. J. Mech. Behav. Biomed. Mater. 2019, 98, 383–394. [Google Scholar] [CrossRef]
- Souza, R.B.; Kumar, D.; Calixto, N.; Singh, J.; Schooler, J.; Subburaj, K.; Li, X.; Link, T.M.; Majumdar, S. Response of knee cartilage T1rho and T2 relaxation times to in vivo mechanical loading in individuals with and without knee osteoarthritis. Osteoarthr. Cartil. 2014, 22, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Subburaj, K.; Souza, R.B.; Stehling, C.; Wyman, B.T.; Le Graverand-Gastineau, M.P.; Link, T.M.; Li, X.; Majumdar, S. Association of MR relaxation and cartilage deformation in knee osteoarthritis. J. Orthop. Res. 2012, 30, 919–926. [Google Scholar] [CrossRef] [Green Version]
Group | Mass (g) | Height (mm) | Velocity (m/s) | Energy (J) |
---|---|---|---|---|
Low Impact (LIMP) | 500 | 100 | 1.4 | 0.49 |
High Impact (HIMP) | 1000 | 100 | 1.4 | 0.98 |
Parameters | T2 Map | PD-Weighted |
---|---|---|
Sequence type | multi-spin echo | turbo-spin echo |
Orientation | mid-sag 1 | ax, cor, sag 2 |
Repetition time [ms] | 1500 | 1500–1589 |
Echo time [ms] | n × 8.38 (n = 1–12) | 11 |
Turbo spin echo factor [n] | 12 | 6 |
Field of view [mm] | 52 × 52 | 62 × 62 |
Acquisition matrix [pixels] | 176 × 176 | 144 × 142 |
Reconstruction matrix [pixels] | 224 × 224 | 256 × 256 |
Pixel size [mm/pixel] | 0.23 × 0.23 | 0.24 × 0.24 |
Flip angle [°] | 90 | 90 |
Number of signal averages [n] | 2 | 2 |
Slices [n] | 1 | 8–24 |
Slice thickness [mm] | 2.0 | 1.0 |
Slice gap [mm] | - | 0.5 |
Duration [min sec] | 4 min 29 s | 7 min 11 s 3 |
Histologic Cartilage Change | CONT | LIMP | HIMP | p-Value |
---|---|---|---|---|
Surface Integrity | 0.14 ± 0.34 | 0.43 ± 0.82 | 1.14 ± 1.4 | 0.100 |
Proteoglycan Staining Intensity | 0.14 ± 1.25 | 0.64 ± 1.17 | 0.93 ± 1.03 | 0.163 |
Region-of-Interest | Group | Time | p-Value (§) | |||
---|---|---|---|---|---|---|
t0 | t1 | t2 | t3 | |||
Entire Cartilage Sample | CONT | 33.3 ± 5.1 | 34.4 ± 6.1 | 35.5 ± 6.2 | 35.1 ± 7.4 | 0.093 |
LIMP | 32.0 ± 2.4 | 33.8 ± 3.6 | 38.7 ± 4.5 | 40.3 ± 5.2 | <0.001 | |
HIMP | 35.5 ± 5.1 | 40.8 ± 5.9 | 45.4 ± 8.3 | 55.9 ± 8.3 | <0.001 | |
p-value (‡) | 0.234 | 0.016 | 0.019 | 0.002 | ||
Superficial Layer | CONT | 37.0 ± 6.4 | 39.1 ± 7.6 | 39.5 ± 7.2 | 39.0 ± 8.8 | 0.180 |
LIMP | 38.2 ± 4.3 | 42.4 ± 5.2 | 46.3 ± 4.4 | 47.5 ± 6.1 | <0.001 | |
HIMP | 42.9 ± 5.8 | 48.8 ± 6.3 | 54.5 ± 9.7 | 67.2 ± 19.7 | <0.001 | |
p-value (‡) | 0.026 | 0.008 | 0.001 | 0.001 | ||
Deep Layer | CONT | 29.4 ± 5.1 | 29.4 ± 5.1 | 31.4 ± 6.2 | 31.1 ± 6.6 | 0.18 |
LIMP | 26.1 ± 2.8 | 28.1 ± 3.8 | 32.8 ± 7.7 | 33.9 ± 6.9 | <0.001 | |
HIMP | 27.7 ± 6.0 | 32.6 ± 7.1 | 36.2 ± 9.2 | 44.4 ± 11.4 | <0.001 | |
p-value (‡) | 0.247 | 0.008 | 0.557 | 0.011 |
Region of Interest | Group | Δ1 | Δ2 | Δ3 |
---|---|---|---|---|
Entire Cartilage Sample | CONT | 3.0 ± 3.4 | 6.7 ± 5.4 | 4.7 ± 6.5 |
LIMP | 9.5 ± 3.5 | 23.7 ± 17.6 | 27.1 ± 16.4 | |
HIMP | 15.3 ± 8.3 | 28.6 ± 16.1 | 59.2 ± 42.1 | |
p-value | <0.001 | 0.012 | <0.001 | |
Superficial Layer | CONT | 5.5 ± 5.1 | 6.8 ± 6.3 | 4.9 ± 8.8 |
LIMP | 10.9 ± 11.0 | 22.5 ± 23.9 | 25.1 ± 27.2 | |
HIMP | 14.0 ± 14.2 | 27.6 ± 29.3 | 57.1 ± 61.5 | |
p-value | 0.002 | 0.041 | 0.003 | |
Deep Layer | CONT | 0.4 ± 5.9 | 6.7 ± 9.0 | −1.2 ± 5.1 |
LIMP | 7.8 ± 7.7 | 25.4 ± 27.0 | 29.9 ± 31.4 | |
HIMP | 18.4 ± 18.0 | 30.9 ± 32.3 | 63.6 ± 67.1 | |
p-value | 0.013 | 0.019 | <0.001 |
Texture Feature Class | Texture Feature | Groups | Time | p-Value (§) | |||
---|---|---|---|---|---|---|---|
t0 | t1 | t2 | t3 | ||||
Metrics of Contrast | Contrast | CONT | 0.18 ± 0.07 | 0.19 ± 0.06 | 0.18 ± 0.04 | 0.17 ± 0.06 | 0.615 |
LIMP | 0.25 ± 0.17 | 0.27 ± 0.14 | 0.26 ± 0.08 | 0.28 ± 0.11 | 0.270 | ||
HIMP | 0.24 ± 0.09 | 0.30 ± 0.09 | 0.30 ± 0.09 | 0.40 ± 0.17 | <0.001 | ||
p-value (‡) | 0.312 | 0.06 | 0.003 | 0.001 | |||
Homogeneity | CONT | 0.91 ± 0.03 | 0.91 ± 0.02 | 0.91 ± 0.02 | 0.91 ± 0.03 | 0.615 | |
LIMP | 0.89 ± 0.05 | 0.87 ± 0.05 | 0.87 ± 0.03 | 0.87 ± 0.04 | 0.166 | ||
HIMP | 0.88 ± 0.05 | 0.86 ± 0.04 | 0.86 ± 0.03 | 0.82 ± 0.06 | 0.001 | ||
p>-value (‡) | 0.256 | 0.074 | 0.003 | 0.001 | |||
Metric of Orderliness | Energy | CONT | 0.49 ± 0.19 | 0.46 ± 0.17 | 0.46 ± 0.11 | 0.48 ± 0.15 | 0.510 |
LIMP | 0.43 ± 0.20 | 0.36 ± 0.16 | 0.32 ± 0.07 | 0.30 ± 0.07 | 0.016 | ||
HIMP | 0.35 ± 0.13 | 0.30 ± 0.10 | 0.28 ± 0.10 | 0.24 ± 0.16 | 0.006 | ||
p-value (‡) | 0.225 | 0.078 | 0.004 | 0.002 | |||
Statistical Metric | Variance | CONT | 69.5 ± 28.7 | 77.4 ± 33.0 | 70.5 ± 27.1 | 67.1 ± 29.4 | 0.392 |
LIMP | 111.0 ± 94.9 | 142.1 ± 92.6 | 128.2 ± 58.6 | 143.2 ± 69.4 | 0.015 | ||
HIMP | 118.3 ± 79.9 | 157.3 ± 101.6 | 189.7 ± 124.6 | 311.4 ± 264.8 | 0.005 | ||
p-value (‡) | 0.277 | 0.118 | 0.014 | 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huppertz, M.S.; Schock, J.; Radke, K.L.; Abrar, D.B.; Post, M.; Kuhl, C.; Truhn, D.; Nebelung, S. Longitudinal T2 Mapping and Texture Feature Analysis in the Detection and Monitoring of Experimental Post-Traumatic Cartilage Degeneration. Life 2021, 11, 201. https://doi.org/10.3390/life11030201
Huppertz MS, Schock J, Radke KL, Abrar DB, Post M, Kuhl C, Truhn D, Nebelung S. Longitudinal T2 Mapping and Texture Feature Analysis in the Detection and Monitoring of Experimental Post-Traumatic Cartilage Degeneration. Life. 2021; 11(3):201. https://doi.org/10.3390/life11030201
Chicago/Turabian StyleHuppertz, Marc Sebastian, Justus Schock, Karl Ludger Radke, Daniel Benjamin Abrar, Manuel Post, Christiane Kuhl, Daniel Truhn, and Sven Nebelung. 2021. "Longitudinal T2 Mapping and Texture Feature Analysis in the Detection and Monitoring of Experimental Post-Traumatic Cartilage Degeneration" Life 11, no. 3: 201. https://doi.org/10.3390/life11030201
APA StyleHuppertz, M. S., Schock, J., Radke, K. L., Abrar, D. B., Post, M., Kuhl, C., Truhn, D., & Nebelung, S. (2021). Longitudinal T2 Mapping and Texture Feature Analysis in the Detection and Monitoring of Experimental Post-Traumatic Cartilage Degeneration. Life, 11(3), 201. https://doi.org/10.3390/life11030201