Overview of Important Micronutrients Supplementation in Preterm Infants after Discharge: A Call for Consensus
Abstract
:1. Introduction
2. Iron
3. Zinc
4. Calcium and Phosphorus
5. Vitamin D
6. LCPUFA
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Colombo, J.; Gustafson, K.M.; Carlson, S.E. Critical and Sensitive Periods in Development and Nutrition. Ann. Nutr. Metab. 2019, 75, 34–42. [Google Scholar] [CrossRef]
- Langley-Evans, S.C. Nutrition in Early Life and the Programming of Adult Disease: A Review. J. Hum. Nutr. Diet 2015, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ruys, C.A.; van de Lagemaat, M.; Rotteveel, J.; Finken, M.J.J.; Lafeber, H.N. Improving Long-Term Health Outcomes of Preterm Infants: How to Implement the Findings of Nutritional Intervention Studies into Daily Clinical Practice. Eur. J. Pediatri. 2021. [Google Scholar] [CrossRef]
- Cooke, R.J. Improving Growth in Preterm Infants during Initial Hospital Stay: Principles into Practice. Arch. Dis Child. Fetal Neonatal Ed. 2016, 101, F366–F370. [Google Scholar] [CrossRef]
- Gidi, N.W.; Mekasha, A.; Nigussie, A.K.; Goldenberg, R.L.; McClure, E.M.; Worku, B.; Amaru, G.M.; Tazu Bonger, Z.; Demtse, A.G.; Kebede, Z.T.; et al. Preterm Nutrition and Clinical Outcomes. Glob. Pediatric Health 2020, 7, 2333794X2093785. [Google Scholar] [CrossRef] [PubMed]
- Cormack, B.E.; Harding, J.E.; Miller, S.P.; Bloomfield, F.H. The Influence of Early Nutrition on Brain Growth and Neurodevelopment in Extremely Preterm Babies: A Narrative Review. Nutrients 2019, 11, 2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crippa, B.L.; Morniroli, D.; Baldassarre, M.E.; Consales, A.; Vizzari, G.; Colombo, L.; Mosca, F.; Giannì, M.L. Preterm’s Nutrition from Hospital to Solid Foods: Are We Still Navigating by Sight? Nutrients 2020, 12, 3646. [Google Scholar] [CrossRef] [PubMed]
- Hay, W.W. Nutritional Support Strategies for the Preterm Infant in the Neonatal Intensive Care Unit. Pediatric Gastroenterol. Hepatol. Nutr. 2018, 21, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Cerasani, J.; Ceroni, F.; De Cosmi, V.; Mazzocchi, A.; Morniroli, D.; Roggero, P.; Mosca, F.; Agostoni, C.; Giannì, M.L. Human Milk Feeding and Preterm Infants’ Growth and Body Composition: A Literature Review. Nutrients 2020, 12, 1155. [Google Scholar] [CrossRef] [Green Version]
- Boquien, C.-Y. Human Milk: An Ideal Food for Nutrition of Preterm Newborn. Front. Pediatr. 2018, 6, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, J.A.; Young, L.; McCormick, F.M.; McGuire, W. Promoting Growth for Preterm Infants Following Hospital Discharge. Arch. Dis Child. Fetal Neonatal Ed. 2012, 97, F295–F298. [Google Scholar] [CrossRef] [PubMed]
- Giannì, M.; Bezze, E.; Colombo, L.; Rossetti, C.; Pesenti, N.; Roggero, P.; Sannino, P.; Muscolo, S.; Plevani, L.; Mosca, F. Complementary Feeding Practices in a Cohort of Italian Late Preterm Infants. Nutrients 2018, 10, 1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldassarre, M.E.; Giannì, M.L.; Di Mauro, A.; Mosca, F.; Laforgia, N. Complementary Feeding in Preterm Infants: Where Do We Stand? Nutrients 2020, 12, 1259. [Google Scholar] [CrossRef] [PubMed]
- Obbagy, J.E.; English, L.K.; Psota, T.L.; Wong, Y.P.; Butte, N.F.; Dewey, K.G.; Fox, M.K.; Greer, F.R.; Krebs, N.F.; Scanlon, K.S.; et al. Complementary Feeding and Micronutrient Status: A Systematic Review. Am. J. Clin. Nutr. 2019, 109, 852S–871S. [Google Scholar] [CrossRef] [Green Version]
- Brion, L.P.; Heyne, R.; Lair, C.S. Role of Zinc in Neonatal Growth and Brain Growth: Review and Scoping Review. Pediatr. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Oliver, C.; Watson, C.; Crowley, E.; Gilroy, M.; Page, D.; Weber, K.; Messina, D.; Cormack, B. Vitamin and Mineral Supplementation Practices in Preterm Infants: A Survey of Australian and New Zealand Neonatal Intensive and Special Care Units. Nutrients 2019, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Domellöf, M. Nutritional Care of Premature Infants: Microminerals. In World Review of Nutrition and Dietetics; Koletzko, B., Poindexter, B., Uauy, R., Eds.; S. KARGER AG: Basel, Switzerland, 2014; Volume 110, pp. 121–139. ISBN 978-3-318-02640-5. [Google Scholar]
- Chaparro, C.M. Timing of Umbilical Cord Clamping: Effect on Iron Endowment of the Newborn and Later Iron Status. Nutr. Rev. 2011, 69, S30–S36. [Google Scholar] [CrossRef]
- Cao, C.; O’Brien, K.O. Pregnancy and Iron Homeostasis: An Update. Nutr Rev. 2013, 71, 35–51. [Google Scholar] [CrossRef]
- Domellöf, M.; Georgieff, M.K. Postdischarge Iron Requirements of the Preterm Infant. J. Pediatr. 2015, 167, S31–S35. [Google Scholar] [CrossRef] [Green Version]
- Chockalingam, U.M.; Murphy, E.; Ophoven, J.C.; Weisdorf, S.A.; Georgieff, M.K. Cord Transferrin and Ferritin Values in Newborn Infants at Risk for Prenatal Uteroplacental Insufficiency and Chronic Hypoxia. J. Pediatr. 1987, 111, 283–286. [Google Scholar] [CrossRef]
- Baker, R.D.; Greer, F.R.; The Committee on Nutrition. Diagnosis and Prevention of Iron Deficiency and Iron-Deficiency Anemia in Infants and Young Children (0–3 Years of Age). Pediatrics 2010, 126, 1040–1050. [Google Scholar] [CrossRef] [Green Version]
- Raffaeli, G.; Manzoni, F.; Cortesi, V.; Cavallaro, G.; Mosca, F.; Ghirardello, S. Iron Homeostasis Disruption and Oxidative Stress in Preterm Newborns. Nutrients 2020, 12, 1554. [Google Scholar] [CrossRef]
- Lapillonne, A.; O’Connor, D.L.; Wang, D.; Rigo, J. Nutritional Recommendations for the Late-Preterm Infant and the Preterm Infant after Hospital Discharge. J. Pediatr. 2013, 162, S90–S100. [Google Scholar] [CrossRef] [PubMed]
- Domellöf, M. Meeting the Iron Needs of Low and Very Low Birth Weight Infants. Ann. Nutr. Metab. 2017, 71, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, Y.; Li, T.; Wang, X.; Zhu, C. Iron Metabolism and Brain Development in Premature Infants. Front. Physiol. 2019, 10, 463. [Google Scholar] [CrossRef]
- Ghirardello, S.; Dusi, E.; Cortinovis, I.; Villa, S.; Fumagalli, M.; Agosti, M.; Milani, S.; Mosca, F. Effects of Red Blood Cell Transfusions on the Risk of Developing Complications or Death: An Observational Study of a Cohort of Very Low Birth Weight Infants. Amer. J. Perinatol. 2016, 34, 88–95. [Google Scholar] [CrossRef]
- Kelly, A.M.; Williamson, L.M. Neonatal Transfusion. Early Hum. Dev. 2013, 89, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Fewtrell, M.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Fidler Mis, N.; Hojsak, I.; Hulst, J.M.; Indrio, F.; Lapillonne, A.; et al. Complementary Feeding: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J. Pediatric Gastroenterol. Nutr. 2017, 64, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, A.; Aher, S.M. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. In Cochrane Database of Systematic Reviews; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2006; p. CD004863.pub2. [Google Scholar]
- Johnson-Wimbley, T.D.; Graham, D.Y. Diagnosis and Management of Iron Deficiency Anemia in the 21st Century. Ther. Adv. Gastroenterol. 2011, 4, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, M.; Gómez-Ramírez, S.; Besser, M.; Pavía, J.; Gomollón, F.; Liumbruno, G.M.; Bhandari, S.; Cladellas, M.; Shander, A.; Auerbach, M. Current Misconceptions in Diagnosis and Management of Iron Deficiency. Blood Transfus. 2017, 15, 422–437. [Google Scholar] [CrossRef]
- Cheatham, C.L. Nutritional Factors in Fetal and Infant Brain Development. Ann. Nutr. Metab. 2019, 75, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, M.J.; Fazel, N. Zinc Deficiency. Curr. Opin. Gastroenterol. 2009, 25, 136–143. [Google Scholar] [CrossRef]
- International Zinc Nutrition Consultative Group (IZiNCG); Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lönnerdal, B.; Ruel, M.T.; Sandtröm, B.; Wasantwisut, E.; et al. International Zinc Nutrition Consultative Group (IZiNCG) Technical Document #1. Assessment of the Risk of Zinc Deficiency in Populations and Options for Its Control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar]
- Hambidge, K.M.; Krebs, N.F. Zinc Deficiency: A Special Challenge. J. Nutr. 2007, 137, 1101–1105. [Google Scholar] [CrossRef] [Green Version]
- Harris, T.; Gardner, F.; Podany, A.; Kelleher, S.L.; Doheny, K.K. Increased Early Enteral Zinc Intake Improves Weight Gain in Hospitalised Preterm Infants. Acta Paediatr. 2019, 108, 1978–1984. [Google Scholar] [CrossRef] [PubMed]
- Maggini, S.; Wenzlaff, S.; Hornig, D. Essential Role of Vitamin C and Zinc in Child Immunity and Health. J. Int. Med. Res. 2010, 38, 386–414. [Google Scholar] [CrossRef] [PubMed]
- Terrin, G.; Berni Canani, R.; Di Chiara, M.; Pietravalle, A.; Aleandri, V.; Conte, F.; De Curtis, M. Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate. Nutrients 2015, 7, 10427–10446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatier, M.; Garcia-Rodenas, C.L.; De Castro, C.A.; Kastenmayer, P.; Vigo, M.; Dubascoux, S.; Andrey, D.; Nicolas, M.; Payot, J.R.; Bordier, V.; et al. Longitudinal Changes of Mineral Concentrations in Preterm and Term Human Milk from Lactating Swiss Women. Nutrients 2019, 11, 1855. [Google Scholar] [CrossRef] [Green Version]
- Lowe, N.M.; Fekete, K.; Decsi, T. Methods of Assessment of Zinc Status in Humans: A Systematic Review. Am. J. Clin. Nutr. 2009, 89, 2040S–2051S. [Google Scholar] [CrossRef] [Green Version]
- Pediatric Nutrition in Practice, 2nd ed.; Koletzko, B. (Ed.) World Review of Nutrition and Dietetics; Karger: Basel, Switzerland; New York, NY, USA, 2015; ISBN 978-3-318-02690-0. [Google Scholar]
- Maret, W.; Sandstead, H.H. Zinc Requirements and the Risks and Benefits of Zinc Supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef]
- Hess, S.Y.; Brown, K.H. Impact of Zinc Fortification on Zinc Nutrition. Food Nutr. Bull. 2009, 30, S79–S107. [Google Scholar] [CrossRef]
- Griffin, I.J.; Domellöf, M.; Bhatia, J.; Anderson, D.M.; Kler, N. Zinc and Copper Requirements in Preterm Infants: An Examination of the Current Literature. Early Hum. Dev. 2013, 89, S29–S34. [Google Scholar] [CrossRef] [Green Version]
- Krebs, N.F. Update on Zinc Deficiency and Excess in Clinical Pediatric Practice. Ann. Nutr. Metab. 2013, 62, 19–29. [Google Scholar] [CrossRef]
- Kovacs, C.S. Bone Development and Mineral Homeostasis in the Fetus and Neonate: Roles of the Calciotropic and Phosphotropic Hormones. Physiol. Rev. 2014, 94, 1143–1218. [Google Scholar] [CrossRef]
- Koo, W. Maternal Calcium Supplementation and Fetal Bone Mineralization. Obstet. Gynecol. 1999, 94, 577–582. [Google Scholar] [CrossRef]
- Bozzetti, V.; Tagliabue, P. Metabolic Bone Disease in Preterm Newborn: An Update on Nutritional Issues. Ital. J. Pediatr. 2009, 35, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faienza, M.F.; D’Amato, E.; Natale, M.P.; Grano, M.; Chiarito, M.; Brunetti, G.; D’Amato, G. Metabolic Bone Disease of Prematurity: Diagnosis and Management. Front. Pediatr. 2019, 7, 143. [Google Scholar] [CrossRef]
- Chacham, S.; Pasi, R.; Chegondi, M.; Ahmad, N.; Mohanty, S.B. Metabolic Bone Disease in Premature Neonates: An Unmet Challenge. JCRPE 2020, 12, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Pohlandt, F.; Mihatsch, W.A. Reference Values for Urinary Calcium and Phosphorus to Prevent Osteopenia of Prematurity. Pediatr. Nephrol. 2004, 19, 1192–1193. [Google Scholar] [CrossRef]
- Abrams, S.A.; The Committee on Nutrition; Bhatia, J.J.S.; Corkins, M.R.; De Ferranti, S.D.; Golden, N.H.; Silverstein, J. Calcium and Vitamin D Requirements of Enterally Fed Preterm Infants. Pediatrics 2013, 131, e1676–e1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggett, P.J.; Agostoni, C.; Axelsson, I.; De Curtis, M.; Goulet, O.; Hernell, O.; Koletzko, B.; Lafeber, H.N.; Michaelsen, K.F.; Puntis, J.W.L.; et al. Feeding Preterm Infants After Hospital Discharge: A Commentary by the ESPGHAN Committee on Nutrition. J. Pediatric Gastroenterol. Nutr. 2006, 42, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Saggese, G.; Vierucci, F.; Boot, A.M.; Czech-Kowalska, J.; Weber, G.; Camargo, C.A.; Mallet, E.; Fanos, M.; Shaw, N.J.; Holick, M.F. Vitamin D in Childhood and Adolescence: An Expert Position Statement. Eur. J. Pediatr. 2015, 174, 565–576. [Google Scholar] [CrossRef]
- Boy, E.; Mannar, V.; Pandav, C.; de Benoist, B.; Viteri, F.; Fontaine, O.; Hotz, C. Achievements, Challenges, and Promising New Approaches in Vitamin and Mineral Deficiency Control. Nutr. Rev. 2009, 67, S24–S30. [Google Scholar] [CrossRef]
- Negri, M.; Gentile, A.; de Angelis, C.; Montò, T.; Patalano, R.; Colao, A.; Pivonello, R.; Pivonello, C. Vitamin D-Induced Molecular Mechanisms to Potentiate Cancer Therapy and to Reverse Drug-Resistance in Cancer Cells. Nutrients 2020, 12, 1798. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- de la Guía-Galipienso, F.; Martínez-Ferran, M.; Vallecillo, N.; Lavie, C.J.; Sanchis-Gomar, F.; Pareja-Galeano, H. Vitamin D and Cardiovascular Health. Clin. Nutr. 2020, S0261561420307007. [Google Scholar] [CrossRef]
- Abrams, S.A. Vitamin D in Preterm and Full-Term Infants. Ann. Nutr. Metab. 2020, 76, 6–14. [Google Scholar] [CrossRef]
- Council on Environmental Health and Section on Dermatology. Ultraviolet Radiation: A Hazard to Children and Adolescents. Pediatrics 2011, 127, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Saggese, G.; Vierucci, F.; Prodam, F.; Cardinale, F.; Cetin, I.; Chiappini, E.; de’ Angelis, G.L.; Massari, M.; Miraglia Del Giudice, E.; Miraglia Del Giudice, M.; et al. Vitamin D in Pediatric Age: Consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, Jointly with the Italian Federation of Pediatricians. Ital. J. Pediatr. 2018, 44, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacs, C.S. Maternal Vitamin D Deficiency: Fetal and Neonatal Implications. Semin. Fetal Neonatal Med. 2013, 18, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Treiber, M.; Mujezinović, F.; Pečovnik Balon, B.; Gorenjak, M.; Maver, U.; Dovnik, A. Association between Umbilical Cord Vitamin D Levels and Adverse Neonatal Outcomes. J. Int. Med. Res. 2020, 48, 030006052095500. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.M.; Gibson, A.T. Osteopenia in Preterm Infants. Arch. Dis Child. Fetal Neonatal Ed. 2013, 98, F272–F275. [Google Scholar] [CrossRef]
- Rigo, J.; Pieltain, C.; Salle, B.; Senterre, J. Enteral Calcium, Phosphate and Vitamin D Requirements and Bone Mineralization in Preterm Infants: Calcium, Phosphate and Vitamin D Requirements. Acta Paediatr. 2007, 96, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Luo, K.; He, X.; Chen, P. Association of Vitamin D Status at Birth with Pulmonary Disease Morbidity in Very Preterm Infants. Pediatric Pulmonol. 2020. [Google Scholar] [CrossRef]
- Zittermann, A.; Pilz, S.; Berthold, H.K. Serum 25-Hydroxyvitamin D Response to Vitamin D Supplementation in Infants: A Systematic Review and Meta-Analysis of Clinical Intervention Trials. Eur. J. Nutr. 2020, 59, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Buonocore, G.; Carnielli, V.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral Nutrient Supply for Preterm Infants: Commentary From the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatric Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Misra, M.; Pacaud, D.; Petryk, A.; Collett-Solberg, P.F.; Kappy, M.; on behalf of the Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society Vitamin D. Deficiency in Children and Its Management: Review of Current Knowledge and Recommendations. Pediatrics 2008, 122, 398–417. [Google Scholar] [CrossRef] [Green Version]
- Płudowski, P.; Karczmarewicz, E.; Bayer, M.; Carter, G.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dębski, R.; Decsi, T.; Dobrzańska, A.; Franek, E.; et al. Practical Guidelines for the Supplementation of Vitamin D and the Treatment of Deficits in Central Europe—Recommended Vitamin D Intakes in the General Population and Groups at Risk of Vitamin D Deficiency. Endokrynol. Pol. 2013, 64, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, P. Effect of Placental Function on Fatty Acid Requirements during Pregnancy. Eur. J. Clin. Nutr. 2004, 58, 1559–1570. [Google Scholar] [CrossRef] [Green Version]
- Baack, M.L.; Puumala, S.E.; Messier, S.E.; Pritchett, D.K.; Harris, W.S. Daily Enteral DHA Supplementation Alleviates Deficiency in Premature Infants. Lipids 2016, 51, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Schneider, N.; Garcia-Rodenas, C. Early Nutritional Interventions for Brain and Cognitive Development in Preterm Infants: A Review of the Literature. Nutrients 2017, 9, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Prado, M.; Villalpando, S.; Elizondo, A.; Rodríguez, M.; Demmelmair, H.; Koletzko, B. Contribution of Dietary and Newly Formed Arachidonic Acid to Human Milk Lipids in Women Eating a Low-Fat Diet. Am. J. Clin. Nutr. 2001, 74, 242–247. [Google Scholar] [CrossRef]
- Lucas, M.; Asselin, G.; Mérette, C.; Poulin, M.-J.; Dodin, S. Validation of an FFQ for Evaluation of EPA and DHA Intake. Public Health Nutr. 2009, 12, 1783–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agostoni, C.; Galli, C.; Riva, E.; Colombo, C.; Giovannini, M.; Marangoni, F. Reduced Docosahexaenoic Acid Synthesis May Contribute to Growth Restriction in Infants Born to Mothers Who Smoke. J. Pediatr. 2005, 147, 854–856. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Y.; Pan, Y.; Yuan, X.; Chang, P.; Tian, Y.; Cui, W.; Li, D. The Effect of Long Chain Polyunsaturated Fatty Acid Supplementation on Intelligence in Low Birth Weight Infant during Lactation: A Meta-Analysis. PLoS ONE 2018, 13, e0195662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, K.; Rao, S.C.; Schulzke, S.M.; Patole, S.K.; Simmer, K. Longchain Polyunsaturated Fatty Acid Supplementation in Preterm Infants. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Gould, J.F.; Roberts, R.M.; Makrides, M. The Influence of Omega-3 Long-Chain Polyunsaturated Fatty Acid, Docosahexaenoic Acid, on Child Behavioral Functioning: A Review of Randomized Controlled Trials of DHA Supplementation in Pregnancy, the Neonatal Period and Infancy. Nutrients 2021, 13, 415. [Google Scholar] [CrossRef] [PubMed]
- Shulkin, M.; Pimpin, L.; Bellinger, D.; Kranz, S.; Fawzi, W.; Duggan, C.; Mozaffarian, D. N–3 Fatty Acid Supplementation in Mothers, Preterm Infants, and Term Infants and Childhood Psychomotor and Visual Development: A Systematic Review and Meta-Analysis. J. Nutr. 2018, 148, 409–418. [Google Scholar] [CrossRef]
- Hellström, A.; Nilsson, A.K.; Wackernagel, D.; Pivodic, A.; Vanpee, M.; Sjöbom, U.; Hellgren, G.; Hallberg, B.; Domellöf, M.; Klevebro, S.; et al. Effect of Enteral Lipid Supplement on Severe Retinopathy of Prematurity: A Randomized Clinical Trial. JAMA Pediatr. 2021. [Google Scholar] [CrossRef]
- Tounian, P.; Bellaïche, M.; Legrand, P. ARA or No ARA in Infant Formulae, That Is the Question. Arch. Pédiatrie 2021, 28, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.L.; Rouse, C.A. Docosahexaenoic Acid and the Preterm Infant. Matern. Health Neonatol. Perinatol. 2017, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- De Rooy, L.; Hamdallah, H.; Dyall, S.C. Extremely Preterm Infants Receiving Standard Care Receive Very Low Levels of Arachidonic and Docosahexaenoic Acids. Clin. Nutr. 2017, 36, 1593–1600. [Google Scholar] [CrossRef]
- Keim, S.A.; Gracious, B.; Boone, K.M.; Klebanoff, M.A.; Rogers, L.K.; Rausch, J.; Coury, D.L.; Sheppard, K.W.; Husk, J.; Rhoda, D.A. ω-3 and ω-6 Fatty Acid Supplementation May Reduce Autism Symptoms Based on Parent Report in Preterm Toddlers. J. Nutr. 2018, 148, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.-C.; Kuo, H.-K.; Huang, C.-B.; Ko, T.-Y.; Chen, C.-C.; Chung, M.-Y. The Effect of Supplementation of Docosahexaenoic Acid and Arachidonic Acid on Visual Acuity and Neurodevelopment in Larger Preterm Infants. Chang. Gung Med. J. 2005, 28, 708–715. [Google Scholar] [PubMed]
- Lapillonne, A.; Bronsky, J.; Campoy, C.; Embleton, N.; Fewtrell, M.; Fidler Mis, N.; Gerasimidis, K.; Hojsak, I.; Hulst, J.; Indrio, F.; et al. Feeding the Late and Moderately Preterm Infant: A Position Paper of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatric Gastroenterol. Nutr. 2019, 69, 259–270. [Google Scholar] [CrossRef] [PubMed]
Functions | High Risk Population Subgroups | |
---|---|---|
Iron | Hemoglobin synthesis; Oxygen transport; Cellular energy production | Very low birth weight infants Preterms < 34 GA Intrauterine growth restriction Preterms fed non-fortified breastmilk during hospital stay |
Zinc | Tissue integrity; Immunomodulation; Bone development; Growth hormone regulation; Appetite regulation | |
Vitamin D | Bone mineralization; Anti-tumor actions; Inflammatory functions Cardiovascular functions | |
LCPUFAs | Retinal development; Neurodevelopment | |
Calcium and Phosphorus | Bone mineralization; Neuromuscular function |
Measurements | Supplementation | |
---|---|---|
Iron | Measurement of iron storage status is recommended: -at discharge -during follow-up -at the beginning of complementary feeding | Iron supplementation should be tailored according to: -birth weight -gestational age -type of feeding -need for catch up growth -iron status |
Zinc | Serial measurements of zinc concentration are not recommended unless evidence of zinc deficiency is detectable | Zinc supplementation through the first year of life may be advisable, particularly in breastfed infants with impaired growth |
Vitamin D | Serial measurements of Vitamin D are not recommended, unless specific risk factors are identified | Vitamin D supplementation is recommended at least up to the first year of life |
LCPUFAs | Serial measurements of LCPUFA, particularly DHA and AA, are not recommended | DHA supplementation may be advisable but there is no sufficient evidence to advise specific timing and doses |
Calcium and Phosphorus | Serial measurements of serum calcium, phosphate, alkaline phosphatase (ALP), parathormone (PTH) and vitamin D are not recommended but may be advisable in VLBW infants in the first weeks after discharge. Assessment of urinary calcium and phosphate to creatinine ratios may be useful. | Calcium 140–160 mg/100 kcal (AAP) 70–140 mg/100 kcal (ESPGHAN) Phosphorus 95–108 mg/100 kcal (AAP) 50–86 mg/100 kcal (ESPGHAN) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilardi, L.; Proto, A.; Ceroni, F.; Morniroli, D.; Martinelli, S.; Mosca, F.; Giannì, M.L. Overview of Important Micronutrients Supplementation in Preterm Infants after Discharge: A Call for Consensus. Life 2021, 11, 331. https://doi.org/10.3390/life11040331
Ilardi L, Proto A, Ceroni F, Morniroli D, Martinelli S, Mosca F, Giannì ML. Overview of Important Micronutrients Supplementation in Preterm Infants after Discharge: A Call for Consensus. Life. 2021; 11(4):331. https://doi.org/10.3390/life11040331
Chicago/Turabian StyleIlardi, Laura, Alice Proto, Federica Ceroni, Daniela Morniroli, Stefano Martinelli, Fabio Mosca, and Maria Lorella Giannì. 2021. "Overview of Important Micronutrients Supplementation in Preterm Infants after Discharge: A Call for Consensus" Life 11, no. 4: 331. https://doi.org/10.3390/life11040331
APA StyleIlardi, L., Proto, A., Ceroni, F., Morniroli, D., Martinelli, S., Mosca, F., & Giannì, M. L. (2021). Overview of Important Micronutrients Supplementation in Preterm Infants after Discharge: A Call for Consensus. Life, 11(4), 331. https://doi.org/10.3390/life11040331