Ceftolozane/Tazobactam for Resistant Drugs Pseudomonas aeruginosa Respiratory Infections: A Systematic Literature Review of the Real-World Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Literature Search Strategy
2.3. Inclusion and Exclusion Criteria
- −
- the full study was published;
- −
- the study described clinical use of C/T for respiratory infections;
- −
- the responsible agent of the infection was PA resistant to multiple antimicrobial agents;
- −
- the study reported the clinical outcome of the patient(s) treated with C/T.
- −
- the study did not report clinical outcome;
- −
- the study had duplicate data with others (in these cases, only the largest study was retained);
- −
- the study presented pooled data that did not allow for extrapolation of useful information.
2.4. Data Extraction
- −
- demographic characteristics (sex and age);
- −
- clinical characteristics (commodities);
- −
- type of infection and resistance profile;
- −
- therapeutic regimen (empirical and targeted) and dosage;
- −
- co-infections;
- −
- adverse events (AEs);
- −
- clinical and microbiological outcome.
3. Results
Study Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gentile, I.; Maraolo, A.E.; Borgia, G. What is the role of the new β-lactam/β-lactamase inhibitors ceftolozane/tazobactam and ceftazidime/avibactam? Expert Rev. Anti-Infect. Ther. 2016, 14, 875–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Food and Drug Administration (FDA). Zerbaxa (ceftolozane/tazobactam) Letter of Approval. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/014/206829Orig1s000Approv.pdf (accessed on 11 April 2021).
- European Medicines Agency (EMA). Zerbaxa (ceftolozane/tazobactam) Letter of Approval. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/zerbaxa#authorisation-details-section (accessed on 11 April 2021).
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Barie, P.S.; et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagenlehner, F.M.; Umeh, O.; Steenbergen, J.; Yuan, G.; Darouiche, R.O. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: A randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 2015, 385, 1949–1956. [Google Scholar] [CrossRef]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front Public Health 2019, 7, 151. [Google Scholar] [CrossRef] [Green Version]
- Walter, J.; Haller, S.; Quinten, C.; Kärki, T.; Zacher, B.; Eckmanns, T.; Abu Sin, M.; Plachouras, D.; Kinross, P.; Suetens, C. Healthcare-associated pneumonia in acute care hospitals in European Union/European Economic Area countries: An analysis of data from a point prevalence survey, 2011 to 2012. Eurosurveillance 2018, 23, 1700843. [Google Scholar] [CrossRef]
- Kollef, M.H.; Chastre, J.; Fagon, J.-Y.; François, B.; Niederman, M.S.; Rello, J.; Torres, A.; Vincent, J.-L.; Wunderink, R.G.; Go, K.W.; et al. Global Prospective Epidemiologic and Surveillance Study of Ventilator-Associated Pneumonia due to Pseudomonas aeruginosa*. Crit. Care Med. 2014, 42, 2178–2187. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia: Guidelines for the management of hospital-acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociación Latinoamericana del Tórax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar]
- US Food and Drug Administration (FDA). FDA Approves New Treatment for Hospital-Acquired and Ventilator-Associated Bacterial Pneumonia; FDA: Atlanta, GA, USA, 2019. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-hospital-acquired-and-ventilator-associated-bacterial-pneumonia (accessed on 11 April 2021).
- European Medicines Agency (EMA). Zerbaxa. EMA. 2019. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/zerbaxa (accessed on 11 April 2021).
- Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell. Infect. Microbiol. 2017, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Giani, T.; Arena, F.; Pollini, S.; Di Pilato, V.; D’Andrea, M.M.; De Angelis, L.H.; Bassetti, M.; Rossolini, G.M.; Vismara, C.; Luzzaro, F.; et al. Italian nationwide survey on Pseudomonas aeruginosa from invasive infections: Activity of ceftolozane/tazobactam and comparators, and molecular epidemiology of carbapenemase producers. J. Antimicrob. Chemother. 2018, 73, 664–671. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Lawson, C.D.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Lagacé-Wiens, P.R.; Denisuik, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; et al. Ceftazidime-avibactam: A novel cephalosporin/b-lactamase inhibitor combination. Drugs 2013, 73, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Sader, H.S.; Rhomberg, P.R.; Farrell, D.J.; Jones, R.N. Antimicrobial Activity of CXA-101, a Novel Cephalosporin Tested in Combination with Tazobactam against Enterobacteriaceae, Pseudomonas aeruginosa, and Bacteroides fragilis Strains Having Various Resistance Phenotypes. Antimicrob. Agents Chemother. 2011, 55, 2390–2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, D.J.; Flamm, R.K.; Sader, H.S.; Jones, R.N. Antimicrobial Activity of Ceftolozane-Tazobactam Tested against Enterobacteriaceae and Pseudomonas aeruginosa with Various Resistance Patterns Isolated in U.S. Hospitals (2011–2012). Antimicrob. Agents Chemother. 2013, 57, 6305–6310. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. The PRISMA Group. Preferred Reporting Items for Systematic Reviews andMeta-Analyses: The PRISMA Statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessa, M.A.; Almangour, T.A.; Alhossan, A.; Alkholief, M.A.; Alhokail, M.; Tabb, D.E. Ceftolozane-tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa pneumonia in a patient receiving intermittent hemodialysis. Am. J. Health Syst. Pharm. 2018, 75, e184–e188. [Google Scholar] [CrossRef]
- Alqaid, A.; Dougherty, C.; Ahmad, S. Triple antibiotic therapy with ceftolozane/tazobactam, colistin and rifampin for pan-resistant Pseudomonas aeruginosa ventilator-associated pneumonia. Southwest Respir. Crit. Care Chron. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Sorli, L.; Recasens, L.; García, M.M. Ceftolozane-tazobactam for the treatment of ventilator-associated infections by colistin-resistant Pseudomonas aeruginosa. Rev. Esp. Quimioter. 2017, 30, 224–228. [Google Scholar]
- Ang, J.Y.; Abdel-Haq, N.; Zhu, F.; Thabit, A.K.; Nicolau, D.P.; Satlin, M.J.; Van Duin, D. Multidrug-Resistant Pseudomonas aeruginosa Infection in a Child with Cystic Fibrosis. Antimicrob. Agents Chemother. 2016, 60, 5627–5630. [Google Scholar] [CrossRef] [Green Version]
- Bosaeed, M.; Ahmad, A.; Alali, A.; Mahmoud, E.; Alswidan, L.; Alsaedy, A.; Aljuhani, S.; Alalwan, B.; Alshamrani, M.; Alothman, A. Experience With Ceftolozane-Tazobactam for the Treatment of Serious Pseudomonas aeruginosa Infections in Saudi Tertiary Care Center. Infect. Dis. 2020, 13. [Google Scholar] [CrossRef] [PubMed]
- Castón, J.J.; De La Torre, Á.; Ruiz-Camps, I.; Sorlí, M.L.; Torres, V.; Torre-Cisneros, J. Salvage Therapy with Ceftolozane-Tazobactam for Multidrug-Resistant Pseudomonas aeruginosa Infections. Antimicrob. Agents Chemother. 2017, 61, e02136-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinh, A.; Wyplosz, B.; Kernéis, S.; Lebeaux, D.; Bouchand, F.; Duran, C.; Béraud, G.; Lazaro, P.; Davido, B.; Hénard, S.; et al. Use of ceftolozane/tazobactam as salvage therapy for infections due to extensively drug-resistant Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2017, 49, 782–783. [Google Scholar] [CrossRef] [PubMed]
- Gelfand, M.S.; Cleveland, K.O. Ceftolozane/Tazobactam Therapy of Respiratory Infections due to Multidrug-Resistant Pseudomonas aeruginosa. Clin. Infect. Dis. 2015, 61, 853–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haidar, G.; Philips, N.J.; Shields, R.K.; Snyder, D.; Cheng, S.; Potoski, B.A.; Doi, Y.; Hao, B.; Press, E.G.; Cooper, V.S.; et al. Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance. Clin. Infect. Dis. 2017, 65, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Hakki, M.; Lewis, J.S. Ceftolozane-tazobactam therapy for multidrug-resistant Pseudomonas aeruginosa infections in patients with hematologic malignancies and hematopoietic-cell transplant recipients. Infection 2018, 46, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Tejedor, A.; Merino-Vega, C.D.; Martín-Vivas, A.; de Luna-González, R.R.; Delgado-Iribarren, A.; Gabán-Díez, Á.; Temprano-Gómez, I.; de la Calle-Pedrosa, N.; González-Jiménez, A.I.; Algora-Weber, A. Successful treatment of multidrug-resistant Pseudomonas aeruginosa breakthrough bacteremia with ceftolozane/tazobactam. Infection 2017, 45, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Kuti, J.L.; Ghazi, I.M.; Quintiliani, R.; Shore, E.; Nicolau, D.P. Treatment of multidrug-resistant Pseudomonas aeruginosa with ceftolozane/tazobactam in a critically ill patient receiving continuous venovenous haemodiafiltration. Int. J. Antimicrob. Agents 2016, 48, 342–343. [Google Scholar] [CrossRef]
- Lewis, P.O.; Cluck, D.; Tharp, J.L.; Krolikowski, M.A.; Patel, P.D. Failure of ceftolozane-tazobactam salvage therapy in complicated pneumonia with lung abscess. Clin. Case Rep. 2018, 6, 1308–1312. [Google Scholar] [CrossRef]
- Maniara, B.P.; Wells, I. Ceftolozane/Tazobactam-Induced Leukocytosis and Clinical Failure in a Patient Being Treated for Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Pseudomonas aeruginosa: A Case Report. SN Compr. Clin. Med. 2021, 3, 701–704. [Google Scholar] [CrossRef]
- Munita, J.M.; Aitken, S.L.; Miller, W.R.; Perez, F.; Rosa, R.; A Shimose, L.; Lichtenberger, P.N.; Abbo, L.M.; Jain, R.; Nigo, M.; et al. Multicenter Evaluation of Ceftolozane/Tazobactam for Serious Infections Caused by Carbapenem-Resistant Pseudomonas aeruginosa. Clin. Infect. Dis. 2017, 65, 158–161. [Google Scholar] [CrossRef]
- Plant, A.J.; Dunn, A.; Porter, R.J. Ceftolozane-tazobactam resistance induced in vivo during the treatment of MDR Pseudomonas aeruginosa pneumonia. Expert Rev. Anti-Infect. Ther. 2018, 16, 367–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, M.T.; Premraj, S.; Bray, J.M.; Murillo, L.C. Ceftolozane/tazobactam for pulmonary exacerbation in a 63-year-old cystic fibrosis patient with renal insufficiency and an elevated MIC to Pseudomonas aeruginosa. IDCases 2020, 21, e00830. [Google Scholar] [CrossRef] [PubMed]
- Soliman, R.; Woodford, N.; Pike, R.; Livermore, D.; Lynch, S.; Turton, J.; Meader, E.; Hill, R. Successful ceftolozane/tazobactam treatment of chronic pulmonary infection with pan-resistant Pseudomonas aeruginosa. JMM Case Reports 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Stokem, K.; Zuckerman, J.B.; Nicolau, D.P.; Wungwattana, M.; Sears, E.H. Use of ceftolozane-tazobactam in a cystic fibrosis patient with multidrug-resistant pseudomonas infection and renal insufficiency. Respir. Med. Case Rep. 2018, 23, 8–9. [Google Scholar] [CrossRef]
- Vickery, S.B.; McClain, D.; Wargo, K.A. Successful Use of Ceftolozane-Tazobactam to Treat a Pulmonary Exacerbation of Cystic Fibrosis Caused by Multidrug-ResistantPseudomonas aeruginosa. Pharmacotherapy 2016, 36, e154–e159. [Google Scholar] [CrossRef]
- Xipell, M.; Paredes, S.; Fresco, L.; Bodro, M.; Marco, F.; Martínez, J.; Soriano, A. Clinical experience with ceftolozane/tazobactam in patients with serious infections due to resistant Pseudomonas aeruginosa. J. Glob. Antimicrob. Resist. 2018, 13, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Zikri, A.; El Masri, K. Use of Ceftolozane/tazobactam for the Treatment of Multidrug-resistant Pseudomonas aeruginosa Pneumonia in a Pediatric Patient with Combined Immunodeficiency (CID): A Case Report from a Tertiary Hospital in Saudi Arabia. Antibiotiotics 2019, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Leibovici, L. Editorial Commentary: Combination Therapy for Pseudomonas aeruginosa Bacteremia: Where Do We Stand? Clin. Infect. Dis. 2013, 57, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Vena, A.; Russo, A.; Croxatto, A.; Calandra, T.; Guery, B. Rational approach in the management of Pseudomonas aeruginosa infections. Curr. Opin. Infect. Dis. 2018, 31, 578–586. [Google Scholar] [CrossRef]
- Mensa, J.; Barberán, J.; Soriano, A.; Llinares, P.; Marco, F.; Cantón, R.; Bou, G.; del Castillo, J.G.; Maseda, E.; Azanza, J.R.; et al. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa: Guidelines by the Spanish Society of Chemotherapy. Rev. Esp. Quimioter. 2018, 31, 78–100. [Google Scholar] [PubMed]
- Lob, S.H.; Hoban, D.J.; Young, K.; Motyl, M.R.; Sahm, D.F. Activity of ceftolozane–tazobactam and comparators against Pseudomonas aeruginosa from patients in different risk strata—SMART United States 2016–2017. J. Glob. Antimicrob. Resist. 2020, 20, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.P., 3rd; Zhanel, G.G.; Clark, N.M. Emergence of Antimicrobial Resistance among Pseudomonas aeruginosa: Implications for Therapy. Semin. Respir. Crit. Care Med. 2017, 38, 326–345. [Google Scholar] [PubMed]
- Ruiz, J.; Ferrada, A.; Salavert, M.; Gordon, M.; Villarreal, E.; Castellanos-Ortega, Á.; Ramirez, P. Ceftolozane/Tazobactam Dosing Requirements Against Pseudomonas aeruginosa Bacteremia. Dose Response 2020, 18, 1559325819885790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blonde, L.; Khunti, K.; Harris, S.B.; Meizinger, C.; Skolnik, N.S. Interpretation and impact of real-world clinical data for the practicing clinician. Adv. Ther. 2018, 35, 1763–1774. [Google Scholar] [CrossRef] [Green Version]
- De Kraker, M.E.A.; Sommer, H.; de Velde, F.; Gravestock, I.; Weiss, E.; McAleenan, A.; Nikolakopoulos, S.; Amit, O.; Ashton, T.; Beyersmann, J.; et al. Optimizing the design and analysis of clinical trials for antibacteri- als against multidrug-resistant organisms: A white paper from COMBACTE’s STAT-Net. Clin. Infect. Dis. 2018, 67, 1922–1931. [Google Scholar]
- Paul, M.; Scudeller, L. Clinical research designs to study treatment effects for multidrug-resistant bacteria. Clin. Microbiol. Infect. 2019, 25, 929–931. [Google Scholar] [CrossRef] [Green Version]
Author, Year | Study Design | No. | Sex, Years | Type of Infection | Resistance Profile | C/T Dosage (Duration, Days) | Clinical Outcome | Microbiological Status |
---|---|---|---|---|---|---|---|---|
Alessa et al., 2018 [21] | Case report | 1 | M, 79 | Aspiration pneumonia | MDR | 1.5 g → 300 mg/8 h (13) | S | N/D |
Alqaid et al., 2015 [22] | Case report | 1 | M, 69 | VAP | PDR | 1.5 g/8 h (14) | S | N/D |
Álvarez Lerma et al., 2017 [23] | Case report | 2 | M, 72 | VAP | PDR | 1.5 g/8 h (4) → 750 mg/8 h (10) | S | C |
M, 48 | VAP | PDR | 750 mg/8 h (17) | S | C | |||
Ang et al., 2016 [24] | Case report | 1 | F, 14 | Pneumonia | MDR | 1.5 g/8 h → 750 mg/8 h (14) | S | E |
Bosaeed et al., 2020 [25] | Observational study | 6 | F, 45 | Pneumonia | CR | 1.5 g/8 h (7) | F | C |
? | Pneumonia | CR | ? | S | N/D | |||
? | Pneumonia | CR | ? | S | N/D | |||
M, 69 | VAP | CR | 1.5 g/8 h (14) | F | C | |||
M, 61 | VAP | CR | 1.5 g/8 h (8) | F | C | |||
? | VAP | CR | ? | S | N/D | |||
Castón et al., 2016 [26] | Case series | 6 | F, 75 | Pneumonia | MDR | 3 g/8 h (10) | S | E |
M, 37 | Pneumonia | MDR | 3 g/8 h (10) | S | E | |||
M, 74 | Pneumonia | MDR | 3 g/8 h (15) | F (death) | E | |||
M,79 | Pneumonia | MDR | 2 g/8 h (14) | S | N/D | |||
M, 61 | Pneumonia | MDR | 3 g/8 h (3) | F (death) | C | |||
M, 58 | Pneumonia | MDR | 1.5 g/8 h (21) | S | C | |||
Dinh et al., 2017 [27] | Case series | 7 | M, 61 | VAP | XDR | 3 g/8 h (15) | S | E |
F, 70 | VAP | XDR | 3 g/8 h (10) | S | C | |||
M, 60 | VAP | XDR | 3 g/8 h (15) | S | C | |||
F, 73 | VAP | XDR | 1.5/8 h (18) | F | E | |||
M, 73 | VAP | XDR | 1.5/8 h (4) | F | N/D | |||
M, 49 | VAP | XDR | 3 g/8 h (11) | S | N/D | |||
M, 38 | Pneumonia | XDR | ? (5) | S | N/D | |||
Gelfand et al., 2015 [28] | Case series | 3 | M, 69 | Pneumonia | MDR | 3 g/8 h (14) | S | E |
M, 63 | Pneumonia | MDR | 3 g/8 h (14) | S | E | |||
M, 52 | Pneumonia | MDR | 3 g/8 h (10) | S | E | |||
Haidar et al., 2018 [29] | Observational study | 18 | M, 58 | Pneumonia, empyema | MDR | 0.15 g/8 h (29) | F (death) | C |
F, 23 | Pneumonia | MDR | 1.5 g/8 h (14) | S | N/D | |||
F, 84 | Pneumonia | MDR | 1.5 g/8 h (17) | S | N/D | |||
M, 70 | Pneumonia, empyema | MDR | 1.5 g/8 h (14) | S | E | |||
F, 48 | Pneumonia | MDR | 1.5 g/8 h (41) | S | N/D | |||
M, 75 | VAT | MDR | 1.5 g/8 h (31) | F (death) | C | |||
F, 55 | Pneumonia | MDR | 3 g/8 h (42) | S | C | |||
F, 25 | Pneumonia | MDR | 750 mg/8 h (52) | S | E | |||
F, 89 | Pneumonia | MDR | 750 mg/8 h (14) | F (death) | C | |||
F, 84 | Pneumonia | MDR | 375 mg/8 h (3) | F (death) | E | |||
F, 91 | Pneumonia | MDR | 750 mg/8 h (10) | S | E | |||
F, 59 | Pneumonia | MDR | 1.5 g/8 h (13) | S | E | |||
F, 41 | Pneumonia | MDR | 3 g/8 h (14) | S | C | |||
M, 58 | Pneumonia | MDR | 150 mg/8 h (15) | S | C | |||
M, 23 | Pneumonia | MDR | 1.5 g/8 h (10) | S | E | |||
M, 39 | Pneumonia | MDR | 1.5 g/8 h (13) | S | E | |||
M, 65 | Pneumonia | MDR | 750 mg/8 h (13) | S | E | |||
M, 34 | VAT | MDR | 1.5 g/8 h (4) | S | E | |||
Hakki et al., 2018 [30] | Case series | 3 | F, 26 | Pneumonia | MDR | 3 g/8 h (14) | S | E |
M, 71 | Pneumonia | MDR | 3 g/8 h (31) | F | C | |||
M, 54 | Pneumonia | MDR | 3 g/8 h (103) | S | E | |||
Hernandez-Tejedor et al., 2016 [31] | Case report | 1 | M, 58 | VAT | MDR | 1.5 g/8 h (10) | S | C |
Kuti et al., 2016 [32] | Case report | 1 | M, 75 | VAP | MDR | 3 g/8 h (10) | S | E |
Lewis et al., 2018 [33] | Case report | 1 | F, 53 | Pneumonia | MDR | 1.5 g/8 h (12) | F (death) | N/D |
Maniara et al., 2021 [34] | Case report | 1 | M, 25 | VAP | CR | 3 g/8 h (15) | S | N/D |
Munita et al., 2017 [35] | Observational study | 18 | M, 31 | Pneumonia | CR | 1.5 g/8 h (14) | F (death) | N/D |
M, 38 | Pneumonia | CR | 750 mg/8 h (42) | S | N/D | |||
M, 16 | Pneumonia | CR | 3 g/8 h (28) | S | N/D | |||
M, 32 | Pneumonia | CR | 1.5 g/8 h (18) | F | N/D | |||
M, 35 | Pneumonia | CR | 3 g/8 h (9) | S | N/D | |||
M, 25 | Pneumonia | CR | 1.5 g/8 h (8) | S | N/D | |||
M, 30 | Pneumonia | CR | 1.5 g/8 h (14) | S | N/D | |||
M, 26 | Pneumonia | CR | 1.5 g/8 h (27) | F (death) | N/D | |||
M, 55 | Pneumonia | CR | 375 mg/8 h (12) | F | N/D | |||
M, 39 | Pneumonia | CR | 1.5 g/8 h (7) | F (death) | C | |||
M, 66 | Pneumonia | CR | 375 mg/8 h (16) | S | N/D | |||
F, 84 | Pneumonia | CR | 375 mg/8 h (8) | S | N/D | |||
M, 67 | Pneumonia | CR | 375 mg/8 h (14) | S | N/D | |||
M, 63 | Pneumonia | CR | 375 mg/12 h (16) | S | N/D | |||
M, 61 | Pneumonia | CR | 375 mg/8 h (5) | F (death) | N/D | |||
M, 71 | Pneumonia | CR | 3 g/8 h (5) | F | N/D | |||
F, 61 | Pneumonia | CR | 3 g/8 h (22) | S | N/D | |||
M, 64 | Pneumonia | CR | 3 g/8 h (14) | S | N/D | |||
Plant et al., 2018 [36] | Case report | 1 | M, ? | Pneumonia | MDR | 1.5 g/8 h (?) | F (death) | C |
Romano et al., 2020 [37] | Case report | 1 | F, 63 | Pneumonia | MDR | 3 g/8 h (14) | S | N/D |
Soliman et al., 2015 [38] | Case report | 1 | M, 59 | Pneumonia | PDR | 3 g/8 h (14) | S | N/D |
Stokem et al., 2018 [39] | Case report | 1 | F, 35 | Pneumonia | MDR | 3 g/12 h (14) | S | C |
Vickery et al., 2016 [40] | Case report | 1 | M, 25 | Pneumonia | MDR | 3 g/8 h (12) | S | C |
Xipell et al., 2018 [41] | Observational study | 8 | M, 78 | Pneumonia | MDR | ? | S | E |
M, 69 | Pneumonia | XDR | 1.5 g/8 h (6) | F (death) | C | |||
M, 52 | Pneumonia | MDR | 1.5 g/8 h (8) | S | N/D | |||
M, 77 | Pneumonia | XDR | 3 g/8 h (3) → 2g/8h (3) | S | N/D | |||
F, 49 | Tracheobronchitis | XDR | 1.5 g/8 h (8) | S | E | |||
M, 49 | Tracheobronchitis | MDR | ? | S | E | |||
M, 64 | Tracheobronchitis | XDR | 1.5 g/8 h (7) | F | E | |||
M, 61 | Tracheobronchitis | MDR | 1.5 g/8 h (13) | S | E | |||
Zikri et al., 2019 [42] | Case report | 1 | F, 14 | Pneumonia | MDR | 1.5 g/8 h (?) | S | N/D |
Comorbidities | Cases (N=) |
---|---|
Cystic fibrosis | 13 |
COPD | 7 |
Other respiratory diseases | 6 |
Respiratory failure
| 15 9 |
Hypertension | 8 |
Other cardiac diseases | 12 |
Diabetes | 7 |
Acute kidney disease | 3 |
Chronic kidney disease | 7 |
Immunosupression conditions
| 7 2 2 1 2 |
Solid cancer
| 9 2 2 1 1 1 1 1 |
Blood cancer
| 9 3 4 2 |
Transplantation
| 15 10 3 1 1 |
Dementia | 4 |
Quadriplegia/tetraplegia | 5 |
Other neurological diseases | 8 |
Alcoholism/cirrhosis | 7 |
Other gastrointestinal diseases | 4 |
Author, Year | Infection Site (Biological Sample) | Microorganisms |
---|---|---|
Alessa et al., 2018 | Lungs (N/D) | Pseudomonas Aeruginosa |
Alqaid et al., 2015 | Urinary tract (culture) | Proteus mirabilis, Providencia stuartii |
Álvarez Lerma et al., 2017 | Lungs (BAS) | Pseudomonas Aeruginosa |
Lungs (N/D) | Herpes simplex | |
Colon (N/D) | Clostridium difficile | |
Ang et al., 2016 | Blood (catheter culture) | Staphylococcus aureus |
Dinh et al., 2017 | N/D | Stenotrophomonas maltophilia |
N/D | Enterococcus faecalis | |
N/D | K. pneumoniae | |
N/D | Citrobacter koseri | |
N/D | P. aeruginosa | |
Gelfand et al., 2015 | N/D | Clostridium difficile |
Haidar et al., 2018 | Lungs (N/D) | MRSA |
Lungs (N/D) | MRSA | |
Lungs (N/D) | MRSA | |
Lungs (N/D) | Serratia marcescens | |
Blood (N/D) | Vancomycin-resistant Enterococcus faecium | |
Blood (N/D) | Vancomycin-resistant Enterococcus faecium | |
Abdomen (wound culture) | Citrobacter fruendii | |
Blood (N/D) | Candida tropicalis | |
Hernandez-Tejedor et al., 2016 | Blood (N/D) | Pseudomonas Aeruginosa |
Lewis et al., 2018 | Colon (N/D) | Clostridium difficile |
Lungs (N/D) | Acinetobacter baumaunii | |
Maniara et al., 2021 | Blood (culture) | Staphylococcus epidermidis |
Lungs (N/D) | Acinetobacter baumannii-calcoaceticus | |
Blood (culture) | Candida auris | |
Munita et al., 2017 | Lungs (N/D) | K. pneumoniae |
Lungs (N/D) | K. pneumoniae | |
Romano et al., 2020 | N/D | MSSA, Pseudomonas aeruginosa |
Soliman et al., 2015 | Lungs (N/D) | MRSA, Pseudomonas aeruginosa |
Xipell et al., 2018 | Lungs (BAS) | MRSA |
Lungs (BAS) | Enterobacter cloacae |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giaccari, L.G.; Pace, M.C.; Passavanti, M.B.; Gargano, F.; Aurilio, C.; Sansone, P. Ceftolozane/Tazobactam for Resistant Drugs Pseudomonas aeruginosa Respiratory Infections: A Systematic Literature Review of the Real-World Evidence. Life 2021, 11, 474. https://doi.org/10.3390/life11060474
Giaccari LG, Pace MC, Passavanti MB, Gargano F, Aurilio C, Sansone P. Ceftolozane/Tazobactam for Resistant Drugs Pseudomonas aeruginosa Respiratory Infections: A Systematic Literature Review of the Real-World Evidence. Life. 2021; 11(6):474. https://doi.org/10.3390/life11060474
Chicago/Turabian StyleGiaccari, Luca Gregorio, Maria Caterina Pace, Maria Beatrice Passavanti, Francesca Gargano, Caterina Aurilio, and Pasquale Sansone. 2021. "Ceftolozane/Tazobactam for Resistant Drugs Pseudomonas aeruginosa Respiratory Infections: A Systematic Literature Review of the Real-World Evidence" Life 11, no. 6: 474. https://doi.org/10.3390/life11060474
APA StyleGiaccari, L. G., Pace, M. C., Passavanti, M. B., Gargano, F., Aurilio, C., & Sansone, P. (2021). Ceftolozane/Tazobactam for Resistant Drugs Pseudomonas aeruginosa Respiratory Infections: A Systematic Literature Review of the Real-World Evidence. Life, 11(6), 474. https://doi.org/10.3390/life11060474