Radiological Risk to Human and Non-Human Biota Due to Radioactivity in Coastal Sand and Marine Sediments, Gulf of Oman
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Radioactivity Measurements
3. Results and Discussion
3.1. Radioactivity Contents in Marine Sediment
3.2. Assessing Radiological Hazards
3.2.1. Radium-Equivalent Activity
3.2.2. External Hazard Index (Hex)
3.3. External Absorbed Dose Rates
3.4. Excess Lifetime Cancer Risk (ELCR)
3.5. Annual Gonadal Dose Equivalent (AGDE)
3.6. Radiological Risk to Non-Human Biota
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yii, M.W.; Zaharudin, A.; Abdul-Kadir, I. Distribution of naturally occurring radionuclides activity concentration in East Malaysian marine sediment. Appl. Radiat. Isot. 2009, 67, 630–635. [Google Scholar] [CrossRef] [PubMed]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources, Effects and Risks of Ionization Radiation; Report to the General Assembly, with Scientific Annexes B: Exposures from Natural Radiation Sources; UNSCEAR: New York, NY, USA, 1993. [Google Scholar]
- Pálsson, S.E.; Skuterud, L.; Fesenko, S.; Golikov, V. Radionuclide transfer in arctic ecosystems. In Quantification of Radionuclide Transfers in Terrestrial and Freshwater Environments for Radiological Assessments; IAEATECDOC-1616; IAEA: Vienna, Austria, 2009; pp. 381–396. [Google Scholar]
- International Atomic Energy Agency (IAEA). Extent of Environmental Contamination by Naturally Occurring Radioactive Material (NORM) and Technological Options for Mitigation; IAEA Technical Reports Series No. 419; IAEA: Vienna, Austria, 2003. [Google Scholar]
- Valentin, J. Environmental Protection: The Concept and Use of Reference Animals and Plants. Annals of the ICRP; ICRP Publication 108; ICRP: Ottawa, ON, Canada, 2008. [Google Scholar]
- ICRP. The 2007 Recommendations of the International Commission on Radiological Protection (ICRP); ICRP Publication 103; Ann. ICRP 37; Pergamon Press: Oxford, UK, 2007. [Google Scholar]
- IAEA. Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards; International Atomic Energy Agency (IAEA): Vienna, Austria, 2014. [Google Scholar]
- Adreani, T.E.; Mattar, E.; Alsafi, K.; Sulieman, A.; Suliman, I.I. Natural radioactivity and radiological risk parameters in local and imported building materials used in Sudan. Appl. Ecol. Environ. Res. 2020, 18, 7563–7572. [Google Scholar] [CrossRef]
- Al-Qaradawi, I.; Abdel-Moati, M.; Al-Yafei, M.A.A.; Al-Ansari, E.; Al-Maslamani, I.; Holm, E.; Al-Shaikh, I.; Mauring, A.; Pinto, P.V.; Abdulmalik, D.; et al. Radioactivity levels in the marine environment along the Exclusive Economic Zone (EEZ) of Qatar. Mar. Pollut. Bull. 2015, 90, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Aba, A.; Fowler, S.W.; Behbehani, M.; Ismaeel, A.; Al-Shammari, H.; Alboloushi, A.; Mietelski, J.W.; Al-Ghadban, A.; Al-Ghunaim, A.; et al. Radioactivity in the Kuwait marine environment—Baseline measurements and review. Mar. Pollut. Bull. 2015, 100, 651–661. [Google Scholar] [CrossRef]
- Zare, M.R.; Mostajaboddavati, M.; Kamali, M.; Abdi, M.R.; Mortazavi, M.S. 235U, 238U, 232Th, 40K and 137Cs activity concentrations in marine sediments along the northern coast of Oman Sea using high-resolution gamma-ray spectrometry. Mar. Pollut. Bull. 2012, 64, 1956–1961. [Google Scholar] [CrossRef] [PubMed]
- Al-Trabulsy, H.A.; Khater, A.E.M.; Habbani, F.I. Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba. Radiat. Phys. Chem. 2011, 80, 343–348. [Google Scholar] [CrossRef]
- Al-Zamel, A.Z.; Bou-Rabee, F.; Olszewski, M.; Bem, H. Natural radionuclides and 137Cs activity concentration in the bottom sediment cores from Kuwait Bay. J. Radioanal. Nucl. Chem. 2005, 266, 269–276. [Google Scholar] [CrossRef]
- Saleh, I.H. Radioactivity of 238U, 232Th, 40 K, and 137Cs and assessment of depleted uranium in soil of the Musandam Peninsula, Sultanate of Oman. Turk. J. Eng. Environ. Sci. 2012, 36, 236–248. [Google Scholar]
- ISO; IEC; BIPM OIML. Guide to the Expression of Uncertainty in Measurement; ISO: Geneva, Switzerland, 1995. [Google Scholar]
- International Atomic Energy Agency (IAEA). Quantifying Uncertainty in Nuclear Analytical Measurements; IAEA-TECDOC-1401; IAEA: Vienna, Austria, 2004. [Google Scholar]
- Pappa, F.K.; Tsabaris, C.; Ioannidou, A.; Patiris, D.L.; Kaberi, H.; Pashalidis, I.; Eleftheriou, G.; Androulakaki, E.G.; Vlastou, R. Radioactivity and metal concentrations in marine sediments associated with mining activities in Ierissos Gulf, North Aegean Sea, Greece. Appl. Radiat. Isot. 2017, 116, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Eleftheriou, G.; Tsabaris, C.; Kapsimalis, V.; Patiris, D.L.; Androulakaki, E.G.; Pappa, F.K.; Kokkoris, M.; Vlastou, R. Radionuclides and heavy metals concentrations at the seabed of NW Piraeus, Greece. In Proceedings of the 22nd Conference of the Hellenic Nuclear Physics Society, Athens, Greece, 30 May–1 June 2013. [Google Scholar]
- Wang, J.; Du, J.; Bi, Q. Natural radioactivity assessment of surface sediments in the Yangtze Estuary. Mar. Pollut. Bull. 2017, 114, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Hanfi, M.Y.; Masoud, M.S.; Ambrosino, F.; Mostafa, M.Y. Natural radiological characterization at the Gabal El Seila region (Egypt). Appl. Radiat. Isot. 2021, 31, 109705. [Google Scholar] [CrossRef] [PubMed]
- Beretka, J.; Mathew, P.J. Natural radioactivity of Australian building materials, industrials wastes and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, E.I. The relative radioactivity of building materials. Am. Ind. Hyg. Assoc. J. 1971, 32, 398–403. [Google Scholar] [CrossRef] [PubMed]
- NEA-OECD. Exposure to Radiation from the Natural Radioactivity in Building Materials: Report by a Group of Exports of the OECD Nuclear Energy Agency; NEA-OECD: Paris, France, 1979; pp. 13–19. [Google Scholar]
- Qureshi, A.A.; Tariq, S.; Din, K.U.; Manzoor, S.; Calligaris, C.; Waheed, A. Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan. J. Radiat. Res. Appl. Sci. 2014, 7, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.E.; Alfonso, B.; Avila, R.; Beresford, N.A.; Copplestone, D.; Pröhl, G.; Ulanovsky, A. The ERICA tool. J. Environ. Radioact. 2008, 99, 1371–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirelkhatim, D.A.; Sam, A.K.; Hassona, R.K. Distribution of 226Ra–210Pb–210Po in marine biota and surface sediments of the Red Sea, Sudan. J. Environ. Radioact. 2008, 99, 1825–1828. [Google Scholar] [CrossRef] [PubMed]
- Sugandhi, S.; Joshi, V.M.; Ravi, P.M. Studies on natural and anthropogenic radionuclides in sediment and biota of Mumbai Harbour Bay. J. Radioanal. Nucl. Chem. 2014, 300, 67–70. [Google Scholar] [CrossRef]
- Botwe, B.O.; Schirone, A.; Delbono, I.; Barsanti, M.; Delfanti, R.; Kelderman, P.; Nyarko, E.; Lens, P.N. Radioactivity concentrations and their radiological significance in sediments of the Tema Harbour (Greater Accra, Ghana). J. Radiat. Res. Appl. Sci. 2017, 10, 63–71. [Google Scholar] [CrossRef] [Green Version]
Sample Code | Weight (kg) | Activity Concentrations (Bqkg−1) | ||||
---|---|---|---|---|---|---|
226Ra | 232Th | 40K | 210Pb | 137Cs | ||
Beach Sand | ||||||
S01 | 1421 | 21.5 ± 1.4 | 28.0 ± 2.8 | 78.7 ± 4.8 | ** | 0.11 |
S02 | 1371 | 24.8 ± 1.2 | 54.9 ± 3.1 | 74.4 ± 3.2 | 42.7 ± 19.4 | 0.05 |
S05 | 1592 | 14.3 ± 1.0 | 29.3 ± 2.2 | 29.5 ± 2.0 | (125.5 ± 12.2) | 0.04 |
S06 | 1568 | 14.3 ± 1.0 | 10.4 ± 1.1 | 30.6 ± 2.1 | 24.7 ± 11.4 | 0.07 |
S09 | 1501 | 13.6 ± 0.9 | 43.3 ± 3.3 | 56.9 ± 3.7 | 67.4 ± 13.5 | 0.19 |
S10 | 1414 | 9.3 ± 0.7 | 30.0 ± 2.6 | 29.0 ± 2.1 | ** | 0.13 |
S13 | 1038 | 15.6 ± 1.0 | 13.2 ± 1.3 | 32.0 ± 2.1 | ** | 0.07 |
S14 | 1376 | 17.0 ± 1.1 | 13.6 ± 1.3 | 34.0 ± 2.3 | ** | 0.15 |
Average | 16.30 | 27.84 | 45.64 | 44.9 | 0.10 | |
Marine sediments | ||||||
S03 | 1363 | 21.0 ±1.0 | 50.4 ± 3.0 | 93.9 ± 3.8 | 44.9 ± 1.9 | 0.05 |
S04 | 1425 | 19.4 ± 1.4 | 47.3 ± 3.8 | 93.4 ± 5.7 | ** | 0.07 |
S07 | 1532 | 12.8 ± 0.8 | 31.6 ± 1.2 | 39.6 ± 2.3 | (158.9 ± 12.9) | 0.07 |
S08 | 1750 | 11.5 ± 0.8 | 31.0 ± 2.4 | 33.5 ± 2.6 | 42.9 ± 12.5 | 0.09 |
S11 | 1496 | 13.8 ± 0.8 | 22.4 ± 2.2 | 30.8 ± 2.8 | 53.0 ± 11.4 | 0.13 |
S12 | 1421 | 13.2 ± 1.0 | 28.0 ± 1.8 | 42.9 ± 2.0 | ** | 0.08 |
S15 | 1332 | 17.7 ± 1.4 | 32.6 ± 2.6 | 42.2 ± 3.9 | 65.1 ± 14.2 | 0.09 |
S16 | 1423 | 20.4 ± 1.2 | 32.5 ± 1.6 | 61.3 ± 2.7 | 28.1 ± 13.3 | 0.08 |
Average | 16.2 | 34.5 | 54.7 | 46.8 | 0.08 |
Location | 226Ra | 232Th | 40K | 210Pb | 137Cs | References |
---|---|---|---|---|---|---|
World | 35 | 30 | 400 | ** | ** | [2] |
Qatar | 4.2–19.5 | 1.0–6.0 | 11–188 | ** | 0.18–0.66 | [9] |
Kuwait | 17.3–20.5 | 15–16.4 | 353–445 | 23.6–44.3 | 1.0–3.1 | [10] |
Iran | 11.8–22.7 | 10.7–25 | 223–535 | ** | 0.14–2.8 | [11] |
Saudi Arabia | 4.4–19.3 | 5.3–58.9 | 324.6–1133 | ** | 0.6–8.7 | [12] |
Kuwait | 18.6–21.4 | 14.0–17.1 | 351.2–404.0 | ** | 1.5–2.9 | [13] |
Greece | 18–86 | 20–31 | 368–610 | 47–105 | 0.7–3.8 | [17] |
China | 13.7–52. | 26.1–71.9 | 392–898 | ** | ** | [19] |
Egypt | 38.51 | ** | 33.35 | 659.18 | ** | [20] |
Oman | 16.2 (16.3) | 34.5 (27.8) | 54.7 (45.6) | 46.8 (44.9) | 0.1 (0.1) | This stud |
Radionuclide | Statistics | 226Ra | 232Th | 40K |
---|---|---|---|---|
226Ra | Correlation coefficient | 1 | 0.47 | 0.77 |
p-value | - | 0.07 | <0.001 | |
232Th | Correlation coefficient | 0.47 | 1 | 0.75 |
p-value | 0.07 | - | <0.001 | |
40K | Correlation coefficient | 0.77 | 0.75 | - |
p-value | <0.001 | <0.001 | <0.001 |
Sample Code | Raq (Bqkg−1) | Dose Rate (nGy.h−1) | (µSvy−1) | ELCR per 10−6 | AGD µGy.y−1 | Hex | |
---|---|---|---|---|---|---|---|
S01 | 67.6 ± 5.7 | 56.9 | 31.1 | 317.2 | 126 | 208.2 | 0.18 |
S02 | 109.0 ± 4.6 | 89.2 | 50.2 | 498.9 | 203 | 329.5 | 0.30 |
S05 | 58.5 ± 3.1 | 47.7 | 26.8 | 267.1 | 108 | 175.9 | 0.16 |
S06 | 31.5 ± 2.6 | 27.0 | 14.3 | 150.2 | 58 | 97.3 | 0.09 |
S09 | 79.5 ± 5.0 | 64.7 | 36.9 | 362.6 | 149 | 240.9 | 0.22 |
S10 | 54.4 ± 3.4 | 43.9 | 25.1 | 246.0 | 101 | 163.2 | 0.15 |
S13 | 36.9 ± 2.7 | 31.4 | 16.8 | 174.8 | 68 | 113.4 | 0.10 |
S14 | 39.1 ± 2.9 | 33.3 | 17.7 | 185.2 | 72 | 120.1 | 0.11 |
Average | 59.56 | 49.26 | 27.4 | 275.2 | 111 | 181.1 | 0.16 |
Isotope | Activity in Sediment (Bqkg−1 d.w.) | Activity Concentration in Organism (Bq kg−1 f.w.) | |||||
---|---|---|---|---|---|---|---|
Benthic Fish | Macroalgae | Mollusc-Bivalve | Pelagic Fish | Phytoplankton | Zooplankton | ||
Ra-226 | 16.2 | 0.43 | 0.27 | 0.20 | 0.43 | 3.48 | 0.25 |
Th-232 | 34.3 | 0.01 | 0.020 | 0.01 | 0.01 | 3.15 | 0.031 |
Pb-210 | 46.80 | 5.80 | 0.18 | 1.11 | 5.80 | 84.3 | 2.99 |
Cs-137 | 0.08 | 0.0006 | 0.0007 | 0.0004 | 0.0006 | 0.0001 | 0.0010 |
Organism | Background Dose Rates | Screening Value [µGy h−1] | Total Dose Rate per Organism [µGy h−1] | Risk Quotient |
---|---|---|---|---|
Benthic fish | 0.58 | 10 | 0.067 | 0.007 |
Macroalgae | 0.87 | 10 | 0.048 | 0.005 |
Mollusc-bivalve | 2.0 | 10 | 0.036 | 0.004 |
Pelagic fish | 0.42 | 10 | 0.059 | 0.006 |
Phytoplankton | 0.38 | 10 | 0.564 | 0.056 |
Zooplankton | 0.94 | 10 | 0.035 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suliman, I.I.; Alsafi, K. Radiological Risk to Human and Non-Human Biota Due to Radioactivity in Coastal Sand and Marine Sediments, Gulf of Oman. Life 2021, 11, 549. https://doi.org/10.3390/life11060549
Suliman II, Alsafi K. Radiological Risk to Human and Non-Human Biota Due to Radioactivity in Coastal Sand and Marine Sediments, Gulf of Oman. Life. 2021; 11(6):549. https://doi.org/10.3390/life11060549
Chicago/Turabian StyleSuliman, Ibrahim I., and Khalid Alsafi. 2021. "Radiological Risk to Human and Non-Human Biota Due to Radioactivity in Coastal Sand and Marine Sediments, Gulf of Oman" Life 11, no. 6: 549. https://doi.org/10.3390/life11060549
APA StyleSuliman, I. I., & Alsafi, K. (2021). Radiological Risk to Human and Non-Human Biota Due to Radioactivity in Coastal Sand and Marine Sediments, Gulf of Oman. Life, 11(6), 549. https://doi.org/10.3390/life11060549