Astrochemical Pathways to Complex Organic and Prebiotic Molecules: Experimental Perspectives for In Situ Solid-State Studies
Abstract
:1. Introduction
2. Formation of COMs in the Solid State
2.1. Thermal Reactions
2.2. Energetic Processing
3. Common Experimental Techniques Applied for In Situ Detection and Analysis of Solid-State COMs of Astrochemical Relevance
3.1. Infrared Spectroscopy
3.2. Mass Spectrometry
3.3. Complementary Ex Situ Techniques
4. Experimental Challenges and Novel Techniques
4.1. Promising Mass Spectrometry Techniques
4.2. Promising Spectroscopy Techniques
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Herbst, E.; van Dishoeck, E.F. Complex Organic Interstellar Molecules. Annu. Rev. Astron. Astrophys. 2009, 47, 427–480. [Google Scholar] [CrossRef]
- Jørgensen, J.K.; Belloche, A.; Garrod, R.T. Astrochemistry during the Formation of Stars. Annu. Rev. Astron. Astrophys. 2020, 58, 727–778. [Google Scholar] [CrossRef]
- McGuire, B.A. 2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules. Astrophys. J. Suppl. Ser. 2018, 239. [Google Scholar] [CrossRef]
- Gibb, E.L.; Whittet, D.C.B.; Boogert, A.C.A.; Tielens, A.G.G.M. Interstellar ice: The Infrared Space Observatory legacy. Astrophys. J. Suppl. Ser. 2004, 151, 35–73. [Google Scholar] [CrossRef] [Green Version]
- Raunier, S.; Chiavassa, T.; Duvernay, F.; Borget, F.; Aycard, J.P.; Dartois, E.; d’Hendecourt, L. Tentative identification of urea and formamide in ISO-SWS infrared spectra of interstellar ices. Astron. Astrophys. 2004, 416, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Arce, H.G.; Santiago-García, J.; Jørgensen, J.K.; Tafalla, M.; Bachiller, R. Complex Molecules in the L1157 Molecular Outflow. Astrophys. J. 2008, 681, L21–L24. [Google Scholar] [CrossRef] [Green Version]
- Oberg, K.I.; Boogert, A.C.A.; Pontoppidan, K.M.; van den Broek, S.; van Dishoeck, E.F.; Bottinelli, S.; Blake, G.A.; Evans, N.J. The Spitzer Ice Legacy: Ice Evolution from Cores to Protostars. Astrophys. J. 2011, 740. [Google Scholar] [CrossRef] [Green Version]
- Oberg, K.I.; Bottinelli, S.; Jorgensen, J.K.; van Dishoeck, E.F. A Cold Complex Chemistry toward the Low-Mass Protostar B1-b: Evidence for Complex Molecule Production in Ices. Astrophys. J. 2010, 716, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Bacmann, A.; Taquet, V.; Faure, A.; Kahane, C.; Ceccarelli, C. Detection of complex organic molecules in a prestellar core: A new challenge for astrochemical models. Astron. Astrophys. 2012, 541, L12. [Google Scholar] [CrossRef] [Green Version]
- Kahane, C.; Ceccarelli, C.; Faure, A.; Caux, E. Detection of Formamide, the Simplest but Crucial Amide, in a Solar-Type Protostar. Astrophys. J. Lett. 2013, 763, L38. [Google Scholar] [CrossRef]
- Remijan, A.J.; Snyder, L.E.; McGuire, B.A.; Kuo, H.L.; Looney, L.W.; Friedel, D.N.; Golubiatnikov, G.Y.; Lovas, F.J.; Ilyushin, V.V.; Alekseev, E.A.; et al. Observational Results of a Multi-Telescope Campaign in Search of Interstellar Urea [(Nh2)2Co]. Astrophys. J. 2014, 783, 77. [Google Scholar] [CrossRef] [Green Version]
- Fayolle, E.C.; Oberg, K.I.; Garrod, R.T.; van Dishoeck, E.F.; Bisschop, S.E. Complex organic molecules in organic-poor massive young stellar objects. Astron. Astrophys. 2015, 576, A45. [Google Scholar] [CrossRef]
- Boogert, A.C.A.; Gerakines, P.A.; Whittet, D.C.B. Observations of the Icy Universe. Annu. Rev. Astron. Astrophys. 2015, 53, 541–581. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Sepulcre, A.; Jaber, A.A.; Mendoza, E.; Lefloch, B.; Ceccarelli, C.; Vastel, C.; Bachiller, R.; Cernicharo, J.; Codella, C.; Kahane, C.; et al. Shedding light on the formation of the pre-biotic molecule formamide with ASAI. Mon. Not. R. Astron. Soc. 2015, 449, 2438–2458. [Google Scholar] [CrossRef] [Green Version]
- Oberg, K.I. Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules. Chem. Rev. 2016, 116, 9631–9663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Sepulcre, A.; Balucani, N.; Ceccarelli, C.; Codella, C.; Dulieu, F.; Theulé, P. Interstellar Formamide (NH2CHO), a Key Prebiotic Precursor. ACS Earth Space Chem. 2019, 3, 2122–2137. [Google Scholar] [CrossRef] [Green Version]
- Thiel, V.; Belloche, A.; Menten, K.M.; Giannetti, A.; Wiesemeyer, H.; Winkel, B.; Gratier, P.; Müller, H.S.P.; Colombo, D.; Garrod, R.T. Small-scale physical and chemical structure of diffuse and translucent molecular clouds along the line of sight to Sgr B2. Astron. Astrophys. 2019, 623, A68. [Google Scholar] [CrossRef]
- Bergner, J.B.; Martin-Domenech, R.; Oberg, K.I.; Jorgensen, J.K.; Artur de la Villarmois, E.; Brinch, C. Organic Complexity in Protostellar Disk Candidates. ACS Earth Space Chem. 2019, 3, 1564–1575. [Google Scholar] [CrossRef] [Green Version]
- Kleiner, I. Spectroscopy of Interstellar Internal Rotors: An Important Tool for Investigating Interstellar Chemistry. ACS Earth Space Chem. 2019, 3, 1812–1842. [Google Scholar] [CrossRef]
- Bockelee-Morvan, D.; Lis, D.C.; Wink, J.E.; Despois, D.; Crovisier, J.; Bachiller, R.; Benford, D.J.; Biver, N.; Colom, P.; Davies, J.K.; et al. New molecules found in comet C/1995 O1 (Hale-Bopp)—Investigating the link between cometary and interstellar material. Astron. Astrophys. 2000, 353, 1101–1114. [Google Scholar]
- Elsila, J.E.; Glavin, D.P.; Dworkin, J.P. Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci. 2009, 44, 1323–1330. [Google Scholar] [CrossRef]
- Mumma, M.J.; Charnley, S.B. The Chemical Composition of Comets-Emerging Taxonomies and Natal Heritage. Annu. Rev. Astron. Astrophys. 2011, 49, 471–524. [Google Scholar] [CrossRef]
- Biver, N.; Bockelée-Morvan, D.; Moreno, R. Ethyl alcohol and sugar in comet C/2014 Q2 (Lovejoy). Sci. Adv. 2015, 1, e1500863. [Google Scholar] [CrossRef] [Green Version]
- Biver, N.; Bockelee-Morvan, D.; Debout, V.; Crovisier, J.; Boissier, J.; Lis, D.C.; Dello Russo, N.; Moreno, R.; Colom, P.; Paubert, G.; et al. Complex organic molecules in comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy): Detection of ethylene glycol and formamide. Astron. Astrophys. 2014, 566, L5. [Google Scholar] [CrossRef]
- Goesmann, F.; Rosenbauer, H.; Bredehöft, J.H.; Cabane, M.; Ehrenfreund, P.; Gautier, T.; Giri, C.; Krüger, H.; Le Roy, L.; MacDermott, A.J.; et al. Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 2015, 349, aab0689. [Google Scholar] [CrossRef]
- Le Roy, L.; Altwegg, K.; Balsiger, H.; Berthelier, J.-J.; Bieler, A.; Briois, C.; Calmonte, U.; Combi, M.R.; De Keyser, J.; Dhooghe, F.; et al. Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astron. Astrophys. 2015, 583, A1. [Google Scholar] [CrossRef] [Green Version]
- Altwegg, K.; Balsiger, H.; Berthelier, J.J.; Bieler, A.; Calmonte, U.; Fuselier, S.A.; Goesmann, F.; Gasc, S.; Gombosi, T.I.; Le Roy, L.; et al. Organics in comet 67P-a first comparative analysis of mass spectra from ROSINA-DFMS, COSAC and Ptolemy. Mon. Not. R. Astron. Soc. 2017, 469, S130–S141. [Google Scholar] [CrossRef] [Green Version]
- Altwegg, K.; Balsiger, H.; Fuselier, S.A. Cometary Chemistry and the Origin of Icy Solar System Bodies: The View after Rosetta. Annu. Rev. Astron. Astrophys. 2019, 57, 113–155. [Google Scholar] [CrossRef] [Green Version]
- Hadraoui, K.; Cottin, H.; Ivanovski, S.L.; Zapf, P.; Altwegg, K.; Benilan, Y.; Biver, N.; Della Corte, V.; Fray, N.; Lasue, J.; et al. Distributed glycine in comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 2019, 630. [Google Scholar] [CrossRef] [Green Version]
- Schuhmann, M.; Altwegg, K.; Balsiger, H.; Berthelier, J.J.; De Keyser, J.; Fiethe, B.; Fuselier, S.A.; Gasc, S.; Gombosi, T.I.; Hänni, N.; et al. Aliphatic and aromatic hydrocarbons in comet 67P/Churyumov-Gerasimenko seen by ROSINA. Astron. Astrophys. 2019, 630, A31. [Google Scholar] [CrossRef] [Green Version]
- Rubin, M.; Bekaert, D.V.; Broadley, M.W.; Drozdovskaya, M.N.; Wampfler, S.F. Volatile Species in Comet 67P/Churyumov-Gerasimenko: Investigating the Link from the ISM to the Terrestrial Planets. ACS Earth Space Chem. 2019, 3, 1792–1811. [Google Scholar] [CrossRef] [Green Version]
- Charnley, S.B. Hot core chemistry. Astrophys. Space Sci. 1995, 224, 251–254. [Google Scholar] [CrossRef]
- Geppert, W.D.; Hamberg, M.; Thomas, R.D.; Osterdahl, F.; Hellberg, F.; Zhaunerchyk, V.; Ehlerding, A.; Millar, T.; Roberts, H.; Semaniak, J. Dissociative Recombination of Protonated Methanol. Faraday Discuss. 2006, 133, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrod, R.T.; Herbst, E. Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. Astron. Astrophys. 2006, 457, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Henning, T.; Salama, F. Carbon in the Universe. Science 1998, 282, 2204–2210. [Google Scholar] [CrossRef] [Green Version]
- Draine, B.T. Interstellar dust grains. Annu. Rev. Astron. Astrophys. 2003, 41, 241–289. [Google Scholar] [CrossRef] [Green Version]
- Apai, D.; Lauretta, D.S. Planet formation and protoplanetary dust. In Protoplanetary Dust: Astrophysical and Cosmochemical Perspectives; Lauretta, D.S., Apai, D., Eds.; Cambridge Planetary Science/Cambridge University Press: Cambridge, UK, 2010; pp. 1–26. [Google Scholar]
- Muñoz Caro, G.M.; Dartois, E. Prebiotic chemistry in icy grain mantles in space. An experimental and observational approach. Chem. Soc. Rev. 2013, 42, 2173–2185. [Google Scholar] [CrossRef]
- Jäger, C.; Gail, H.-P.; Rietmeijer, F.J.M.; Nuth, J.A.; Mutschke, H.; Mennella, V. Formation of Nanoparticles and Solids. Lab. Astrochem. 2014, 419–500. [Google Scholar] [CrossRef]
- Jones, A.P.; Ysard, N.; Köhler, M.; Fanciullo, L.; Bocchio, M.; Micelotta, E.; Verstraete, L.; Guillet, V. The cycling of carbon into and out of dust. Faraday Discuss. 2014, 168, 313–326. [Google Scholar] [CrossRef] [Green Version]
- Potapov, A.; McCoustra, M.R.S. Physics and chemistry on the surface of cosmic dust grains: A laboratory view. Int. Rev. Phys. Chem. 2021, 40, 299–364. [Google Scholar] [CrossRef]
- Henning, T. Cosmic Silicates. Annu. Rev. Astron. Astrophys. 2010, 48, 21–46. [Google Scholar] [CrossRef] [Green Version]
- Garrod, R.T.; Widicus Weaver, S.L.; Herbst, E. Complex chemistry in star-forming regions: An expanded gas-grain warm-up chemical model. Astrophys. J. 2008, 682, 283–302. [Google Scholar] [CrossRef] [Green Version]
- Garrod, R.T. A Three-Phase Chemical Model of Hot Cores: The Formation of Glycine. Astrophys. J. 2013, 765. [Google Scholar] [CrossRef]
- Cazaux, S.; Tielens, A.G.G.M.; Ceccarelli, C.; Castets, A.; Wakelam, V.; Caux, E.; Parise, B.; Teyssier, D. The hot core around the low-mass protostar IRAS 16293-2422: Scoundrels rule! Astrophys. J. 2003, 593, L51. [Google Scholar] [CrossRef]
- Jørgensen, J.K.; Bourke, T.L.; Nguyen Luong, Q.; Takakuwa, S. Arcsecond resolution images of the chemical structure of the low-mass protostar IRAS 16293-2422. Astron. Astrophys. 2011, 534, A100. [Google Scholar] [CrossRef]
- Arumainayagam, C.R.; Garrod, R.T.; Boyer, M.C.; Hay, A.K.; Bao, S.T.; Campbell, J.S.; Wang, J.Q.; Nowak, C.M.; Arumainayagam, M.R.; Hodge, P.J. Extraterrestrial prebiotic molecules: Photochemistry vs. radiation chemistry of interstellar ices. Chem. Soc. Rev. 2019, 48, 2293–2314. [Google Scholar] [CrossRef] [Green Version]
- Sandford, S.A.; Nuevo, M.; Bera, P.P.; Lee, T.J. Prebiotic Astrochemistry and the Formation of Molecules of Astrobiological Interest in Interstellar Clouds and Protostellar Disks. Chem. Rev. 2020, 120, 4616–4659. [Google Scholar] [CrossRef]
- Theule, P.; Duvernay, F.; Danger, G.; Borget, F.; Bossa, J.B.; Vinogradoff, V.; Mispelaer, F.; Chiavassa, T. Thermal reactions in interstellar ice: A step towards molecular complexity in the interstellar medium. Adv. Space Res. 2013, 52, 1567–1579. [Google Scholar] [CrossRef]
- Vidali, G. H-2 Formation on Interstellar Grains. Chem. Rev. 2013, 113, 8762–8782. [Google Scholar] [CrossRef]
- Balucani, N.; Ceccarelli, C.; Taquet, V. Formation of complex organic molecules in cold objects: The role of gas-phase reactions. Mon. Not. R. Astron. Soc. 2015, 449, L16–L20. [Google Scholar] [CrossRef] [Green Version]
- Fedoseev, G.; Cuppen, H.M.; Ioppolo, S.; Lamberts, T.; Linnartz, H. Experimental evidence for glycolaldehyde and ethylene glycol formation by surface hydrogenation of CO molecules under dense molecular cloud conditions. Mon. Not. R. Astron. Soc. 2015, 448, 1288–1297. [Google Scholar] [CrossRef]
- Linnartz, H.; Ioppolo, S.; Fedoseev, G. Atom addition reactions in interstellar ice analogues. Int. Rev. Phys. Chem. 2015, 34, 205–237. [Google Scholar] [CrossRef] [Green Version]
- Herbst, E. The synthesis of large interstellar molecules. Int. Rev. Phys. Chem. 2017, 36, 287–331. [Google Scholar] [CrossRef]
- Potapov, A.; Jäger, C.; Henning, T.; Jonusas, M.; Krim, L. The Formation of Formaldehyde on Interstellar Carbonaceous Grain Analogs by O/H Atom Addition. Astrophys. J. 2017, 846, 131. [Google Scholar] [CrossRef]
- Ioppolo, S.; Fedoseev, G.; Chuang, K.J.; Cuppen, H.M.; Clements, A.R.; Jin, M.; Garrod, R.T.; Qasim, D.; Kofman, V.; van Dishoeck, E.F.; et al. A non-energetic mechanism for glycine formation in the interstellar medium. Nat. Astron. 2020, 5, 197. [Google Scholar] [CrossRef]
- Cooke, I.R.; Sims, I.R. Experimental Studies of Gas-Phase Reactivity in Relation to Complex Organic Molecules in Star-Forming Regions. ACS Earth Space Chem. 2019, 3, 1109–1134. [Google Scholar] [CrossRef]
- Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E.F.; Linnartz, H. Production of complex organic molecules: H-atom addition versus UV irradiation. Mon. Not. R. Astron. Soc. 2017, 467, 2552–2565. [Google Scholar] [CrossRef] [Green Version]
- Altwegg, K.; Balsiger, H.; Bar-Nun, A.; Berthelier, J.J.; Bieler, A.; Bochsler, P.; Briois, C.; Calmonte, U.; Combi, M.R.; Cottin, H.; et al. Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 2016, 2, e1600285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krim, L.; Mencos, A. Determination of [CH3NC]/[H2C=C=NH] Abundance Ratios from N + CH3CN Solid Phase Reaction in the Temperature Range from 10 to 40 K: Application to the Complex Chemistry in Star-Forming Regions. ACS Earth Space Chem. 2019, 3, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Fourre, I.; Favre, C.; Barois, C.; Congiu, E.; Baouche, S.; Guillemin, J.C.; Ellinger, Y.; Dulieu, F. Formation of amines: Hydrogenation of nitrile and isonitrile as selective routes in the interstellar medium. Astron. Astrophys. 2019, 628. [Google Scholar] [CrossRef] [Green Version]
- Bonner, W.A. The Origin and Amplification of Biomolecular Chirality. Orig. Life Evol. Biosph. 1991, 21, 59–111. [Google Scholar] [CrossRef]
- McGuire, B.A.; Carroll, P.B.; Loomis, R.A.; Finneran, I.A.; Jewell, P.R.; Remijan, A.J.; Blake, G.A. Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O). Science 2016, 352, 1449–1452. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.C.; Meinert, C.; Giri, C.; Goesmann, F.; Meierhenrich, U.J. Chirality, photochemistry and the detection of amino acids in interstellar ice analogues and comets. Chem. Soc. Rev. 2012, 41, 5447–5458. [Google Scholar] [CrossRef] [PubMed]
- Ghesquiere, P.; Ivlev, A.; Noble, J.A.; Theule, P. Reactivity in interstellar ice analogs: Role of the structural evolution. Astron. Astrophys. 2018, 614, A107. [Google Scholar] [CrossRef]
- Potapov, A.; Jäger, C.; Henning, T. Thermal formation of ammonium carbamate on the surface of laboratory analogs of carbonaceous grains in protostellar envelopes and planet-forming disks. Astrophys. J. 2020, 894, 110. [Google Scholar] [CrossRef]
- Potapov, A.; Theule, P.; Jäger, C.; Henning, T. Evidence of surface catalytic effect on cosmic dust grain analogues: The ammonia and carbon dioxide surface reaction. Astrophys. J. Lett. 2019, 878, L20. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.L. A Production of Amino Acids under Possible Primitive Earth Conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.L.; Urey, H.C. Organic Compound Synthesis on the Primitive Earth. Science 1959, 130, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.T.; Cleaves, H.J.; Callahan, M.P.; Dworkin, J.P.; Glavin, D.P.; Lazcano, A.; Bada, J.L. Enhanced Synthesis of Alkyl Amino Acids in Miller’s 1958 H2S Experiment. Orig. Life Evol. Biosph. 2011, 41, 569–574. [Google Scholar] [CrossRef]
- Wollrab, E.; Scherer, S.; Aubriet, F.; Carre, V.; Carlomagno, T.; Codutti, L.; Ott, A. Chemical Analysis of a “Miller-Type” Complex Prebiotic Broth Part I: Chemical Diversity, Oxygen and Nitrogen Based Polymers. Orig. Life Evol. Biosph. 2016, 46, 149–169. [Google Scholar] [CrossRef]
- Scherer, S.; Wollrab, E.; Codutti, L.; Carlomagno, T.; da Costa, S.G.; Volkmer, A.; Bronja, A.; Schmitz, O.J.; Ott, A. Chemical Analysis of a “Miller-Type” Complex Prebiotic Broth. Orig. Life Evol. Biosph. 2017, 47, 381–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, M.H.; Donn, B.; Khanna, R.; A’Hearn, M.F. Studies of proton-irradiated cometary-type ice mixtures. Icarus 1983, 54, 388–405. [Google Scholar] [CrossRef]
- Strazzulla, G.; Palumbo, M.E. Evolution of icy surfaces: An experimental approach. Planet. Space Sci. 1998, 46, 1339–1348. [Google Scholar] [CrossRef]
- Gerakines, P.; Moore, M.; Hudson, R. Energetic Processing of Laboratory Ice Analogs: UV Photolysis versus Ion Bombardment. J. Geophys. Res. Planets 2001, 106, 33381. [Google Scholar] [CrossRef]
- Hudson, R.L.; Moore, M.H. The N-3 radical as a discriminator between ion-irradiated and UV-photolyzed astronomical ices. Astrophys. J. 2002, 568, 1095–1099. [Google Scholar] [CrossRef]
- Huels, M.A.; Parenteau, L.; Bass, A.D.; Sanche, L. Small steps on the slippery road to life: Molecular synthesis in astrophysical ices initiated by low energy electron impact. Int. J. Mass Spectrom. 2008, 277, 256–261. [Google Scholar] [CrossRef]
- Muñoz Caro, G.M.; Dartois, E.; Boduch, P.; Rothard, H.; Domaracka, A.; Jimenez-Escobar, A. Comparison of UV and high-energy ion irradiation of methanol:ammonia ice. Astron. Astrophys. 2014, 566. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Kaiser, R.I. Electron irradiation of Kuiper Belt surface ices: Ternary N2–CH4–CO mixtures as a case study. Astrophys. J. 2012, 758, 37. [Google Scholar] [CrossRef] [Green Version]
- Materese, C.K.; Cruikshank, D.P.; Sandford, S.A.; Imanaka, H.; Nuevo, M. Ice chemistry on outer solar system bodies: Electron radiolysis of N2-, CH4-, and CO-containing ices. Astrophys. J. 2015, 812, 150. [Google Scholar] [CrossRef]
- Boyer, M.C.; Rivas, N.; Tran, A.A.; Verish, C.A.; Arumainayagam, C.R. The role of low-energy (≤20 eV) electrons in astrochemistry. Surf. Sci. 2016, 652, 7. [Google Scholar] [CrossRef] [Green Version]
- Rothard, H.; Domaracka, A.; Boduch, P.; Palumbo, M.E.; Strazzulla, G.; da Silveira, E.F.; Dartois, E. Modification of ices by cosmic rays and solar wind. J. Phys. B At. Mol. Opt. Phys. 2017, 50, 062001. [Google Scholar] [CrossRef]
- Ada Bibang, P.C.J.; Agnihotri, A.N.; Augé, B.; Boduch, P.; Desfrançois, C.; Domaracka, A.; Lecomte, F.; Manil, B.; Martinez, R.; Muniz, G.S.V.; et al. Ion radiation in icy space environments: Synthesis and radioresistance of complex organic molecules. Low Temp. Phys. 2019, 45, 590–597. [Google Scholar] [CrossRef]
- Hudson, R.L.; Moore, M.H.; Dworkin, J.P.; Martin, M.P.; Pozun, Z.D. Amino Acids from Ion-Irradiated Nitrile-Containing Ices. Astrobiology 2008, 8, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Pilling, S.; Duarte, E.S.; da Silveira, E.F.; Balanzat, E.; Rothard, H.; Domaracka, A.; Boduch, P. Radiolysis of ammonia-containing ices by energetic, heavy, and highly charged ions inside dense astrophysical environments. Astron. Astrophys. 2010, 509. [Google Scholar] [CrossRef]
- Holtom, P.D.; Bennett, C.J.; Osamura, Y.; Mason, N.J.; Kaiser, R.I. A combined experimental and theoretical study on the formation of the amino acid glycine (NH2CH2COOH) and its isomer (CH3NHCOOH) in extraterrestrial ices. Astrophys. J. 2005, 626, 940–952. [Google Scholar] [CrossRef] [Green Version]
- Lafosse, A.; Bertin, M.; Domaracka, A.; Pliszka, D.; Illenberger, E.; Azria, R. Reactivity induced at 25 K by low-energy electron irradiation of condensed NH3-CH3COOD (1:1) mixture. Phys. Chem. Chem. Phys. 2006, 8, 5564–5568. [Google Scholar] [CrossRef]
- Esmaili, S.; Bass, A.D.; Cloutier, P.; Sanche, L.; Huels, M.A. Glycine formation in CO2:CH4:NH3 ices induced by 0–70 eV electrons. J. Chem. Phys. 2018, 148. [Google Scholar] [CrossRef]
- Gerakines, P.A.; Moore, M.H.; Hudson, R.L. Ultraviolet photolysis and proton irradiation of astrophysical ice analogs containing hydrogen cyanide. Icarus 2004, 170, 202–213. [Google Scholar] [CrossRef]
- Kanuchova, Z.; Urso, R.G.; Baratta, G.A.; Brucato, J.R.; Palumbo, M.E.; Strazzulla, G. Synthesis of formamide and isocyanic acid after ion irradiation of frozen gas mixtures. Astron. Astrophys. 2016, 585. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.M.; Bennett, C.J.; Kaiser, R.I. Mechanistical Studies on the Production of Formamide (H2NCHO) within Interstellar Ice Analogs. Astrophys. J. 2011, 734, 78. [Google Scholar] [CrossRef] [Green Version]
- Frigge, R.; Zhu, C.; Turner, A.M.; Abplanalp, M.J.; Bergantini, A.; Sun, B.J.; Chen, Y.L.; Chang, A.H.H.; Kaiser, R.I. A Vacuum Ultraviolet Photoionization Study on the Formation of N-methyl Formamide (HCONHCH3) in Deep Space: A Potential Interstellar Molecule with a Peptide Bond. Astrophys. J. 2018, 862. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.J.; Kaiser, R.I. On the formation of glycolaldehyde (HCOCH2OH) and methyl formate (HCOOCH3) in interstellar ice analogs. Astrophys. J. 2007, 661, 899–909. [Google Scholar] [CrossRef] [Green Version]
- Maity, S.; Kaiser, R.I.; Jones, B.M. Formation of complex organic molecules in methanol and methanol-carbon monoxide ices exposed to ionizing radiation—A combined FTIR and reflectron time-of-flight mass spectrometry study. Phys. Chem. Chem. Phys. 2015, 17, 3081–3114. [Google Scholar] [CrossRef]
- Muñoz Caro, G.M.; Meierhenrich, U.J.; Schutte, W.A.; Barbier, B.; Segovia, A.A.; Rosenbauer, H.; Thiemann, W.H.P.; Brack, A.; Greenberg, J.M. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature 2002, 416, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, M.P.; Dworkin, J.P.; Sandford, S.A.; Cooper, G.W.; Allamandola, L.J. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 2002, 416, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Elsila, J.E.; Dworkin, J.P.; Bernstein, M.P.; Martin, M.P.; Sandford, S.A. Mechanisms of amino acid formation in interstellar ice analogs. Astrophys. J. 2007, 660, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Pilling, S.; Andrade, D.P.P.; Neto, A.C.; Rittner, R.; de Brito, A.N. DNA Nucleobase Synthesis at Titan Atmosphere Analog by Soft X-rays. J. Phys. Chem. A 2009, 113, 11161–11166. [Google Scholar] [CrossRef] [Green Version]
- Meinert, C.; Myrgorodska, I.; de Marcellus, P.; Buhse, T.; Nahon, L.; Hoffmann, S.V.; d’Hendecourt, L.L.; Meierhenrich, U.J. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 2016, 352, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Nuevo, M.; Cooper, G.; Sandford, S.A. Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Oba, Y.; Takano, Y.; Naraoka, H.; Watanabe, N.; Kouchi, A. Nucleobase synthesis in interstellar ices. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Ciaravella, A.; Muñoz Caro, G.M.; Cecchi-Pestellini, C.; Jiménez-Escobar, A.; Juang, K.J.; Yih, T.S. Soft x-ray irradiation of methanol ice: Formation of products as a function of photon energy. Astrophys. J. 2013, 778, 162. [Google Scholar] [CrossRef] [Green Version]
- Henderson, B.L.; Gudipati, M.S. Direct detection of complex organic products in ultraviolet (lyα) and electron-irradiated astrophysical and cometary ice analogs using two-step laser ablation and ionization mass spectrometry. Astrophys. J. 2015, 800, 66. [Google Scholar] [CrossRef] [Green Version]
- Ciaravella, A.; Jimenez-Escobar, A.; Cecchi-Pestellini, C.; Huang, C.H.; Sie, N.E.; Caro, G.M.M.; Chen, Y.J. Synthesis of Complex Organic Molecules in Soft X-Ray Irradiated Ices. Astrophys. J. 2019, 879, 21. [Google Scholar] [CrossRef]
- Martin-Domenech, R.; Oberg, K.; Rajappan, M. Formation of NH2CHO and CH3CHO upon UV Photoprocessing of Interstellar Ice Analogs. Astrophys. J. 2020, 894, 15. [Google Scholar] [CrossRef]
- Ciaravella, A.; Muñoz Caro, G.M.; Jiménez-Escobar, A.; Cecchi-Pestellini, C.; Hsiao, L.-C.; Huang, C.-H.; Chen, Y.-J. X-ray processing of a realistic ice mantle can explain the gas abundances in protoplanetary disks. Proc. Natl. Acad. Sci. USA 2020, 117, 16149. [Google Scholar] [CrossRef]
- Fraser, H.J.; Collings, M.P.; McCoustra, M.R.S. Laboratory surface astrophysics experiment. Rev. Sci. Instrum. 2002, 73, 2161–2170. [Google Scholar] [CrossRef] [Green Version]
- Teolis, B.D.; Loeffler, M.J.; Raut, U.; Fama, A.; Baragiola, R.A. Infrared reflectance spectroscopy on thin films: Interference effects. Icarus 2007, 190, 274–279. [Google Scholar] [CrossRef]
- Coustenis, A.; Hirtzig, M. Cassini-Huygens results on Titan’s surface. Res. Astron. Astrophys. 2009, 9, 249–268. [Google Scholar] [CrossRef]
- Krüger, H.; Stephan, T.; Engrand, C.; Briois, C.; Siljestrom, S.; Merouane, S.; Baklouti, D.; Fischer, H.; Fray, N.; Hornung, K.; et al. Cosima-Rosetta calibration for in situ characterization of 67P/Churyumov-Gerasimenko cometary inorganic compounds. Planet. Space Sci. 2015, 117, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Noble, J.A.; Theule, P.; Duvernay, F.; Danger, G.; Chiavassa, T.; Ghesquiere, P.; Mineva, T.; Talbi, D. Kinetics of the NH3 and CO2 solid-state reaction at low temperature. Phys. Chem. Chem. Phys. 2014, 16, 23604–23615. [Google Scholar] [CrossRef] [PubMed]
- Duvernay, F.; Dufauret, V.; Danger, G.; Theule, P.; Borget, F.; Chiavassa, T. Chiral molecule formation in interstellar ice analogs: Alpha-aminoethanol NH2CH(CH3)OH. Astron. Astrophys. 2010, 523, A79. [Google Scholar] [CrossRef] [Green Version]
- Abplanalp, M.J.; Forstel, M.; Kaiser, R.I. Exploiting single photon vacuum ultraviolet photoionization to unravel the synthesis of complex organic molecules in interstellar ices. Chem. Phys. Lett. 2016, 644, 79–98. [Google Scholar] [CrossRef] [Green Version]
- Nuevo, M.; Milam, S.N.; Sandford, S.A. Nucleobases and Prebiotic Molecules in Organic Residues Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in NH3 and H2O+NH3 Ices. Astrobiology 2012, 12, 295–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 1988, 60, 2299–2301. [Google Scholar] [CrossRef] [PubMed]
- Beavis, R.C.; Chait, B.T.; Fales, H.M. Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun. Mass Spectrom. 1989, 3, 432–435. [Google Scholar] [CrossRef]
- Merchant, M.; Weinberger, S.R. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2000, 21, 1164–1177. [Google Scholar] [CrossRef]
- Paardekooper, D.M.; Bossa, J.B.; Isokoski, K.; Linnartz, H. Laser desorption time-of-flight mass spectrometry of ultraviolet photo-processed ices. Rev. Sci. Instrum. 2014, 85, 104501. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Gudipati, M.S. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D2O ice beneath a H2O ice layer. J. Chem. Phys. 2014, 140, 104202. [Google Scholar] [CrossRef]
- Strupat, K.; Karas, M.; Hillenkamp, F. 2,5-Dihydroxybenzoic acid: A new matrix for laser desorption—Ionization mass spectrometry. Int. J. Mass Spectrom. Ion Process. 1991, 111, 89–102. [Google Scholar] [CrossRef]
- Dreisewerd, K. The Desorption Process in MALDI. Chem. Rev. 2003, 103, 395–426. [Google Scholar] [CrossRef]
- Berkenkamp, S.; Menzel, C.; Karas, M.; Hillenkamp, F. Performance of Infrared Matrix-assisted Laser Desorption/Ionization Mass Spectrometry with Lasers Emitting in the 3 μm Wavelength Range. Rapid Commun. Mass Spectrom. 1997, 11, 8. [Google Scholar] [CrossRef]
- Caldwell, K.L.; Murray, K.K. Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix. Appl. Surf. Sci. 1998, 127, 242–247. [Google Scholar] [CrossRef]
- Pirkl, A.; Soltwisch, J.; Draude, F.; Dreisewerd, K. Infrared Matrix-Assisted Laser Desorption/Ionization Orthogonal-Time-of-Flight Mass Spectrometry Employing a Cooling Stage and Water Ice as a Matrix. Anal. Chem. 2012, 84, 5669. [Google Scholar] [CrossRef]
- Focsa, C.; Mihesan, C.; Ziskind, M.; Chazallon, B.; Therssen, E.; Desgroux, P.; Destombes, J.L. Wavelength-selective vibrationally excited photodesorption with tunable IR sources. J. Phys. Condens. Matter 2006, 18, S1357–S1387. [Google Scholar] [CrossRef]
- Maity, S.; Kaiser, R.I.; Jones, B.M. Formation of ketene (H2CCO) in interstellar analogous methane (CH4)-carbon monoxide (CO) ices: A combined FTIR and reflectron time-of-flight mass spectroscopic study. Astrophys. J. 2014, 789, 36. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Han, F.; Pei, L.; Kong, W.; Li, A. Far-Infrared Spectroscopy of Cationic Polycyclic Aromatic Hydrocarbons: Zero Kinetic Energy Photoelectron Spectroscopy of Pentacene Vaporized from Laser Desorption. Astrophys. J. 2010, 715, 485–492. [Google Scholar] [CrossRef]
- Hama, T.; Watanabe, N.; Kouchi, A.; Yokoyama, M. Spin Temperature of Water Molecules Desorbed from the Surfaces of Amorphous Solid Water, Vapor-Deposited and Produced from Photolysis of a Ch4/O2 Solid Mixture. Astrophys. J. Lett. 2011, 738, L15. [Google Scholar] [CrossRef]
- Gavilan, L.; Lemaire, J.L.; Vidali, G.; Sabri, T.; Jaeger, C. The Formation of Molecular Hydrogen on Silicate Dust Analogs: The Rotational Distribution. Astrophys. J. 2014, 781, 79. [Google Scholar] [CrossRef]
- Karas, M.; Bachmann, D.; Hillenkamp, F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal. Chem. 1985, 57, 2935. [Google Scholar] [CrossRef]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry: A Fundamental Shift in the Routine Practice of Clinical Microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knochenmuss, R. Ion formation mechanisms in UV-MALDI. Analyst 2006, 131, 966–986. [Google Scholar] [CrossRef]
- Trimpin, S.; Wang, B.; Inutan, E.D.; Li, J.; Lietz, C.B.; Harron, A.; Pagnotti, V.S.; Sardelis, D.; McEwen, C.N. A Mechanism for Ionization of Nonvolatile Compounds in Mass Spectrometry: Considerations from MALDI and Inlet Ionization. J. Am. Soc. Mass Spectrom. 2012, 23, 1644–1660. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; Zhang, W.; Chait, B.T. Direct comparison of infrared and ultraviolet wavelength matrix-assisted laser desorption/ionization mass spectrometry of proteins. J. Am. Soc. Mass Spectrom. 1998, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Li, T.; Yu, F.; Kramer, T.; Cristea, I.M. Resolving the composition of protein complexes using a MALDI LTQ Orbitrap. J. Am. Soc. Mass Spectrom. 2010, 21, 34–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudipati, M.S.; Yang, R. In-situ probing of radiation-induced processing of organics in astrophysical ice analogs—Novel laser desorption laser ionization time-of-flight mass spectroscopic studies. Astrophys. J. Lett. 2012, 756, L24. [Google Scholar] [CrossRef]
- Xian, F.; Hendrickson, C.L.; Marshall, A.G. High Resolution Mass Spectrometry. Anal. Chem. 2012, 84, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Zubarev, R.A.; Makarov, A. Orbitrap Mass Spectrometry. Anal. Chem. 2013, 85, 5288–5296. [Google Scholar] [CrossRef] [PubMed]
- Arevalo Jr, R.; Selliez, L.; Briois, C.; Carrasco, N.; Thirkell, L.; Cherville, B.; Colin, F.; Gaubicher, B.; Farcy, B.; Li, X.; et al. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. Rapid Commun. Mass Spectrom. 2018, 32, 1875–1886. [Google Scholar] [CrossRef]
- Eliuk, S.; Makarov, A. Evolution of Orbitrap Mass Spectrometry Instrumentation. Annu. Rev. Anal. Chem. 2015, 8, 61–80. [Google Scholar] [CrossRef]
- Quack, M.; Merkt, F.E. Handbook of High-Resolution Spectroscopy; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Herman, M.; Georges, R.; Hepp, M.; Hurtmans, D. High resolution Fourier transform spectroscopy of jet-cooled molecules. Int. Rev. Phys. Chem. 2000, 19, 277–325. [Google Scholar] [CrossRef]
- Potapov, A.; Asselin, P. High-resolution jet spectroscopy of weakly bound binary complexes involving water. Int. Rev. Phys. Chem. 2014, 33, 275–300. [Google Scholar] [CrossRef]
- Grabow, J.U. Fourier Transform Microwave Spectroscopy: Handedness Caught by Rotational Coherence. Angew. Chem. Int. Ed. 2013, 52, 11698–11700. [Google Scholar] [CrossRef]
- Patterson, D.; Schnell, M.; Doyle, J.M. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 2013, 497, 475. [Google Scholar] [CrossRef]
- Yocum, K.M.; Smith, H.H.; Todd, E.W.; Mora, L.; Gerakines, P.A.; Milam, S.N.; Weaver, S.L.W. Millimeter/Submillimeter Spectroscopic Detection of Desorbed Ices: A New Technique in Laboratory Astrochemistry. J. Phys. Chem. A 2019, 123, 8702–8708. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Tanaka, K.; Tanaka, T.; Nanbu, S.; Aoyagi, M. Millimeter-wave spectroscopy of the internal-rotation band of the He-HCN complex and the intermolecular potential energy surface. J. Chem. Phys. 2002, 117, 7041–7050. [Google Scholar] [CrossRef]
- Potapov, A.V.; Surin, L.A.; Schlemmer, S.; Giesen, T.F. Submillimeter-wave spectroscopy of the K = 2−1 subband of the Ne-CO complex. J. Mol. Spectrosc. 2011, 270, 116–119. [Google Scholar] [CrossRef]
- Theulé, P.; Endres, C.; Hermanns, M.; Zingsheim, O.; Bossa, J.B.; Potapov, A. High-Resolution Gas Phase Spectroscopy of Molecules Desorbed from an Ice Surface: A Proof-of-Principle Study. ACS Earth Space Chem. 2020, 4, 86–91. [Google Scholar] [CrossRef]
- Brown, G.G.; Dian, B.C.; Douglass, K.O.; Geyer, S.M.; Shipman, S.T.; Pate, B.H. A broadband Fourier transform microwave spectrometer based on chirped pulse excitation. Rev. Sci. Instrum. 2008, 79, 053103. [Google Scholar] [CrossRef]
- Jahn, M.K.; Dewald, D.A.; Wachsmuth, D.; Grabow, J.U.; Mehrotra, S.C. Rapid capture of large amplitude motions in 2,6-difluorophenol: High-resolution fast-passage FT-MW technique. J. Mol. Spectrosc. 2012, 280, 54–60. [Google Scholar] [CrossRef]
- Perez, C.; Lobsiger, S.; Seifert, N.A.; Zaleski, D.P.; Temelso, B.; Shields, G.C.; Kisiel, Z.; Pate, B.H. Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer. Chem. Phys. Lett. 2013, 571, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Medcraft, C.; Wolf, R.; Schnell, M. High-Resolution Spectroscopy of the Chiral Metal Complex [CpRe(CH3)(CO)(NO)]: A Potential Candidate for Probing Parity Violation. Angew. Chem. Int. Ed. 2014, 53, 11656–11659. [Google Scholar] [CrossRef] [PubMed]
- Hermanns, M.; Wehres, N.; Lewen, F.; Muller, H.S.P.; Schlemmer, S. Rotational spectroscopy of the two higher energy conformers of 2-cyanobutane. J. Mol. Spectrosc. 2019, 358, 25–36. [Google Scholar] [CrossRef]
- Dian, B.C.; Brown, G.G.; Douglass, K.O.; Pate, B.H. Measuring picosecond isomerization kinetics via broadband microwave spectroscopy. Science 2008, 320, 924–928. [Google Scholar] [CrossRef] [PubMed]
- Abeysekera, C.; Zack, L.N.; Park, G.B.; Joalland, B.; Oldham, J.M.; Prozument, K.; Ariyasingha, N.M.; Sims, I.R.; Field, R.W.; Suits, A.G. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. II. Performance and applications for reaction dynamics. J. Chem. Phys. 2014, 141, 214203. [Google Scholar] [CrossRef] [PubMed]
- Prozument, K.; Park, G.B.; Shaver, R.G.; Vasiliou, A.K.; Oldham, J.M.; David, D.E.; Muenter, J.S.; Stanton, J.F.; Suits, A.G.; Ellison, G.B.; et al. Chirped-pulse millimeter-wave spectroscopy for dynamics and kinetics studies of pyrolysis reactions. Phys. Chem. Chem. Phys. 2014, 16, 15739–15751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeysekera, C.; Joalland, B.; Ariyasingha, N.; Zack, L.N.; Sims, I.R.; Field, R.W.; Suits, A.G. Product Branching in the Low Temperature Reaction of CN with Propyne by Chirped-Pulse Microwave Spectroscopy in a Uniform Supersonic Flow. J. Phys. Chem. Lett. 2015, 6, 1599–1604. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fulvio, D.; Potapov, A.; He, J.; Henning, T. Astrochemical Pathways to Complex Organic and Prebiotic Molecules: Experimental Perspectives for In Situ Solid-State Studies. Life 2021, 11, 568. https://doi.org/10.3390/life11060568
Fulvio D, Potapov A, He J, Henning T. Astrochemical Pathways to Complex Organic and Prebiotic Molecules: Experimental Perspectives for In Situ Solid-State Studies. Life. 2021; 11(6):568. https://doi.org/10.3390/life11060568
Chicago/Turabian StyleFulvio, Daniele, Alexey Potapov, Jiao He, and Thomas Henning. 2021. "Astrochemical Pathways to Complex Organic and Prebiotic Molecules: Experimental Perspectives for In Situ Solid-State Studies" Life 11, no. 6: 568. https://doi.org/10.3390/life11060568
APA StyleFulvio, D., Potapov, A., He, J., & Henning, T. (2021). Astrochemical Pathways to Complex Organic and Prebiotic Molecules: Experimental Perspectives for In Situ Solid-State Studies. Life, 11(6), 568. https://doi.org/10.3390/life11060568