Transarterial Chemoembolization of Hepatocellular Carcinoma with Oncozene Microspheres: An Initial, Short-Term Clinical Experience—A Retrospective, Matched, Comparison Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. TACE Technique
2.2. Post-Procedural Management and Surveillance
2.3. Radiographic Tumor Response
2.4. Statistics
3. Results
3.1. Baseline Clinical Characteristics
3.2. Clinical Toxicities and Adverse Events
3.3. Radiographic Tumor Response
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- El-Serag, H.B.; Kanwal, F. Epidemiology of hepatocellular carcinoma in the United States: Where are we? Where do we go? Hepatology 2014, 60, 1767–1775. [Google Scholar] [CrossRef] [PubMed]
- Petruzzi, P.; Crocetti, L.; Lencioni, R. Chemoembolization of Hepatocellular Carcinoma. Semin. Interv. Radiol. 2013, 30, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lammer, J.; On Behalf of the PRECISION V Investigators; Malagari, K.; Vogl, T.; Pilleul, F.; Denys, A.; Watkinson, A.; Pitton, M.; Sergent, G.; Pfammatter, T.; et al. Prospective Randomized Study of Doxorubicin-Eluting-Bead Embolization in the Treatment of Hepatocellular Carcinoma: Results of the PRECISION V Study. Cardiovasc. Interv. Radiol. 2009, 33, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaba, R.C. Chemoembolization practice patterns and technical methods among interventional radiologists: Results of an online survey. Am. J. Roentgenol. 2012, 198, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-H.; Liapi, E.; Vossen, J.A.; Buijs, M.; Ventura, V.P.; Georgiades, C.; Hong, K.; Kamel, I.; Torbenson, M.S.; Geschwind, J.-F.H. Distribution of iron oxide–containing embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: Evaluation with MR imaging and implication for therapy. J. Vasc. Interv. Radiol. 2008, 19, 1490–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guiu, B.; Schmitt, A.; Reinhardt, S.; Fohlen, A.; Pohl, T.; Wendremaire, M.; Denys, A.; Blümmel, J.; Boulin, M. Idarubicin-loaded ONCOZENE drug-eluting embolic agents for chemoembolization of hepatocellular carcinoma: In vitro loading and release and in vivo pharmacokinetics. J. Vasc. Interv. Radiol. 2015, 26, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Greco, G.; Cascella, T.; Facciorusso, A.; Nani, R.; Lanocita, R.; Morosi, C.; Vaiani, M.; Calareso, G.; Greco, F.G.; Ragnanese, A.; et al. Transarterial chemoembolization using 40 µm drug eluting beads for hepatocellular carcinoma. World J. Radiol. 2017, 9, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Richter, G.; Radeleff, B.; Stroszczynski, C.; Pereira, P.; Helmberger, T.; Barakat, M.; Huppert, P. Safety and feasibility of chemoembolization with doxorubicin-loaded small calibrated microspheres in patients with hepatocellular carcinoma: Results of the MIRACLE I prospective multicenter study. Cardiovasc. Interv. Radiol. 2018, 41, 587–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malagari, K.; Kiakidis, T.; Pomoni, M.; Moschouris, H.; Emmanouil, E.; Spiridopoulos, T.; Sotirchos, V.; Tandeles, S.; Koundouras, D.; Kelekis, A.; et al. Pharmacokinetics, safety, and efficacy of chemoembolization with doxorubicin-loaded tightly calibrated small microspheres in patients with hepatocellular carcinoma. Cardiovasc. Interv. Radiol. 2016, 39, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, K.C.; Aschenbach, R.; Diamantis, I.; Eckardt, N.; Teichgräber, U. Response rate and safety in patients with hepatocellular carcinoma treated with transarterial chemoembolization using 40-µm doxorubicin-eluting microspheres. J. Cancer Res. Clin. Oncol. 2021, 147, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.E.; Surapaneni, P.K.; Core, J.; Vidal, L.L.C.; LeGout, J.; Ritchie, C.; Frey, G.; McKinney, J.M.; Sella, D.; Paz-Fumagalli, R.; et al. Safety and efficacy of locoregional therapy for metastatic pancreatic ductal adenocarcinoma to the liver: A single-center experience. J. Gastrointest. Oncol. 2019, 10, 688–694. [Google Scholar] [CrossRef] [PubMed]
- McAuley, D. Opioid Analgesic Converter. 2018. Available online: http://www.globalrph.com/narcoticonv.htm (accessed on 16 January 2018).
- Brown, D.B.; Nikolic, B.; Covey, A.M.; Nutting, C.W.; Saad, W.E.; Salem, R.; Sofocleous, C.T.; Sze, D.Y.; Committee SoIRSoP. Quality improvement guidelines for transhepatic arterial chemoembolization, embolization, and chemotherapeutic infusion for hepatic malignancy. J. Vasc. Interv. Radiol. 2012, 23, 287–294. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services NIoH, National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) v4.03. 2010. Available online: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf (accessed on 16 January 2018).
- Lencioni, R.; Llovet, J. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prajapati, H.J.; Spivey, J.R.; Hanish, S.I.; El-Rayes, B.F.; Kauh, J.S.; Chen, Z.; Kim, H.S. mRECIST and EASL responses at early time point by contrast-enhanced dynamic MRI predict survival in patients with unresectable hepatocellular carcinoma (HCC) treated by doxorubicin drug-eluting beads transarterial chemoembolization (DEB TACE). Ann. Oncol. 2013, 24, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.H.; Lee, H.C.; Kim, S.-O.; Shin, Y.M.; Kim, K.M.; Lim, Y.-S.; Suh, D.J. Which response criteria best help predict survival of patients with hepatocellular carcinoma following chemoembolization? A validation study of old and new models. Radiology 2012, 262, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Trevisani, F.; Magini, G.; Santi, V.; Morselli-Labate, A.M.; Cantarini, M.C.; Di Nolfo, M.A.; Del Poggio, P.; Benvegnù, L.; Rapaccini, G.; Farinati, F.; et al. Impact of etiology of cirrhosis on the survival of patients diagnosed with hepatocellular carcinoma during surveillance. CME. Am. J. Gastroenterol. 2007, 102, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Padia, S.A.; Shivaram, G.; Bastawrous, S.; Bhargava, P.; Vo, N.J.; Vaidya, S.; Valji, K.; Harris, W.P.; Hippe, D.; Kogut, M.J. Safety and efficacy of drug-eluting bead chemoembolization for hepatocellular carcinoma: Comparison of small-versus medium-size particles. J. Vasc. Interv. Radiol. 2013, 24, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.M.; Yusuf, S.W.; Ewer, M.S. Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formu-lation. Int. J. Nanomed. 2007, 2, 567–583. [Google Scholar]
Oncozene (n = 29) | LC (n = 29) | p Value | |
---|---|---|---|
Age (y) * | 67 (46–90) | 65 (49–89) | 0.18 |
Male/Female | 20/9 | 19/10 | 1.00 |
Etiology | 0.02 | ||
Hepatitis B Virus | 2 | 3 | |
Hepatitis C Virus | 15 | 19 | |
Nonalcoholic Steatohepatitis | 10 | 3 | |
Alcohol | 0 | 4 | |
Cryptogenic | 2 | 0 | |
BCLC Stage | 0.80 | ||
A | 4 | 2 | |
B | 13 | 15 | |
C | 12 | 12 | |
Child–Pugh Status | 0.36 | ||
A | 24 | 20 | |
B | 5 | 9 | |
C | 0 | 0 | |
ECOG Performance Status | 0.83 | ||
0 | 19 | 17 | |
1 | 9 | 10 | |
2 | 1 | 2 | |
Previous Treatment | |||
Resection | 2 | 1 | 1.00 |
Chemotherapy | 1 | 4 | 0.35 |
Ablation | 1 | 6 | 0.10 |
TACE | 17 | 12 | 0.29 |
Tumor Burden and Distribution | |||
Unifocal/Multifocal | 9/20 | 9/20 | 1.00 |
Unilobar/Bilobar | 18/11 | 15/14 | 0.60 |
Largest Lesion Diameter (cm) * | 5.1 (1.4–9.5) | 4.3 (1.1–13.0) | 0.49 |
Total Sum of Enhancing Target Lesion Diameters (cm) * | 4.4 (1.5–12.2) | 4.1 (1.1–11.0) | 0.86 |
Laboratory Values | |||
Serum aspartate aminotransferase (IU/L) * | 47 (15–160) | 55 (16–292) | 0.39 |
Serum alanine aminotransferase (IU/L) * | 44 (15–204) | 34 (9–232) | 0.15 |
Serum total bilirubin (mg/dL) * | 0.9 (0.3–3.0) | 1.1 (0.2–2.2) | 0.31 |
Serum alkaline phosphatase (IU/L) * | 118 (59–306) | 117 (47–348) | 0.38 |
Serum albumin (g/dL) * | 3.8 (2.7–4.7) | 3.4 (2.6–4.2) | 0.008 |
International normalized ratio * | 1.1 (1.0–1.3) | 1.2 (0.9–1.6) | 0.000 |
Serum α-fetoprotein (ng/mL) * | 13.7 (2.0–12,294) | 26.9 (2.1–54,450) | 0.48 |
Chemotherapeutic Dose Delivered (mg) * | 50 (17–100) | 75 (25–112) | 0.0005 |
Oncozene (n = 29) | LC (n = 29) | p Value | |
---|---|---|---|
Fever | 5 (17) | 1 (3) | 0.19 |
Pain * | 22 (76) | 17 (59) | 0.26 |
Nausea * | 21 (72) | 17 (59) | 0.41 |
Postembolization Syndrome ** | 25 (86) | 24 (83) | 1.00 |
Daily Narcotic Requirement (mg) ‡ | 15 (0–131) | 7.5 (0–85) | 0.10 |
Complications | |||
Overall | 6 (21) | 3 (10) | 0.47 |
Major | 6 (21) | 2 (7) | 0.25 |
Minor | 0 (0) | 1 (3) | 1.00 |
Oncozene (n = 29) | LC (n = 29) | p Value | |
---|---|---|---|
Post-procedure Day 1 | |||
Aspartate aminotransferase (%) | 19.6 (−29.2–378.1) | 14.1 (−24.1–1257.1) | 0.84 |
Alanine aminotransferase (%) | 9.1 (−54.9–373.5) | 16.0 (−25.4–2022.2) | 0.37 |
Total bilirubin (%) | 0.0 (−33.3–233.3) | 18.8 (−33.3–100.0) | 0.05 |
Alkaline phosphatase (%) | −10.2 (−28.7–24.4) | −7.1 (−30.0–10.4) | 0.22 |
Albumin (%) | −7.9 (−23.3–2.78) | −5.3 (−27.0–12.9) | 0.28 |
Post-procedure Day 30 | |||
Aspartate aminotransferase (%) | 0.0 (−66.0–329.2) | −5.9 (−82.9–78.3) | 0.22 |
Alanine aminotransferase (%) | −10.0 (−80.4–655.6) | −2.8 (−72.7–117.5) | 0.93 |
Total bilirubin (%) | −16.7 (−68.4–100.0) | 0.0 (−50.0–100.0) | 0.42 |
Alkaline phosphatase (%) | 15.3 (−20.0–130.2) | 14.4 (−28.1–176.6) | 0.60 |
Albumin (%) | 0.0 (−26.8–37.0) | −3.5 (−21.9–25.8) | 0.87 |
International normalized ratio (%) | 0.0 (−9.1–36.4) | 0.0 (−18.8–15.4) | 0.009 |
α-fetoprotein (%) | −13.3 (−85.2–552.5) | −17.6 (−91.6–221.0) | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, M.L.; Jiang, J.; Trieu, H.; Hao, F.; Eghbalieh, N.; Ding, P.-X.; Lee, E.W. Transarterial Chemoembolization of Hepatocellular Carcinoma with Oncozene Microspheres: An Initial, Short-Term Clinical Experience—A Retrospective, Matched, Comparison Study. Life 2021, 11, 600. https://doi.org/10.3390/life11070600
Hung ML, Jiang J, Trieu H, Hao F, Eghbalieh N, Ding P-X, Lee EW. Transarterial Chemoembolization of Hepatocellular Carcinoma with Oncozene Microspheres: An Initial, Short-Term Clinical Experience—A Retrospective, Matched, Comparison Study. Life. 2021; 11(7):600. https://doi.org/10.3390/life11070600
Chicago/Turabian StyleHung, Matthew L., Jerry Jiang, Harry Trieu, Frank Hao, Navid Eghbalieh, Peng-Xu Ding, and Edward Wolfgang Lee. 2021. "Transarterial Chemoembolization of Hepatocellular Carcinoma with Oncozene Microspheres: An Initial, Short-Term Clinical Experience—A Retrospective, Matched, Comparison Study" Life 11, no. 7: 600. https://doi.org/10.3390/life11070600
APA StyleHung, M. L., Jiang, J., Trieu, H., Hao, F., Eghbalieh, N., Ding, P.-X., & Lee, E. W. (2021). Transarterial Chemoembolization of Hepatocellular Carcinoma with Oncozene Microspheres: An Initial, Short-Term Clinical Experience—A Retrospective, Matched, Comparison Study. Life, 11(7), 600. https://doi.org/10.3390/life11070600