Low-Temperature Gas Plasma Combined with Antibiotics for the Reduction of Methicillin-Resistant Staphylococcus aureus Biofilm Both In Vitro and In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biofilm Assay
2.2. LTGP Device and Treatments
2.3. Antibiotic Treatment of Biofilms
2.4. The Minimum Bactericidal Concentration (MBC) Assay
2.5. Regrowth of Biofilms after LTGP Treatment
2.6. Mouse Wound Infection Model
2.7. Treatment
2.8. Statistical Analysis
3. Results
3.1. The Gaseous Reactive Species Produced by the Surface Plasma
3.2. LTGP Treatment Promotes the Reduction of Biofilm by Antibiotics
3.3. LTGP Treatment in Combination with Rifampicin Reduces Infections in Wounds
3.4. Biosafety of the Combined Treatment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Roberts, C.D.; Leaper, D.J.; Assadian, O. The Role of Topical Antiseptic Agents within Antimicrobial Stewardship Strategies for Prevention and Treatment of Surgical Site and Chronic Open Wound Infection. Adv. Wound Care 2017, 6, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillamet, C.V.; Kollef, M.H. How to stratify patients at risk for resistant bugs in skin and soft tissue infections? Curr. Opin. Infect. Dis. 2016, 29, 116–123. [Google Scholar] [CrossRef]
- Lei, X.; Qiu, L.; Lan, M.; Du, X.; Zhou, S.; Cui, P.; Zheng, R.; Jiang, P.; Wang, J.; Xia, J. Antibacterial photodynamic peptides for staphylococcal skin infection. Biomater. Sci. 2020, 8, 6695–6702. [Google Scholar] [CrossRef] [PubMed]
- Parlet, C.P.; Brown, M.M.; Horswill, A.R. Commensal Staphylococci Influence Staphylococcus aureus Skin Colonization and Disease. Trends Microbiol. 2019, 27, 497–507. [Google Scholar] [CrossRef]
- Bahamondez-Canas, T.F.; Heersema, L.A.; Smyth, H.D.C. Current Status of In Vitro Models and Assays for Susceptibility Testing for Wound Biofilm Infections. Biomedicines 2019, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Sengupta, M.; Sarkar, S.; Ghosh, S.; Nandi, A.; Sinha, A.; Chakravorty, S. Can EDTA Change MRSA into MSSA? A Future Prospective! J. Clin. Diagn. Res. 2016, 10, Dc22–Dc25. [Google Scholar] [CrossRef] [PubMed]
- O’Riordan, W.; Green, S.; Overcash, J.S.; Puljiz, I.; Metallidis, S.; Gardovskis, J.; Garrity-Ryan, L.; Das, A.F.; Tzanis, E.; Eckburg, P.B.; et al. Omadacycline for Acute Bacterial Skin and Skin-Structure Infections. N. Engl. J. Med. 2019, 380, 528–538. [Google Scholar] [CrossRef]
- Roy, S.; Santra, S.; Das, A.; Dixith, S.; Sinha, M.; Ghatak, S.; Ghosh, N.; Banerjee, P.; Khanna, S.; Mathew-Steiner, S.; et al. Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Ann. Surg. 2020, 271, 1174–1185. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yang, L.; Qi, Y.; Niyazi, G.; Huang, L.L.; Gou, L.; Wang, Z.F.; Zhang, L.; Liu, D.X.; Wang, X.H.; et al. Cold Atmospheric-Pressure Plasma Caused Protein Damage in Methicillin-Resistant Staphylococcus aureus Cells in Biofilms. Microorganisms 2021, 9, 1072. [Google Scholar] [CrossRef]
- Matysik, A.; Kline, K.A. Streptococcus pyogenes Capsule Promotes Microcolony-Independent Biofilm Formation. J. Bacteriol. 2019, 201, e00052-19. [Google Scholar] [CrossRef] [Green Version]
- Schilcher, K.; Horswill, A.R. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol. Mol. Biol. Rev. 2020, 84, e00026-19. [Google Scholar] [CrossRef] [PubMed]
- Suresh, M.K.; Biswas, R.; Biswas, L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. Int. J. Med. Microbiol. 2019, 309, 1–12. [Google Scholar] [CrossRef]
- Chhibber, T.; Gondil, V.S.; Sinha, V.R. Development of Chitosan-Based Hydrogel Containing Antibiofilm Agents for the Treatment of Staphylococcus aureus-Infected Burn Wound in Mice. AAPS Pharmscitech. 2020, 21, 43. [Google Scholar] [CrossRef]
- Waterer, G.; Lord, J.; Hofmann, T.; Jouhikainen, T. Phase I, Dose-Escalating Study of the Safety and Pharmacokinetics of Inhaled Dry-Powder Vancomycin (AeroVanc) in Volunteers and Patients with Cystic Fibrosis: A New Approach to Therapy for Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents. Chemother. 2020, 64, e01776-19. [Google Scholar] [CrossRef]
- Sawyer, R.G. Detection and Initial Management of Complicated Skin and Soft Tissue Infections Caused by Methicillin-Resistant Staphylococcus aureus. Surg. Infect. 2008, 9, S11–S15. [Google Scholar] [CrossRef]
- Sibbald, R.G.; Elliott, J.A.; Verma, L.; Brandon, A.; Persaud, R.; Ayello, E.A. Update: Topical Antimicrobial Agents for Chronic Wounds. Adv. Skin Wound Care 2017, 30, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Bello, C. Antibiotic adjuvants—A strategy to unlock bacterial resistance to antibiotics. Bioorg. Med. Chem. Lett. 2017, 27, 4221–4228. [Google Scholar] [CrossRef]
- Vatansever, F.; de Melo, W.C.; Avci, P.; Vecchio, D.; Sadasivam, M.; Gupta, A.; Chandran, R.; Karimi, M.; Parizotto, N.A.; Yin, R.; et al. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 2013, 37, 955–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007, 130, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Duarte, S.; Panariello, B.H.D. Comprehensive biomedical applications of low temperature plasmas. Arch. Biochem. Biophys. 2020, 693, 108560. [Google Scholar] [CrossRef]
- Bekeschus, S.; Clemen, R.; Niessner, F.; Sagwal, S.K.; Freund, E.; Schmidt, A. Medical Gas Plasma Jet Technology Targets Murine Melanoma in an Immunogenic Fashion. Adv. Sci. 2020, 7, 1903438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, A.; Gorbanev, Y.; De Backer, J.; Van Loenhout, J.; Van Boxem, W.; Lemiere, F.; Cos, P.; Dewilde, S.; Smits, E.; Bogaerts, A. Non-Thermal Plasma as a Unique Delivery System of Short-Lived Reactive Oxygen and Nitrogen Species for Immunogenic Cell Death in Melanoma Cells. Adv. Sci. 2019, 6, 1802062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.H.; Hong, Y.J.; Attri, P.; Sim, G.B.; Lee, G.J.; Panngom, K.; Kwon, G.C.; Choi, E.H.; Uhm, H.S.; Park, G. Analysis of the antimicrobial effects of nonthermal plasma on fungal spores in ionic solutions. Free Radic. Biol. Med. 2014, 72, 191–199. [Google Scholar] [CrossRef]
- Kong, M.G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J.L. Plasma medicine: An introductory review. N. J. Phys. 2009, 11, 115012. [Google Scholar] [CrossRef]
- Heinlin, J.; Zimmermann, J.L.; Zeman, F.; Bunk, W.; Isbary, G.; Landthaler, M.; Maisch, T.; Monetti, R.; Morfill, G.; Shimizu, T.; et al. Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair Regen. 2013, 21, 800–807. [Google Scholar] [CrossRef]
- Isbary, G.; Heinlin, J.; Shimizu, T.; Zimmermann, J.L.; Morfill, G.; Schmidt, H.U.; Monetti, R.; Steffes, B.; Bunk, W.; Li, Y.; et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: Results of a randomized controlled trial. Br. J. Dermatol. 2012, 167, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Isbary, G.; Morfill, G.; Schmidt, H.U.; Georgi, M.; Ramrath, K.; Heinlin, J.; Karrer, S.; Landthaler, M.; Shimizu, T.; Steffes, B.; et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br. J. Dermatol. 2010, 163, 78–82. [Google Scholar] [CrossRef]
- Dobrynin, D.; Fridman, G.; Friedman, G.; Fridman, A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 2009, 11, 115020. [Google Scholar] [CrossRef]
- Guo, L.; Xu, R.B.; Liu, D.X.; Qi, Y.; Guo, Y.H.; Wang, W.T.; Zhang, J.; Liu, Z.J.; Kong, M.G. Eradication of methicillin-resistant Staphylococcus aureus biofilms by surface discharge plasmas with various working gases. J. Phys. D Appl. Phys. 2019, 52, 425202. [Google Scholar] [CrossRef]
- Mihu, M.R.; Roman-Sosa, J.; Varshney, A.K.; Eugenin, E.A.; Shah, B.P.; Lee, H.H.; Nguyen, L.H.; Guimaraes, A.J.; Fries, B.C.; Nosanchuk, J.D.; et al. Methamphetamine Alters the Antimicrobial Efficacy of Phagocytic Cells during Methicillin-Resistant Staphylococcus aureus Skin Infection. mBio 2015, 6, e01622-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, S.; Ascione, T.; Pagliano, P. Management of bacterial skin and skin structure infections with polymicrobial etiology. Expert. Rev. Anti. Infect. Ther. 2019, 17, 17–25. [Google Scholar] [CrossRef]
- Miquel, S.; Lagrafeuille, R.; Souweine, B.; Forestier, C. Anti-biofilm Activity as a Health Issue. Front Microbiol. 2016, 7, 592. [Google Scholar] [CrossRef]
- Morones-Ramirez, J.R.; Winkler, J.A.; Spina, C.S.; Collins, J.J. Silver enhances antibiotic activity against gram-negative bacteria. Sci. Transl. Med. 2013, 5, 190ra181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, F.; Tang, X.; Cheng, W.; Wang, Y.; Wang, C.; Shi, X.; An, Y.; Zhang, Q.; Liu, M.; Liu, B.; et al. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species. Sci. Rep. 2016, 6, 19262. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zhao, Y.; Liu, D.; Liu, Z.; Chen, C.; Xu, R.; Tian, M.; Wang, X.; Chen, H.; Kong, M.G. Cold atmospheric-pressure plasma induces DNA-protein crosslinks through protein oxidation. Free Radic. Res. 2018, 52, 783–798. [Google Scholar] [CrossRef]
- Arjunan, K.P.; Sharma, V.K.; Ptasinska, S. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review. Int. J. Mol. Sci. 2015, 16, 2971–3016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willemsen, I.; Cooper, B.; van Buitenen, C.; Winters, M.; Andriesse, G.; Kluytmans, J. Improving Quinolone Use in Hospitals by Using a Bundle of Interventions in an Interrupted Time Series Analysis. Antimicrob. Agents Chemother. 2010, 54, 3763–3769. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.; Cheng, H.; Xu, J.; Li, F.; Gao, B.; Li, Z.; Gao, C.; Huo, K.; Fu, J.; Xiong, W. Silver-loaded nanotubular structures enhanced bactericidal efficiency of antibiotics with synergistic effect in vitro and in vivo. Int. J. Nanomed. 2017, 12, 731–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusupov, M.; Bogaerts, A.; Huygh, S.; Snoeckx, R.; van Duin, A.C.T.; Neyts, E.C. Plasma-Induced Destruction of Bacterial Cell Wall Components: A Reactive Molecular Dynamics Simulation. J. Phys. Chem. C 2013, 117, 5993–5998. [Google Scholar] [CrossRef]
- Backes, A.T.; Reinmuth-Selzle, K.; Leifke, A.L.; Ziegler, K.; Krevert, C.S.; Tscheuschner, G.; Lucas, K.; Weller, M.G.; Berkemeier, T.; Pöschl, U.; et al. Oligomerization and Nitration of the Grass Pollen Allergen Phl p 5 by Ozone, Nitrogen Dioxide, and Peroxynitrite: Reaction Products, Kinetics, and Health Effects. Int. J. Mol. Sci. 2021, 22, 7616. [Google Scholar] [CrossRef]
- Niles, J.C.; Wishnok, J.S.; Tannenbaum, S.R. Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: Structures and mechanisms of product formation. Nitric Oxide 2006, 14, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Maisch, T.; Shimizu, T.; Li, Y.F.; Heinlin, J.; Karrer, S.; Morfill, G.; Zimmermann, J.L. Decolonisation of MRSA, S-aureus and E-coli by Cold-Atmospheric Plasma Using a Porcine Skin Model In Vitro. PLoS ONE 2012, 7, e34610. [Google Scholar] [CrossRef] [PubMed]
- Bekeschus, S.; Schmidt, A.; Kramer, A.; Metelmann, H.R.; Adler, F.; von Woedtke, T.; Niessner, F.; Weltmann, K.D.; Wende, K. High throughput image cytometry micronucleus assay to investigate the presence or absence of mutagenic effects of cold physical plasma. Environ. Mol. Mutagen. 2018, 59, 268–277. [Google Scholar] [CrossRef] [PubMed]
Treatment Time (min) | Ciprofloxacin (μg/mL) | Norfloxacin (μg/mL) | Vancomycin (μg/mL) | Rifampicin (μg/mL) |
---|---|---|---|---|
0 | >2500 | >2500 | >2500 | 2500 |
2 | 2500 | 2500 | 2500 | 1250 |
4 | 625 | 1250 | 625 | 312.5 |
6 | 312.5 | 312.5 | 312.5 | 156 |
Parameters | Non-Infected and Untreated | Infected and Treated with Plasma | Infected and Treated with Plasma and Rifampicin |
---|---|---|---|
Hematology | |||
Number of red blood cells (×1012/L) | 11.10 ± 0.56 | 10.67 ± 0.55 | 11.45 ± 0.70 |
Number of white blood cells (×109/L) | 4.58 ± 0.68 | 4.90 ± 1.38 a | 5.24 ± 1.92 |
Platelet count (×109/L) | 1263.4 ± 372.2 | 1254.0 ± 181.0 | 1224.2 ± 398.2 |
Hemoglobin (g/L) | 167.6 ± 10.6 | 162.4 ± 8.5 | 168.2 ± 16.8 |
Number of lymphocytes (×109/L) | 2.18 ± 0.28 | 2.70 ± 0.67 | 3.38 ± 1.84 |
Number of monocytes (×109/L) | 0.18 ± 0.08 | 0.30 ± 0.10 | 0.24 ± 0.05 |
Number of neutrophils (×109/L) | 1.62 ± 0.64 | 2.26 ± 0.73 | 1.62 ± 0.75 |
Kidney | |||
Blood Urea Nitrogen (BUN) (mmol/L) | 28.70 ± 3.91 | 26.58 ± 3.13 | 38.43 ± 14.41 |
Creatinine (μmol/L) | 30.04 ± 1.82 | 27.33 ± 5.78 | 31.08 ± 4.11 |
Hepatic | |||
Alkaline phosphatase (U/L) | 188.13 ± 49.80 | 161.47 ± 22.69 | 150.55 ± 47.55 |
Aspartate aminotransferase (AST, U/L) | 209.19 ± 59.78 | 184.64 ± 40.44 | 211.25 ± 36.11 |
Alanine aminotransferase (ALT, U/L) | 72.43 ± 38.15 | 66.06 ± 11.45 | 74.41 ± 21.99 |
Total bilirubin (μmol/L) | 22.13 ± 4.29 | 18.08 ± 3.18 | 20.52 ± 8.23 |
Nutrition | |||
Total protein (g/L) | 49.36 ± 3.70 | 45.40 ± 7.49 | 47.49 ± 3.28 |
Albumin (g/L) | 34.36 ± 3.50 | 37.26 ± 2.03 | 33.47 ± 1.05 |
Cholesterol (mmol/L) | 1.82 ± 0.38 | 2.01 ± 0.19 | 2.23 ± 0.43 |
Metabolize | |||
Triglyceride (mmol/L) | 0.57 ± 0.12 | 0.62 ± 0.10 | 0.56 ± 0.14 |
Glucose (mmol/L) | 3.05 ± 0.85 | 3.18 ± 0.71 | 2.45 ± 0.63 |
Uric acid (μmol/L) | 320.20 ± 92.83 | 331.79 ± 70.87 | 349.43 ± 41.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Yang, L.; Qi, Y.; Niyazi, G.; Zheng, J.; Xu, R.; Chen, X.; Zhang, J.; Xi, W.; Liu, D.; et al. Low-Temperature Gas Plasma Combined with Antibiotics for the Reduction of Methicillin-Resistant Staphylococcus aureus Biofilm Both In Vitro and In Vivo. Life 2021, 11, 828. https://doi.org/10.3390/life11080828
Guo L, Yang L, Qi Y, Niyazi G, Zheng J, Xu R, Chen X, Zhang J, Xi W, Liu D, et al. Low-Temperature Gas Plasma Combined with Antibiotics for the Reduction of Methicillin-Resistant Staphylococcus aureus Biofilm Both In Vitro and In Vivo. Life. 2021; 11(8):828. https://doi.org/10.3390/life11080828
Chicago/Turabian StyleGuo, Li, Lu Yang, Yu Qi, Gulimire Niyazi, Jianbao Zheng, Ruobing Xu, Xusong Chen, Jingye Zhang, Wang Xi, Dingxin Liu, and et al. 2021. "Low-Temperature Gas Plasma Combined with Antibiotics for the Reduction of Methicillin-Resistant Staphylococcus aureus Biofilm Both In Vitro and In Vivo" Life 11, no. 8: 828. https://doi.org/10.3390/life11080828
APA StyleGuo, L., Yang, L., Qi, Y., Niyazi, G., Zheng, J., Xu, R., Chen, X., Zhang, J., Xi, W., Liu, D., Wang, X., Chen, H., & Kong, M. G. (2021). Low-Temperature Gas Plasma Combined with Antibiotics for the Reduction of Methicillin-Resistant Staphylococcus aureus Biofilm Both In Vitro and In Vivo. Life, 11(8), 828. https://doi.org/10.3390/life11080828