Metabolic Constellations, Clusters, and Renal Function: Findings from the 2013–2018 National Health and Nutrition Examination Surveys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Definition of Metabolic Risk Factors
2.3. Definition of Metabolic Constellations and Clusters
2.4. Outcome Measures
2.5. Demographic and Biochemical Information
2.6. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III): Final Report; National Institues of Health: Bethesda, MD, USA, 2002; ISBN 978-1-58808-003-5. [Google Scholar]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.; et al. Diagnosis and Management of the Metabolic Syndrome. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.X. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chronic Dis. 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Fryar, C.D.; Carroll, M.D.; Ogden, C. Prevalence of Overweight, Obesity, and Extreme Obesity Among Adults Aged 20 and Over: United States, 1960–1962 through 2013–2014. NCHS Health E-Stats 2016, 2016, 6. [Google Scholar]
- Hales, C.; Carroll, M.; Fryar, C.; Ogden, C. Prevalence of Obesity among Adults and Youth: United States, 2017–2018; National Center for Health Statistics: Hyattsville, MD, USA, 2020.
- Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic Syndrome and Risk of Incident Cardiovascular Events and Death: A Systematic Review and Meta-Analysis of Longitudinal Studies. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Ma, D.; Liu, M.; Liu, H.; Feng, S.; Hao, Z.; Wu, B.; Zhang, S. Association between Metabolic Syndrome and Risk of Stroke: A Meta-Analysis of Cohort Studies. CED 2008, 25, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Hui, W.S.; Liu, Z.; Ho, S.C. Metabolic Syndrome and All-Cause Mortality: A Meta-Analysis of Prospective Cohort Studies; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Huh, J.H.; Yadav, D.; Kim, J.S.; Son, J.-W.; Choi, E.; Kim, S.H.; Shin, C.; Sung, K.-C.; Kim, J.Y. An Association of Metabolic Syndrome and Chronic Kidney Disease from a 10-Year Prospective Cohort Study. Metabolism 2017, 67, 54–61. [Google Scholar] [CrossRef]
- Prasad, G.V.R. Metabolic Syndrome and Chronic Kidney Disease: Current Status and Future Directions. World J. Nephrol. 2014, 3, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Chronic Kidney Disease in the United States, 2019; US Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019.
- Saran, R.; Robinson, B.; Abbott, K.C.; Bragg-Gresham, J.; Chen, X.; Gipson, D.; Gu, H.; Hirth, R.A.; Hutton, D.; Jin, Y.; et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2020, 75, A6–A7. [Google Scholar] [CrossRef] [PubMed]
- Nystoriak, M.A.; Bhatnagar, A. Cardiovascular Effects and Benefits of Exercise. Front. Cardiovasc. Med. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Schleicher, E.D.; Wagner, E.; Nerlich, A.G. Increased Accumulation of the Glycoxidation Product N(Epsilon)-(Carboxymethyl)Lysine in Human Tissues in Diabetes and Aging. J. Clin. Investig. 1997, 99, 457–468. [Google Scholar] [CrossRef]
- Sell, D.R.; Monnier, V.M. Molecular Basis of Arterial Stiffening: Role of Glycation–a Mini-Review. Gerontology 2012, 58, 227–237. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Chan, D.-C.; Chiang, C.-K.; Wang, C.-C.; Yang, T.-H.; Lan, K.-C.; Chao, S.-C.; Tsai, K.-S.; Yang, R.-S.; Liu, S.-H. Advanced Glycation End-Products Induced VEGF Production and Inflammatory Responses in Human Synoviocytes via RAGE-NF-ΚB Pathway Activation. J. Orthop. Res. 2016, 34, 791–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loeffler, A.G.; Hart, M.N. Introduction to Human Disease: Pathophysiology for Health Professionals, 7th ed.; Jones & Bartlett Learning: Burlington, Canada, 2020. [Google Scholar]
- Khosravi, A.; Sadeghi, M.; Barghikar, M. Which Components of Metabolic Syndrome Have a Greater Effect on Mortality, CVA and Myocardial Infarction, Hyperglycemia, High Blood Pressure or Both? Adv. Biomed. Res. 2017, 6. [Google Scholar] [CrossRef]
- Chen, T.; Clark, J.; Riddles, M.; Mohadjer, L.; Fakhouri, T. National Health and Nutrition Examination Survey, 2015−2018: Sample Design and Estimation Procedures; National Center for Health Statistics: Hyattsville, MD, USA, 2020.
- Chen, T.; Parker, J.; Clark, J.; Shin, H.; Rammon, J.; Burt, V. National Health and Nutrition Examination Survey: Estimation Procedures, 2011–2014; National Center for Health Statistics: Hyattsville, MD, USA, 2018.
- Centers for Disease Control and Prevention (CDC). National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Hyattsville, MD, USA, 2019. Available online: https://Wwwn.Cdc.Gov/Nchs/Nhanes/ (accessed on 20 August 2021).
- ICD-10-CM Codes. Available online: https://www.icd10data.com/ICD10CM/Codes (accessed on 19 February 2021).
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease; Kidney Inter., Suppl; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–150. [Google Scholar]
- Physical Activity Guidelines for Americans. Physical Activity Guidelines Advisory Committee Report, 2019; US Department of Health and Human Services: Washington, DC, USA, 2018.
- Fang, J.; Zhang, Z.; Ayala, C.; Thompson-Paul, A.M.; Loustalot, F. Loustalot Fleetwood Cardiovascular Health among Non-Hispanic Asian Americans: NHANES, 2011–2016. J. Am. Heart Assoc. 2019, 8, e011324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wildman, R.P.; Muntner, P.; Reynolds, K.; McGinn, A.P.; Rajpathak, S.; Wylie-Rosett, J.; Sowers, M.R. The Obese Without Cardiometabolic Risk Factor Clustering and the Normal Weight With Cardiometabolic Risk Factor Clustering: Prevalence and Correlates of 2 Phenotypes Among the US Population (NHANES 1999–2004). Arch. Intern. Med. 2008, 168, 1617–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djalalinia, S.; Saeedi Moghaddam, S.; Sheidaei, A.; Rezaei, N.; Naghibi Iravani, S.S.; Modirian, M.; Zokaei, H.; Yoosefi, M.; Gohari, K.; Kousha, A.; et al. Patterns of Obesity and Overweight in the Iranian Population: Findings of STEPs 2016. Front. Endocrinol. 2020, 11, 42. [Google Scholar] [CrossRef]
- Bagby, S.P. Obesity-Initiated Metabolic Syndrome and the Kidney: A Recipe for Chronic Kidney Disease? JASN 2004, 15, 2775–2791. [Google Scholar] [CrossRef] [Green Version]
- Muntner, P.; Coresh, J.; Smith, J.C.; Eckfeldt, J.; Klag, M.J. Plasma Lipids and Risk of Developing Renal Dysfunction: The Atherosclerosis Risk in Communities Study. Kidney Int. 2000, 58, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Fox, C.S.; Larson, M.G.; Leip, E.P.; Culleton, B.; Wilson, P.W.F.; Levy, D. Predictors of New-Onset Kidney Disease in a Community-Based Population. JAMA 2004, 291, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Modification of Diet in Renal Disease Study Group; Hunsicker, L.G.; Adler, S.; Caggiula, A.; England, B.K.; Greene, T.; Kusek, J.W.; Rogers, N.L.; Teschan, P.E.; Beck, G. Predictors of the Progression of Renal Disease in the Modification of Diet in Renal Disease Study. Kidney Int. 1997, 51, 1908–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanoni, P.; Khetarpal, S.A.; Larach, D.B.; Hancock-Cerutti, W.F.; Millar, J.S.; Cuchel, M.; DerOhannessian, S.; Kontush, A.; Surendran, P.; Saleheen, D.; et al. Rare Variant in Scavenger Receptor BI Raises HDL Cholesterol and Increases Risk of Coronary Heart Disease. Science 2016, 351, 1166–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme High High-Density Lipoprotein Cholesterol Is Paradoxically Associated with High Mortality in Men and Women: Two Prospective Cohort Studies. Eur. Heart J. 2017, 38, 2478–2486. [Google Scholar] [CrossRef] [Green Version]
- Adair, K.E.; Padgett, R.N.; von Waaden, N.; Wilson, R.L.; Bowden, R.G. Metabolic Health, Obesity, and Cardiovascular Disease: 2015–2016 National Health and Nutrition Examination Survey. Am. J. Med Sci. 2020, 361, 244–252. [Google Scholar] [CrossRef]
- Adair, K.E.; von Waaden, N.; Rafalski, M.; Hess, B.W.; Weaver, S.P.; Bowden, R.G. Metabolic Phenotypes and Chronic Kidney Disease: A Cross-Sectional Assessment of Patients from a Large Federally Qualified Health Center. Life 2021, 11, 175. [Google Scholar] [CrossRef]
- Kouvari, M.; Panagiotakos, D.B.; Yannakoulia, M.; Georgousopoulou, E.; Critselis, E.; Chrysohoou, C.; Tousoulis, D.; Pitsavos, C. ATTICA Study Investigators Transition From Metabolically Benign to Metabolically Unhealthy Obesity and 10-Year Cardiovascular Disease Incidence: The ATTICA Cohort Study. Metabolism 2019, 93, 18–24. [Google Scholar] [CrossRef] [PubMed]
Cluster I | Cluster II | Cluster III | Cluster IV | |
---|---|---|---|---|
Constellations | FG, TG, HDL | HTN, TG, HDL | FG, HTN, TG | HDL, WC, TG |
FG, TG, WC | HTN, TG, WC | FG, HTN, HDL | ||
FG, HDL, WC | HTN, HDL, WC | FG, HTN, WC | ||
FG, HDL, WC, TG | HTN, HDL, WC, TG | FG, HTN, HDL, TG | ||
FG, HTN, WC, HDL | ||||
FG, HTN, WC, TG | ||||
FG, HTN, WC, TG, HDL |
Total | Cluster | p-Value | |||||
---|---|---|---|---|---|---|---|
Unweighted Total (n = 2767) | Weighted Total (n = 86,652,073) | Cluster I (24.71%) | Cluster II (9.55%) | Cluster III (62.08%) | Cluster IV (3.66%) | ||
Male Sex | 1364 (49.3) | 51.23 (1.30) | 48.07 (3.16) | 42.60 (4.30) | 54.25 (1.78) | 43.82 (6.03) | 0.033 |
Age (years) | 54.81 (14.62) | 53.16 (0.52) | 45.78 (0.91) | 52.82 (1.00) | 57.08 (0.50) | 37.40 (1.45) | <0.001 |
Race/Ethnicity | |||||||
Mexican American | 460 (16.62) | 9.53 (1.08) | 16.13 (1.79) | 5.80 (1.59) | 7.35 (1.10) | 11.67 (3.11) | <0.001 |
Other Hispanic | 320 (11.56) | 5.54 (0.73) | 6.44 (1.08) | 3.23 (0.98) | 5.35 (0.78) | 8.64 (2.49) | |
NH White | 1020 (36.86) | 65.77 (1.88) | 65.29 (2.82) | 67.14 (3.70) | 66.02 (2.11) | 61.10 (6.15) | |
NH Black | 603 (21.79) | 11.10 (1.18) | 4.59 (0.97) | 17.46 (2.59) | 12.78 (1.34) | 9.98 (3.10) | |
NH Asian | 260 (9.40) | 4.09 (0.42) | 3.10 (0.57) | 0 | 4.59 (0.51) | 3.22 (1.57) | |
Other/Multi-Racial | 104 (3.76) | 3.98 (0.49) | 4.43 (0.91) | 0 | 3.91 (0.75) | 5.39 (2.95) | |
Meets PA Rec ** | 720 (62.28) | 60.34 (1.86) | 58.28 (5.58) | 65.46 (5.43) | 60.37 (2.35) | 62.42 (9.11) | 0.849 |
Current Smoker | 1388 (50.16) | 52.08 (1.53) | 51.85 (2.69) | 48.09 (4.49) | 53.06 (1.79) | 47.38 (5.45) | 0.577 |
Poverty Index | 2.41 (1.59) | 2.89 (0.06) | 2.75 (0.12) | 2.81 (0.16) | 3.02 (0.08) | 2.09 (0.16) | <0.001 |
BMI (kg/m2) | 32.78 (7.03) | 33.11 (0.27) | 33.35 (0.45) | 31.90 (0.51) | 33.23 (0.26) | 32.47 (0.72) | 0.04 |
FG (mg/dL) | 125.57 (46.83) | 121.83 (0.95) | 119.44 (1.76) | 93.20 (0.39) | 128.83 (1.42) | 93.80 (0.60) | <0.001 |
SBP/DBP | 131/72 | 129/73 | 117/69 | 133/76 | 135/74 | 114/70 | <0.001 |
WC (cm) | 109.25 (15.14) | 110.70 (0.55) | 110.44 (0.91) | 106.75 (1.36) | 111.60 (0.53) | 107.41 (1.63) | <0.001 |
Fasting TG (mg/dL) | 156.85 (153.88) | 159.07 (3.62) | 182.31 (7.85) | 162.38 (8.10) | 145.23 (3.26) | 228.30 (13.01) | <0.001 |
HDL (mg/dL) | 47.56 (14.56) | 47.36 (0.42) | 42.21 (0.67) | 47.13 (1.07) | 50.05 (0.54) | 37.16 (0.65) | <0.001 |
SCr | 0.89 (0.30) | 0.88 (0.01) | 0.83 (0.02) | 0.90 (0.01) | 0.90 (0.01) | 0.81 (0.03) | <0.001 |
BUN | 14.74 (6.02) | 14.67 (0.18) | 13.40 (0.25) | 13.70 (0.36) | 15.51 (0.21) | 11.50 (0.38) | <0.001 |
Uric Acid | 5.86 (1.49) | 5.85 (0.04) | 5.63 (0.07) | 5.80 (0.08) | 5.95 (0.05) | 5.74 (0.18) | 0.002 |
eGFR ml/min/1.73 m2 | 90.21 (21.97) | 90.60 (0.72) | 97.67 (1.37) | 87.82 (1.33) | 87.28 (0.76) | 106.44 (2.27) | <0.001 |
ACR | 69.28 (416.42) | 48.96 (6.53) | 23.97 (5.55) | 23.18 (7.72) | 64.78 (10.82) | 15.35 (5.20) | 0.003 |
Linear Regression | Logistic Regression | |||||
---|---|---|---|---|---|---|
Coefficient | b | SEb | p-Value | OR | 95% CL | p-Value |
Cluster I (reference) | 97.67 | 1.37 | <0.001 | - | - | - |
Cluster II | −9.84 | 1.47 | <0.001 | 1.66 | (0.92,2.99) | 0.092 |
Cluster III | −10.39 | 1.32 | <0.001 | 2.57 | (1.79,3.68) | <0.001 |
Cluster IV | 8.77 | 2.56 | 0.001 | 0.46 | (0.19,1.15) | 0.096 |
Sum of weights = 86,652,073 | Sum of weights = 86,652,073 | |||||
F Value = 49.17, R2 = 0.067 | F Value = 27.59 |
Cluster | CKD Cases Weighted Frequency | Total Weighted Frequency | CKD Cases in Cluster/Total CKD Cases (%, SE) | CKD Cases in Cluster/Total Cluster Sample (%, SE) | p-Value |
---|---|---|---|---|---|
I | 2,317,090 | 21,412,722 | 13.91 (1.79) | 10.82 (1.43) | <0.001 |
II | 1,384,483 | 8,276,247 | 8.31 (1.89) | 16.73 (3.70) | |
III | 12,782,719 | 53,790,449 | 76.76 (2.42) | 23.76 (1.34) | |
IV | 168,245 | 3,172,655 | 1.01 (0.40) | 5.30 (1.94) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adair, K.E.; Ylitalo, K.R.; Forsse, J.S.; Funderburk, L.K.; Bowden, R.G. Metabolic Constellations, Clusters, and Renal Function: Findings from the 2013–2018 National Health and Nutrition Examination Surveys. Life 2021, 11, 904. https://doi.org/10.3390/life11090904
Adair KE, Ylitalo KR, Forsse JS, Funderburk LK, Bowden RG. Metabolic Constellations, Clusters, and Renal Function: Findings from the 2013–2018 National Health and Nutrition Examination Surveys. Life. 2021; 11(9):904. https://doi.org/10.3390/life11090904
Chicago/Turabian StyleAdair, Kathleen E., Kelly R. Ylitalo, Jeffrey S. Forsse, LesLee K. Funderburk, and Rodney G. Bowden. 2021. "Metabolic Constellations, Clusters, and Renal Function: Findings from the 2013–2018 National Health and Nutrition Examination Surveys" Life 11, no. 9: 904. https://doi.org/10.3390/life11090904
APA StyleAdair, K. E., Ylitalo, K. R., Forsse, J. S., Funderburk, L. K., & Bowden, R. G. (2021). Metabolic Constellations, Clusters, and Renal Function: Findings from the 2013–2018 National Health and Nutrition Examination Surveys. Life, 11(9), 904. https://doi.org/10.3390/life11090904