Diversity and Metabolic Potential of the Terrestrial Mud Volcano Microbial Community with a High Abundance of Archaea Mediating the Anaerobic Oxidation of Methane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites Description, Sample Collection and Chemical Analysis
2.2. Radioisotopic Experiments
2.3. DNA Extraction, 16S rRNA Gene Amplicon Sequencing and Analysis
2.4. Quantitative Polymerase Chain Reaction (qPCR)
2.5. Metagenome Library Preparation, Sequencing and Analysis
3. Results and Discussion
3.1. Study Site and Geochemical Characteristics
3.2. Microbial Communities Composition
3.3. Abundances of 16S rRNA Genes
3.4. Anaerobic Oxidation of Methane (AOM) Determined with Radiotracer Techniques
3.5. MAGs General Characteristics and Phylogenetic Identification
3.6. Insights into the Energy Metabolism of ANME Archaea
3.7. Metabolic Capabilities in MAGs: CO2 Fixation
3.8. Metabolic Capabilities in MAGs: Electron Acceptors and Donors
3.9. Genomic Features of Archaea EX4484-52:
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazzini, A.; Etiope, G. Mud volcanism: An updated review. Earth Sci. Rev. 2017, 168, 81–112. [Google Scholar] [CrossRef] [Green Version]
- Kopf, A.J. Significance of mud volcanism. Rev. Geophys. 2002, 40, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Niemann, H.; Lösekann, T.; De Beer, D.; Elvert, M.; Nadalig, T.; Knittel, K.; Amann, R.; Sauter, E.J.; Schlüter, M.; Klages, M.; et al. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 2006, 443, 854–858. [Google Scholar] [CrossRef]
- Lösekann, T.; Knittel, K.; Nadalig, T.; Fuchs, B.; Niemann, H.; Boetius, A.; Amann, R. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl. Environ. Microbiol. 2007, 73, 3348–3362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omoregie, E.O.; Mastalerz, V.; De Lange, G.; Straub, K.L.; Kappler, A.; Røy, H.; Stadnitskaia, A.; Foucher, J.P.; Boetius, A. Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the Chefren mud volcano (Nile Deep Sea Fan, Eastern Mediterranean). Appl. Environ. Microbiol. 2008, 74, 3198–3215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pachiadaki, M.G.; Lykousis, V.; Stefanou, E.G.; Kormas, K.A. Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea). FEMS Microbiol. Ecol. 2010, 72, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Pachiadaki, M.G.; Kallionaki, A.; Dahlmann, A.; De Lange, G.J.; Kormas, K.A. Diversity and spatial distribution of prokaryotic communities along a sediment vertical profile of a deep-sea mud volcano. Microb. Ecol. 2011, 62, 655–668. [Google Scholar] [CrossRef]
- Lazar, C.S.; Parkes, R.J.; Cragg, B.A.; L’Haridon, S.; Toffin, L. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea. Environ. Microbiol. 2011, 13, 2078–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazar, C.S.; Parkes, J.R.; Cragg, B.A.; L’Haridon, S.; Toffin, L. Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea. FEMS Microbiol. Ecol. 2012, 81, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Ruff, S.E.; Biddle, J.F.; Teske, A.P.; Knittel, K.; Boetius, A.; Ramette, A. Global dispersion and local diversification of the methane seep microbiome. Proc. Natl. Acad. Sci. USA 2015, 112, 4015–4020. [Google Scholar] [CrossRef] [Green Version]
- Coelho, F.J.; Louvado, A.; Domingues, P.M.; Cleary, D.F.; Ferreira, M.; Almeida, A.; Cunha, M.R.; Cunha, Â.; Gomes, N.C. Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz. Sci. Rep. 2016, 6, 35272. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, T.; Toki, T.; Ijiri, A.; Morono, Y.; Machiyama, H.; Ashi, J.; Okamura, K.; Inagaki, F. Atribacteria from the subseafloor sedimentary biosphere disperse to the hydrosphere through submarine mud volcanoes. Front. Microbiol. 2017, 8, 1135. [Google Scholar] [CrossRef] [Green Version]
- Alain, K.; Holler, T.; Musat, F.; Elvert, M.; Treude, T.; Krüger, M. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ. Microbiol. 2006, 8, 574–590. [Google Scholar] [CrossRef]
- Wrede, C.; Brady, S.; Rockstroh, S.; Dreier, A.; Kokoschka, S.; Heinzelmann, S.M.; Heller, C.; Reitner, J.; Taviani, M.; Daniel, R.; et al. Aerobic and anaerobic methane oxidation in terrestrial mud volcanoes in the Northern Apennines. Sediment. Geol. 2012, 263, 210–219. [Google Scholar] [CrossRef]
- Green-Saxena, A.; Feyzullayev, A.; Hubert, R.J.; Kallmeyer, J.; Krueger, M.; Sauer, P.; Schulz, H.-M.; Orphan, V.J. Active sulfur cycling by diverse mesophilic and thermophilic microorganisms in terrestrial mud volcanoes of Azerbaijan. Environ. Microbiol. 2012, 14, 3271–3286. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.W.; Chang, Y.H.; Tang, S.L.; Tseng, C.H.; Chiang, P.W.; Chang, K.T.; Sun, C.H.; Chen, Y.G.; Kuo, H.C.; Wang, C.H.; et al. Metabolic stratification driven by surface and subsurface interactions in a terrestrial mud volcano. ISME J. 2012, 6, 2280–2290. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-L.; Chiu, Y.-P.; Cheng, T.-W.; Chang, Y.-H.; Tu, W.-X.; Lin, L.-H. Spatial variations of community structures and methane cycling across a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan. Front. Microbiol. 2014, 5, 121. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.-M.; Lou, K.; Sun, J.; Zhang, T.; Ma, X.-L. Prokaryotic diversity of an active mud volcano in the Usu City of Xinjiang, China. J. Basic Microbiol. 2012, 52, 79–85. [Google Scholar] [CrossRef]
- Lin, Y.T.; Tu, T.H.; Wei, C.L.; Rumble, D.; Lin, L.H.; Wang, P.L. Steep redox gradient and biogeochemical cycling driven by deeply sourced fluids and gases in a terrestrial mud volcano. FEMS Microbiol. Ecol. 2018, 94, fiy171. [Google Scholar] [CrossRef]
- Ren, G.; Ma, A.; Zhang, Y.; Deng, Y.; Zheng, G.; Zhuang, X.; Zhuang, G.; Fortin, D. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes. Environ. Microbiol. 2018, 20, 2370–2385. [Google Scholar] [CrossRef] [Green Version]
- Schulze-Makuch, D.; Haque, S.; Beckles, D.; Schmitt-Kopplin, P.; Harir, M.; Schneider, B.; Stumpp, C.; Wagner, D.A. A chemical and microbial characterization of selected mud volcanoes in Trinidad reveals pathogens introduced by surface water and rain water. Sci. Total Environ. 2020, 707, 136087. [Google Scholar] [CrossRef]
- Slobodkina, G.B.; Merkel, A.Y.; Novikov, A.A.; Bonch-Osmolovskaya, E.A.; Slobodkin, A.I. Pelomicrobium methylotrophicum gen. nov., sp. nov. a moderately thermophilic, facultatively anaerobic, lithoautotrophic and methylotrophic bacterium isolated from a terrestrial mud volcano. Extremophiles 2020, 24, 177–185. [Google Scholar] [CrossRef]
- Tu, T.-H.; Wu, L.-W.; Lin, Y.-S.; Imachi, H.; Lin, L.-H.; Wang, P.-L. Microbial community composition and functional capacity in a terrestrial ferruginous, sulfate-depleted mud volcano. Front. Microbiol. 2017, 8, 2137. [Google Scholar] [CrossRef]
- Mardanov, A.V.; Kadnikov, V.V.; Beletsky, A.V.; Ravin, N.V. Sulfur and methane-oxidizing microbial community in a terrestrial mud volcano revealed by metagenomics. Microorganisms 2020, 8, 1333. [Google Scholar] [CrossRef]
- Rinke, C.; Chuvochina, M.; Mussig, A.J.; Chaumeil, P.A.; Davín, A.A.; Waite, D.W.; Whitman, W.B.; Parks, D.H.; Hugenholtz, P. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat. Microbiol. 2021, 6, 946–959. [Google Scholar] [CrossRef] [PubMed]
- Knittel, K.; Boetius, A. Anaerobic oxidation of methane: Progress with an unknown process. Annu. Rev. Microbiol. 2009, 63, 311–334. [Google Scholar] [CrossRef] [PubMed]
- Adam, P.; Borrel, G.; Brochier-Armanet, C.; Gribaldo, S. The growing tree of Archaea: New perspectives on their diversity, evolution and ecology. ISME J. 2017, 11, 2407–2425. [Google Scholar] [CrossRef] [PubMed]
- Haroon, M.F.; Hu, S.; Shi, Y.; Imelfort, M.; Keller, J.; Hugenholtz, P.; Yuan, Z.; Tyson, G.W. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 2013, 500, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, S.; Cassarini, C.; Lens, P.N.L. Physiology and distribution of archaeal methanotrophs that couple anaerobic oxidation of methane with sulfate reduction. Microbiol. Mol. Biol. Rev. 2019, 83, e00074-18. [Google Scholar] [CrossRef]
- Raghoebarsing, A.A.; Pol, A.; Van de Pas-Schoonen, K.T.; Smolders, A.J.; Ettwig, K.F.; Rijpstra, W.I.; Schouten, S.; Damsté, J.S.; den Camp, H.J.; Jetten, M.S.; et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 2006, 440, 918–921. [Google Scholar] [CrossRef]
- Beal, E.J.; House, C.H.; Orphan, V.J. Manganese-and iron-dependent marine methane oxidation. Science 2009, 325, 184–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, C.; Leu, A.O.; Xie, G.J.; Guo, J.; Feng, Y.; Zhao, J.X.; Tyson, G.W.; Yuan, Z.; Hu, S. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe (III) reduction. ISME J. 2018, 12, 1929–1939. [Google Scholar] [CrossRef] [PubMed]
- Leu, A.O.; Cai, C.; McIlroy, S.J.; Southam, G.; Orphan, V.J.; Yuan, Z.; Hu, S.; Tyson, G.W. Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae. ISME J. 2020, 14, 1030–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigneron, A.; Cruaud, P.; Pignet, P.; Caprais, J.-C.; Cambon-Bonavita, M.A.; Godfroy, A.; Toffin, L. Archaeal and anaerobic methane oxidizer communities in the Sonora Margin cold seeps, Guaymas Basin (Gulf of California). ISME J. 2013, 7, 1596–1608. [Google Scholar] [CrossRef] [Green Version]
- Oni, O.E.; Miyatake, T.; Kasten, S.; Richter-Heitmann, T.; Fischer, D.; Wagenknecht, L.; Ksenofontov, V.; Kulkarni, A.; Blumers, M.; Shylin, S.; et al. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front. Microbiol. 2015, 6, 365. [Google Scholar] [CrossRef]
- Bhattarai, S.; Cassarini, C.; Gonzalez-Gil, G.; Egger, M.; Slomp, C.P.; Zhang, Y.; Esposito, G.; Lens, P.N.L. Anaerobic methane-oxidizing microbial community in a coastal marine sediment: Anaerobic methanotrophy dominated by ANME-3. Microb. Ecol. 2017, 74, 608–622. [Google Scholar] [CrossRef]
- Li, H.; Yang, Q.; Zhou, H. Niche differentiation of sulfate and iron-dependent anaerobic methane oxidation and methylotrophic methanogenesis in deep sea methane seeps. Front. Microbiol. 2020, 11, 1409. [Google Scholar] [CrossRef]
- Dutta, A.; Sar, P.; Sarkar, J.; Gupta, S.D.; Gupta, A.; Bose, H.; Mukherjee, A.; Roy, S. Archaeal communities in deep terrestrial subsurface underneath the Deccan Traps, India. Front. Microbiol. 2019, 10, 1362. [Google Scholar] [CrossRef] [Green Version]
- Meyerdierks, A.; Kube, M.; Lombardot, T.; Knittel, K.; Bauer, M.; Glöckner, F.O.; Reinhardt, R.; Amann, R. Insights into the genomes of archaea mediating the anaerobic oxidation of methane. Environ. Microbiol. 2005, 12, 1937–1951. [Google Scholar] [CrossRef]
- Wegener, G.; Krukenberg, V.; Ruff, S.E.; Kellermann, M.Y.; Knittel, K. Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front. Microbiol. 2016, 7, 869. [Google Scholar] [CrossRef] [Green Version]
- Skennerton, C.T.; Chourey, K.; Iyer, R.; Hettich, R.L.; Tyson, G.W.; Orphan, V.J. Methane-fueled syntrophy through extracellular electron transfer: Uncovering the genomic traits conserved within diverse bacterial partners of anaerobic methanotrophic archaea. mBio 2017, 8, e00530-17. [Google Scholar] [CrossRef] [Green Version]
- Krukenberg, V.; Harding, K.; Richter, M.; Glöckner, F.O.; Gruber-Vodicka, H.R.; Adam, B.; Berg, J.S.; Knittel, K.; Tegetmeyer, H.E.; Boetius, A.; et al. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ. Microbiol. 2016, 8, 3073–3091. [Google Scholar] [CrossRef]
- Sandell, E.B. Colorimetric Determination of Traces of Metals; Interscience Publishers: New York, NY, USA, 1959; p. 1032. [Google Scholar]
- Pimenov, N.V.; Bonch-Osmolovskaya, E.A. In situ activities in thermal environments. In Methods in Microbiology; Rainey, F., Oren, A., Eds.; Elsevier: London, UK, 2006; Volume 35, pp. 29–53. [Google Scholar]
- Fadrosh, D.W.; Ma, B.; Gajer, P.; Sengamalay, N.; Ott, S.; Brotman, R.M.; Ravel, J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014, 2, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frey, B.; Rime, T.; Phillips, M.; Stierli, B.; Hajdas, I.; Widmer, F.; Hartmann, M. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 2016, 92, fiw018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkel, A.Y.; Tarnovetskii, I.Y.; Podosokorskaya, O.A.; Toshchakov, S.V. Analysis of 16S rRNA primer systems for profiling of thermophilic microbial communities. Microbiology 2019, 88, 671–680. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. Dada2: High-resolution sample inference from illumina amplicon data. Nat. Methods 2016, 13, 581. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Biinform. 2012, 13, 134. [Google Scholar] [CrossRef] [Green Version]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. metaSPAdes: A new versatile metagenomic assembler. Genome. Res. 2017, 27, 824–834. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.W.; Simmons, B.A.; Singer, S.W. MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 2016, 32, 605–607. [Google Scholar] [CrossRef]
- Kang, D.D.; Li, F.; Kirton, E.; Thomas, A.; Egan, R.; An, H.; Wang, Z. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. Peer J. 2019, 7, e7359. [Google Scholar] [CrossRef] [PubMed]
- Alneberg, J.; Bjarnason, B.S.; de Bruijn, I.; Schirmer, M.; Quick, J.; Ijaz, U.Z.; Lahti, L.; Loman, N.J.; Andersson, A.F.; Quince, C. Binning metagenomic contigs by coverage and composition. Nat. Methods 2014, 11, 1144–1146. [Google Scholar] [CrossRef]
- Sieber, C.M.K.; Probst, A.J.; Sharrar, A.; Thomas, B.C.; Hess, M.; Tringe, S.G.; Banfield, J.F. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 2018, 7, 836–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, D.H.; Chuvochina, M.; Waite, D.W.; Rinke, C.; Skarshewski, A.; Chaumeil, P.A.; Hugenholtz, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 2018, 36, 996–1004. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.; Chen, G.L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Yamada, K.D.; Tomii, K.; Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 2018, 34, 2490–2492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Anisimova, M.; Gil, M.; Dufayard, J.F.; Dessimoz, C.; Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 2011, 60, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Lefort, V.; Longueville, J.E.; Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef] [Green Version]
- Le, S.Q.; Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008, 7, 1307–1320. [Google Scholar] [CrossRef] [Green Version]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.M.; Chu, K.; Palaniappan, K.; Pillay, M.; Ratner, A.; Huang, J.; Huntemann, M.; Varghese, N.; White, J.R.; Seshadri, R.; et al. IMG/M v.5.0: An integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019, 47, D666–D677. [Google Scholar] [CrossRef]
- Berg, I.A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 2011, 77, 1925–1936. [Google Scholar] [CrossRef] [Green Version]
- Nunoura, T.; Chikaraishi, Y.; Izaki, R.; Suwa, T.; Sato, T.; Harada, T.; Mori, K.; Kato, Y.; Miyazaki, M.; Shimamura, S.; et al. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science 2018, 359, 559–563. [Google Scholar] [CrossRef] [Green Version]
- Mall, A.; Sobotta, J.; Huber, C.; Tschirner, C.; Kowarschik, S.; Bačnik, K.; Mergelsberg, M.; Boll, M.; Hügler, M.; Eisenreich, W.; et al. Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium. Science 2018, 359, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Valyaev, B.M.; Grinchenko, Y.I.; Erokhin, V.E.; Prokhorov, V.S.; Titkov, G.A. Isotopic composition of gases from mud volcanoes. Lithol. Miner. Resour. 1985, 20, 62–75. [Google Scholar]
- Bogatikov, O.A.; Voitov, G.I.; Sobisevich, L.E.; Sobisevich, A.L.; Naumenko-Bondarenko, I.I.; Puzich, I.N.; Korobeinik, G.S. Paroxysmal eruption of the Karabetov Mud Volcano, Taman Mud-Volcanic Province (May 6, 2001). Dokl. Earth Sci. (c/c Dokl. Akad. Nauk.) 2003, 391, 710–713. [Google Scholar]
- Kikvadze, O.E.; Lavrushin, V.Y.; Pokrovskii, B.G.; Polyak, B.G. Gases from mud volcanoes of western and central Caucasus. Geofluids 2010, 10, 486–496. [Google Scholar] [CrossRef]
- Chiu, C.H.; Chao, A. Estimating and comparing microbial diversity in the presence of sequencing errors. Peer J. 2016, 4, e1634. [Google Scholar] [CrossRef] [PubMed]
- Parkes, R.J.; Cragg, B.A.; Banning, N.; Brock, F.; Webster, G.; Fry, J.C.; Hornibrook, E.; Pancost, R.D.; Kelly, S.; Knab, N.; et al. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ. Microbiol. 2007, 9, 1146–1161. [Google Scholar] [CrossRef]
- Goffredi, S.K.; Wilpiszeski, R.; Lee, R.; Orphan, V.J. Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California. ISME J. 2008, 2, 204–220. [Google Scholar] [CrossRef] [PubMed]
- Ruff, S.E.; Felden, J.; Gruber-Vodicka, H.R.; Marcon, Y.; Knittel, K.; Ramette, A.; Boetius, A. In situ development of a methanotrophic microbiome in deep-sea sediments. ISME J. 2019, 13, 197–213. [Google Scholar] [CrossRef] [Green Version]
- Dombrowski, N.; Seitz, K.W.; Teske, A.P.; Baker, B.J. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 2017, 5, 106. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, K.G.; Albert, D.B.; Biddle, J.F.; Chanton, J.P.; Pizarro, O.; Teske, A. Spatial structure and activity of sedimentary microbial communities underlying a Beggiatoa spp. mat in a Gulf of Mexico hydrocarbon seep. PLoS ONE 2010, 5, e8738. [Google Scholar] [CrossRef]
- Hallam, S.J.; Putnam, N.; Preston, C.M.; Detter, J.C.; Rokhsar, D.; Richardson, P.M.; DeLong, E.F. Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science 2004, 305, 1457–1462. [Google Scholar] [CrossRef] [Green Version]
- Timmers, P.H.A.; Welte, C.U.; Koehorst, J.J.; Plugge, C.M.; Jetten, M.S.M.; Stams, A.J.M. Reverse Methanogenesis and respiration in methanotrophic archaea. Archaea 2017, 2017, 1654237. [Google Scholar] [CrossRef]
- McGlynn, S.E. Energy metabolism during anaerobic methane oxidation in ANME archaea. Microbes Environ. 2017, 32, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Abken, H.J.; Tietze, M.; Brodersen, J.; Bäumer, S.; Beifuss, U.; Deppenmeier, U. Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J. Bacteriol. 1998, 180, 2027–2032. [Google Scholar] [CrossRef] [Green Version]
- Arshad, A.; Speth, D.R.; de Graaf, R.M.; Op den Camp, H.J.; Jetten, M.S.; Welte, C.U. A Metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea. Front. Microbiol. 2015, 6, 1423. [Google Scholar] [CrossRef] [Green Version]
- Kletzin, A.; Heimerl, T.; Flechsler, J.; van Niftrik, L.; Rachel, R.; Klingl, A. Cytochromes c in Archaea: Distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front. Microbiol. 2015, 6, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabita, F.R.; Satagopan, S.; Hanson, T.E.; Kreel, N.E.; Scott, S.S. Distinct form I, II, III, and IV RuBisCo proteins from the three kingdoms of life provide clues about RuBisCo evolution and structure/function relationships. J. Exp. Bot. 2008, 59, 1515–1524. [Google Scholar] [CrossRef]
- Frolov, E.N.; Kublanov, I.V.; Toshchakov, S.V.; Lunev, E.A.; Pimenov, N.V.; Bonch-Osmolovskaya, E.A.; Lebedinsky, A.V.; Chernyh, N.A. Form III RubisCO-mediated transaldolase variant of the Calvin cycle in a chemolithoautotrophic bacterium. Proc. Natl. Acad. Sci. USA 2019, 116, 18638–18646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Dong, H.; Reguera, G.; Beyenal, H.; Lu, A.; Liu, J.; Yu, H.Q.; Fredrickson, J.K. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 2016, 14, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, L.; Holler, T.; Knittel, K.; Meyerdierks, A.; Amann, R. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Environ. Microbiol. 2010, 12, 2327–2340. [Google Scholar] [CrossRef] [PubMed]
- Ratnikova, N.M.; Slobodkin, A.I.; Merkel, A.Y.; Kopitsyn, D.S.; Kevbrin, V.V.; Bonch-Osmolovskaya, E.A.; Slobodkina, G.B. Sulfurimonas crateris sp. nov., a facultative anaerobic sulfur-oxidizing chemolithoautotrophic bacterium isolated from a terrestrial mud volcano. Int. J. Syst. Evol. Microbiol. 2020, 70, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Hamm, J.N.; Erdmann, S.; Eloe-Fadrosh, E.A.; Angeloni, A.; Zhong, L.; Brownlee, C.; Williams, T.J.; Barton, K.; Carswell, S.; Smith, M.A.; et al. Unexpected host dependency of antarctic Nanohaloarchaota. Proc. Natl. Acad. Sci. USA 2019, 116, 14661–14670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bin ID | Domain | Taxon | Completeness % | Contami-nation % | # Contigs | Genome Size, Mbp | 16S rRNA Gene, bp | Abundance, % |
---|---|---|---|---|---|---|---|---|
KA1 | B | “Cloacimonadales” | 100 | 0.00 | 52 | 2.39 | 1564 | 0.52 |
KA2 | A | ANME-2a (HR1) | 100 | 1.96 | 70 | 2.40 | 1470 | 1.72 |
KA3 | B | Mariniphaga | 98.92 | 3.23 | 305 | 5.12 | 1528 | 0.91 |
KA4 | B | “Syntrophosphaera” | 98.90 | 0.00 | 134 | 2.38 | 1553 | 0.45 |
KA5 | B | Desulfocapsaceae | 98.71 | 0.60 | 72 | 2.84 | - | 1.41 |
KA6 | B | Desulfuromonadaceae | 98.71 | 1.94 | 64 | 2.90 | 620 | 1.19 |
KA7 | B | Desulfobacterota | 98.32 | 0.84 | 54 | 2.62 | 1576 | 3.73 |
KA8 | B | Geopsychrobacteraceae | 98.06 | 0.65 | 61 | 2.75 | 686 | 1.71 |
KA9 | B | Phaeovulum | 97.88 | 1.06 | 69 | 2.86 | - | 0.75 |
KA10 | B | Bacteroidales (VadinHA17) | 97.86 | 3.35 | 263 | 3.39 | 403 | 0.41 |
KA11 | B | Sulfurimonas | 97.35 | 1.90 | 73 | 2.06 | 303 | 3.74 |
KA12 | B | Lentimicrobium | 97.31 | 1.61 | 108 | 4.19 | - | 0.98 |
KA13 | B | Bacteroidales | 97.22 | 1.61 | 224 | 3.57 | - | 0.96 |
KA14 | B | Syntrophales | 96.77 | 0.65 | 95 | 3.10 | 1569 | 1.34 |
KA15 | B | Burkholderiaceae | 96.30 | 3.47 | 509 | 3.72 | 1534 | 0.41 |
KA16 | B | “Thiohalomonadaceae” | 96.07 | 1.35 | 162 | 2.41 | 1420 | 0.46 |
KA17 | B | Vicingaceae | 95.16 | 0.54 | 232 | 3.66 | 1524 | 0.57 |
KA18 | B | Coriobacteria (OPB41) | 93.47 | 3.61 | 143 | 2.07 | 1523 | 1.36 |
KA19 | A | ANME-3 | 92.81 | 0.65 | 275 | 1.80 | 1480 | 30.32 |
KA20 | B | Anaerolineaceae | 92.55 | 4.73 | 368 | 4.20 | 283 | 0.40 |
KA21 | B | Bacteroidales | 91.64 | 1.63 | 239 | 2.89 | 260 | 0.38 |
KA22 | B | “Dethiobacteria” | 90.25 | 2.26 | 170 | 2.36 | - | 0.43 |
KA23 | B | “Brevefilum” | 90.00 | 4.73 | 149 | 3.05 | 1525 | 1.20 |
KA24 | A | Archaea EX4484-52 | 88.79 | 1.87 | 33 | 1.16 | 1468 | 2.10 |
KA25 | B | Bacteroidales | 88.17 | 2.96 | 382 | 4.18 | - | 0.51 |
KA26 | B | Trueperaceae | 87.92 | 1.55 | 389 | 3.29 | 1521 | 0.70 |
KA27 | A | Archaea EX4484-52 | 85.98 | 1.87 | 20 | 1.08 | 1471 | 8.88 |
KA28 | B | “Marinisomatota” | 76.03 | 1.65 | 356 | 1.32 | 452 | 0.28 |
KA29 | B | Methyloprofundus | 73.30 | 1.92 | 384 | 1.96 | - | 0.28 |
KA30 | B | “Patescibacteria” (WWE3) | 73.12 | 0.16 | 71 | 0.84 | 497 | 0.37 |
KA31 | B | “Pacebacteria” | 71.24 | 1.12 | 52 | 0.98 | 1471 | 13.32 |
KA32 | A | “Pacearchaeales” | 69.39 | 0.00 | 9 | 0.64 | 1449 | 0.79 |
KA33 | B | “Patescibacteria” (CPR2) | 51.88 | 0.00 | 146 | 0.50 | - | 0.27 |
KA19 (ANME-3) | KA2 (ANME-2a) | KA5 (Desulfocapsaceae) | |
---|---|---|---|
Number of MHCs | 13 | 28 | 26 |
Number of MHCs with CxxCH > 10 | 4 | 14 | 10 |
Maximal number of CxxCH in single MCH | 15 | 67 | 16 |
Sulfate reduction genes | no | no | dsrABD, dsrC, qmoABC, aprAB, dsrMKJOP |
Nitrate reduction genes | no | no | napA, hcp |
Bin ID | Taxon | Autotrophic Pathway | Genes: Electron Donors | Genes: Electron Acceptors | Putative Metabolism |
---|---|---|---|---|---|
KA1 | “Cloacimonadales” | Fe-hyd | Fermentation | ||
KA2 | ANME-2a | mcrA, cooS | Anaerobic methane oxidation | ||
KA3 | Mariniphaga | coxA, Fe-hyd | Facultatively anaerobic | ||
KA4 | “Syntrophosphaera” | Fe-hyd | Fermentation | ||
KA5 | Desulfocapsaceae | WL | cooS, hybC | napA, dsrAB | Autotrophic, nitrate reduction, sulfite reduction, H2 utilization |
KA6 | Desulfuromonadaceae | hybC | ccoN | H2 utilization | |
KA7 | Desulfobacterota | 3-HP/4-HB | bzd, hybC | coxA, ccoN, narG | Autotrophic, nitrate reduction, H2 and aromatic compound utilization |
KA8 | Geopsychrobacteraceae | cooS, hybC | coxA, ccoN | Aerobic, H2 utilization | |
KA9 | Phaeovulum | GH1, sqr, soeA | coxA, ccoN, nosZ | Aerobic, carbohydrates, sulfide and sulfite oxidation | |
KA10 | Bacteroidales | hybC | Fe-hyd | Fermentation | |
KA11 | Sulfurimonas | soxYZ, sqr | ccoN, napA | Sulfur compound oxidation, nitrate reduction | |
KA12 | Lentimicrobium | coxA, ccoN, Fe-hyd | Facultatively anaerobic | ||
KA13 | Bacteroidales | coxA, Fe-hyd | Facultatively anaerobic | ||
KA14 | Syntrophales | WL | cooS | Autotrophic | |
KA15 | Burkholderiaceae | hybC | coxA, ccoN | Aerobic, H2 utilization | |
KA16 | “Thiohalomonadaceae” | CB | soxB, sqr, soeA | ccoN | Autotrophic, sulfur compounds oxidation |
KA17 | Vicingaceae | bzd | coxA, ccoN, narG, nosZ | Aerobic, denitrification, aromatic compound utilization | |
KA18 | Coriobacteria | hybC | H2 utilization | ||
KA19 | ANME-3 | mcrA, cooS | Anaerobic methane oxidation | ||
KA20 | Anaerolineaceae | GH1, coxMLS, sqr, hyaB | coxA | Aerobic, organotrophic, sulfur compound oxidation, H2 utilization | |
KA21 | Bacteroidales | nosZ | Unidentified | ||
KA22 | Dethiobacteria | WL | cooSF | Autotrophic, acetogenic | |
KA23 | “Brevefilum” | GH1 | Carbohydrates utilization | ||
KA24 | Archaea EX4484-52 | Unidentified | |||
KA25 | Bacteroidales | coxA, Fe-hyd | Facultatively anaerobic | ||
KA26 | Trueperaceae | CB | sqr, hybC | coxA | Autotrophic, sulfur compounds oxidation |
KA27 | Archaea EX4484-52 | Unidentified | |||
KA28 | “Marinisomatota” | Fe-hyd | Fermentation | ||
KA29 | Methyloprofundus | pMMO, sqr | coxA | Aerobic methane and sulfide oxidation | |
KA30 | “Patescibacteria” | GH1 | Carbohydrate utilization | ||
KA31 | “Pacebacteria” | GH1 | Carbohydrate utilization | ||
KA32 | “Pacearchaeales” | Unidentified | |||
KA33 | “Patescibacteria” | Unidentified |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merkel, A.Y.; Chernyh, N.A.; Pimenov, N.V.; Bonch-Osmolovskaya, E.A.; Slobodkin, A.I. Diversity and Metabolic Potential of the Terrestrial Mud Volcano Microbial Community with a High Abundance of Archaea Mediating the Anaerobic Oxidation of Methane. Life 2021, 11, 953. https://doi.org/10.3390/life11090953
Merkel AY, Chernyh NA, Pimenov NV, Bonch-Osmolovskaya EA, Slobodkin AI. Diversity and Metabolic Potential of the Terrestrial Mud Volcano Microbial Community with a High Abundance of Archaea Mediating the Anaerobic Oxidation of Methane. Life. 2021; 11(9):953. https://doi.org/10.3390/life11090953
Chicago/Turabian StyleMerkel, Alexander Y., Nikolay A. Chernyh, Nikolai V. Pimenov, Elizaveta A. Bonch-Osmolovskaya, and Alexander I. Slobodkin. 2021. "Diversity and Metabolic Potential of the Terrestrial Mud Volcano Microbial Community with a High Abundance of Archaea Mediating the Anaerobic Oxidation of Methane" Life 11, no. 9: 953. https://doi.org/10.3390/life11090953
APA StyleMerkel, A. Y., Chernyh, N. A., Pimenov, N. V., Bonch-Osmolovskaya, E. A., & Slobodkin, A. I. (2021). Diversity and Metabolic Potential of the Terrestrial Mud Volcano Microbial Community with a High Abundance of Archaea Mediating the Anaerobic Oxidation of Methane. Life, 11(9), 953. https://doi.org/10.3390/life11090953