Histocompatibility and Reproduction: Lessons from the Anglerfish
Abstract
:1. Introduction
2. The Immunological Enigma in Anglerfishes
3. Defective Expression of MHC Genes in Anglerfishes
4. Antigen Receptors and Coreceptors in T Lymphocytes and Cytotoxic Activity
4.1. TCR and TCR-Coupled Signaling Machinery
4.2. CD8 Coreceptors
4.3. CD4 Coreceptors
4.4. Lymphocyte-Mediated Cytotoxicity
5. B-Cell Antigen Receptor and Antibody Production
6. Generation of Diversity in Lymphocyte Receptors
7. Affinity Maturation of Immunoglobulins
8. Conclusions
Funding
Conflicts of Interest
References
- Pietsch, T.W. Oceanic Anglerfishes; University of California Press: Berkeley, CA, USA, 2009. [Google Scholar]
- Pietsch, T.W. Dimorphism, parasitism and sex: Reproductive strategies among deepsea ceratioid anglerfishes. Copeia 1976, 781, 781–793. [Google Scholar] [CrossRef]
- Rice, J. Planet Earth. Sliced: The fish that fishes. Discov. Mag. 2010. Available online: https://www.discovermagazine.com/planet-earth/sliced-the-fish-that-fishes (accessed on 8 January 2022).
- Munk, O. The escal photophore of ceratioids (Pisces; Ceratioidei)—A review of structure and function. Acta Zool. 1999, 80, 265–284. [Google Scholar] [CrossRef]
- Herring, P.J.; Morin, J.G. Bioluminescence in action. In Bioluminescence in Action; Herring, P.J., Ed.; Academic Press: London, UK, 1978; Volume 62, pp. 273–329. [Google Scholar]
- Leisman, G.; Cohn, D.H.; Nealson, K.H. Bacterial origin of luminescence in marine animals. Science 1980, 208, 1271–1273. [Google Scholar] [CrossRef]
- Dunlap, P.V.; Takami, M.; Wakatsuki, S.; Hendry, T.A.; Sezaki, K.; Fukui, A. Inception of bioluminescent symbiosis in early developmental stages of the deep-sea fish, Coelorinchus kishinouyei (Gadiformes: Macrouridae). Ichthyol. Res. 2014, 61, 59–67. [Google Scholar] [CrossRef]
- Baker, L.J.; Freed, L.L.; Easson, C.G.; Lopez, J.V.; Fenolio, D.; Sutton, T.T.; Nyholm, S.V.; Hendry, T.A. Diverse deep-sea anglerfishes share a genetically reduced luminous symbiont that is acquired from the environment. Elife 2019, 8, e47606. [Google Scholar] [CrossRef] [PubMed]
- Freed, L.L.; Easson, C.; Baker, L.J.; Fenolio, D.; Sutton, T.T.; Khan, Y.; Blackwelder, P.; Hendry, T.A.; Lopez, J.V. Characterization of the microbiome and bioluminescent symbionts across life stages of Ceratioid Anglerfishes of the Gulf of Mexico. FEMS Microbiol. Ecol. 2019, 95, fiz146. [Google Scholar] [CrossRef] [Green Version]
- Herring, P.J. Species abundance, sexual encounter and bioluminescent signalling in the deep sea. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2000, 355, 1273–1276. [Google Scholar] [CrossRef]
- Herring, P.J. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. J. Mar. Biol. Assoc. UK 2007, 87, 829–842. [Google Scholar] [CrossRef]
- Nisbet, N.W. Parabiosis in immunobiology. Transplant. Rev. 1973, 15, 123–161. [Google Scholar] [CrossRef]
- Saruwatari, T. Debunking an urban legend of the deep sea: The queen of the abyss and her contribution to ceratioid anglerfish biology. In Proceedings of the International Symposium—Into the Unknown, Researching Mysterious Deep-Sea Animals, Okinawa, Japan, 23–24 February 2007; Senzo, U., Ed.; Published by Okinawa Churaumi Aquarium: Okinawa, Japan, 2010; pp. 128–136. [Google Scholar]
- Yancey, P.H. Cellular responses in marine animals to hydrostatic pressure. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2020, 333, 398–420. [Google Scholar] [CrossRef]
- Martin, D.D.; Bartlett, D.H.; Roberts, M.F. Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 2002, 6, 507–514. [Google Scholar] [CrossRef]
- Yancey, P.H.; Siebenaller, J.F. Co-evolution of proteins and solutions: Protein adaptation versus cytoprotective micromolecules and their roles in marine organisms. J. Exp. Biol. 2015, 218, 1880–1896. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.H.; Yancey, P.H. High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biol. Bull. 1999, 196, 18–25. [Google Scholar] [CrossRef]
- Yancey, P.H.; Fyfe-Johnson, A.L.; Kelly, R.H.; Walker, V.P.; Aunon, M.T. Trimethylamine oxide counteracts effects of hydrostatic pressure on proteins of deep-sea teleosts. J. Exp. Zool. 2001, 289, 172–176. [Google Scholar] [CrossRef]
- Papini, C.M.; Pandharipande, P.P.; Royer, C.A.; Makhatadze, G.I. Putting the Piezolyte Hypothesis under Pressure. Biophys. J. 2017, 113, 974–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yancey, P.H.; Clark, M.E.; Hand, S.C.; Bowlus, R.D.; Somero, G.N. Living with water stress: Evolution of osmolyte systems. Science 1982, 217, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Petersdorf, E.W.; Malkki, M.; Gooley, T.A.; Martin, P.J.; Guo, Z. MHC haplotype matching for unrelated hematopoietic cell transplantation. PLoS Med. 2007, 4, e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunsford, K.E.; Barbas, A.S.; Brennan, T.V. Recent advances in immunosuppressive therapy for prevention of renal allograft rejection. Curr. Opin. Organ. Transplant. 2011, 16, 390–397. [Google Scholar] [CrossRef]
- Swann, J.B.; Holland, S.J.; Petersen, M.; Pietsch, T.W.; Boehm, T. The immunogenetics of sexual parasitism. Science 2020, 369, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Rock, K.L.; Reits, E.; Neefjes, J. Present Yourself! By MHC Class I and MHC Class II Molecules. Trends Immunol. 2016, 37, 724–737. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Peh, C.A.; Elliott, T. The cell biology of MHC class I antigen presentation. Tissue Antigens 2002, 59, 3–17. [Google Scholar] [CrossRef]
- van de Weijer, M.L.; Luteijn, R.D.; Wiertz, E.J. Viral immune evasion: Lessons in MHC class I antigen presentation. Semin. Immunol. 2015, 27, 125–137. [Google Scholar] [CrossRef]
- Gould, D.S.; Auchincloss, H., Jr. Direct and indirect recognition: The role of MHC antigens in graft rejection. Immunol. Today 1999, 20, 77–82. [Google Scholar] [CrossRef]
- Roche, P.A.; Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 2015, 15, 203–216. [Google Scholar] [CrossRef]
- Steimle, V.; Siegrist, C.A.; Mottet, A.; Lisowska-Grospierre, B.; Mach, B. Regulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science 1994, 265, 106–109. [Google Scholar] [CrossRef]
- Teyton, L.; Peterson, P.A. Assembly and transport of MHC class II molecules. New Biol. 1992, 4, 441–447. [Google Scholar]
- Grimholt, U.; Tsukamoto, K.; Azuma, T.; Leong, J.; Koop, B.F.; Dijkstra, J.M. A comprehensive analysis of teleost MHC class I sequences. BMC Evol. Biol. 2015, 15, 32. [Google Scholar] [CrossRef] [Green Version]
- Dirscherl, H.; Yoder, J.A. Characterization of the Z lineage Major histocompatability complex class I genes in zebrafish. Immunogenetics 2014, 66, 185–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimholt, U. MHC and Evolution in Teleosts. Biology 2016, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haase, D.; Roth, O.; Kalbe, M.; Schmiedeskamp, G.; Scharsack, J.P.; Rosenstiel, P.; Reusch, T.B. Absence of major histocompatibility complex class II mediated immunity in pipefish, Syngnathus typhle: Evidence from deep transcriptome sequencing. Biol. Lett. 2013, 9, 20130044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Star, B.; Nederbragt, A.J.; Jentoft, S.; Grimholt, U.; Malmstrom, M.; Gregers, T.F.; Rounge, T.B.; Paulsen, J.; Solbakken, M.H.; Sharma, A.; et al. The genome sequence of Atlantic cod reveals a unique immune system. Nature 2011, 477, 207–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubin, A.; Jorgensen, T.E.; Moum, T.; Johansen, S.D.; Jakt, L.M. Complete loss of the MHC II pathway in an anglerfish, Lophius piscatorius. Biol. Lett. 2019, 15, 20190594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otipoby, K.L.; Waisman, A.; Derudder, E.; Srinivasan, L.; Franklin, A.; Rajewsky, K. The B-cell antigen receptor integrates adaptive and innate immune signals. Proc. Natl. Acad. Sci. USA 2015, 112, 12145–12150. [Google Scholar] [CrossRef] [Green Version]
- Rossjohn, J.; Gras, S.; Miles, J.J.; Turner, S.J.; Godfrey, D.I.; McCluskey, J. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 2015, 33, 169–200. [Google Scholar] [CrossRef]
- Lustgarten, J.; Waks, T.; Eshhar, Z. CD4 and CD8 accessory molecules function through interactions with major histocompatibility complex molecules which are not directly associated with the T cell receptor-antigen complex. Eur. J. Immunol. 1991, 21, 2507–2515. [Google Scholar] [CrossRef]
- Issa, F.; Schiopu, A.; Wood, K.J. Role of T cells in graft rejection and transplantation tolerance. Expert. Rev. Clin. Immunol. 2010, 6, 155–169. [Google Scholar] [CrossRef]
- Kohei, N.; Tanaka, T.; Tanabe, K.; Masumori, N.; Dvorina, N.; Valujskikh, A.; Baldwin, W.M., 3rd; Fairchild, R.L. Natural killer cells play a critical role in mediating inflammation and graft failure during antibody-mediated rejection of kidney allografts. Kidney Int. 2016, 89, 1293–1306. [Google Scholar] [CrossRef] [Green Version]
- Alcover, A.; Alarcon, B.; Di Bartolo, V. Cell Biology of T Cell Receptor Expression and Regulation. Annu. Rev. Immunol. 2018, 36, 103–125. [Google Scholar] [CrossRef]
- Isakov, N. Role of immunoreceptor tyrosine-based activation motif in signal transduction from antigen and Fc receptors. Adv. Immunol. 1998, 69, 183–247. [Google Scholar]
- Guselnikov, S.V.; Najakshin, A.M.; Taranin, A.V. Fugu rubripes possesses genes for the entire set of the ITAM-bearing transmembrane signal subunits. Immunogenetics 2003, 55, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Daniels, M.A.; Devine, L.; Miller, J.D.; Moser, J.M.; Lukacher, A.E.; Altman, J.D.; Kavathas, P.; Hogquist, K.A.; Jameson, S.C. CD8 binding to MHC class I molecules is influenced by T cell maturation and glycosylation. Immunity 2001, 15, 1051–1061. [Google Scholar] [CrossRef] [Green Version]
- Rocha, P.N.; Plumb, T.J.; Crowley, S.D.; Coffman, T.M. Effector mechanisms in transplant rejection. Immunol. Rev. 2003, 196, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Moody, A.M.; Chui, D.; Reche, P.A.; Priatel, J.J.; Marth, J.D.; Reinherz, E.L. Developmentally regulated glycosylation of the CD8alphabeta coreceptor stalk modulates ligand binding. Cell 2001, 107, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Paul, W.E. CD4 T cells: Fates, functions, and faults. Blood 2008, 112, 1557–1569. [Google Scholar] [CrossRef] [Green Version]
- Busch, D.H.; Pamer, E.G. T cell affinity maturation by selective expansion during infection. J. Exp. Med. 1999, 189, 701–710. [Google Scholar] [CrossRef]
- Podack, E.R.; Young, J.D.; Cohn, Z.A. Isolation and biochemical and functional characterization of perforin 1 from cytolytic T-cell granules. Proc. Natl. Acad. Sci. USA 1985, 82, 8629–8633. [Google Scholar] [CrossRef] [Green Version]
- Fehniger, T.A.; Cai, S.F.; Cao, X.; Bredemeyer, A.J.; Presti, R.M.; French, A.R.; Ley, T.J. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 2007, 26, 798–811. [Google Scholar] [CrossRef] [Green Version]
- Trapani, J.A. Target cell apoptosis induced by cytotoxic T cells and natural killer cells involves synergy between the pore-forming protein, perforin, and the serine protease, granzyme B. Aust. N. Z. J. Med. 1995, 25, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Hamby, K.; Trexler, A.; Pearson, T.C.; Larsen, C.P.; Rigby, M.R.; Kean, L.S. NK cells rapidly reject allogeneic bone marrow in the spleen through a perforin- and Ly49D-dependent, but NKG2D-independent mechanism. Am. J. Transplant. 2007, 7, 1884–1896. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Martin, S.T.; Townsend, K.R.; Gabardi, S. Antibody-mediated rejection in kidney transplantation: A review of pathophysiology, diagnosis, and treatment options. Pharmacotherapy 2014, 34, 733–744. [Google Scholar] [CrossRef]
- Loupy, A.; Lefaucheur, C. Antibody-Mediated Rejection of Solid-Organ Allografts. N. Engl. J. Med. 2018, 379, 1150–1160. [Google Scholar] [CrossRef]
- Gold, M.R.; Reth, M.G. Antigen Receptor Function in the Context of the Nanoscale Organization of the B Cell Membrane. Annu. Rev. Immunol. 2019, 37, 97–123. [Google Scholar] [CrossRef] [PubMed]
- Oettinger, M.A.; Schatz, D.G.; Gorka, C.; Baltimore, D. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science. 1990, 248, 1517–1523. [Google Scholar] [CrossRef]
- Delmonte, O.M.; Schuetz, C.; Notarangelo, L.D. RAG Deficiency: Two Genes, Many Diseases. J. Clin. Immunol. 2018, 38, 646–655. [Google Scholar] [CrossRef]
- Lee, Y.N.; Frugoni, F.; Dobbs, K.; Tirosh, I.; Du, L.; Ververs, F.A.; Ru, H.; Ott de Bruin, L.; Adeli, M.; Bleesing, J.H.; et al. Characterization of T and B cell repertoire diversity in patients with RAG deficiency. Sci. Immunol. 2016, 1, eaah6109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valenzuela, N.M.; Hickey, M.J.; Reed, E.F. Antibody Subclass Repertoire and Graft Outcome Following Solid Organ Transplantation. Front. Immunol. 2016, 7, 433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineda, S.; Sigdel, T.K.; Liberto, J.M.; Vincenti, F.; Sirota, M.; Sarwal, M.M. Characterizing pre-transplant and post-transplant kidney rejection risk by B cell immune repertoire sequencing. Nat. Commun. 2019, 10, 1906. [Google Scholar] [CrossRef] [Green Version]
- Teater, M.; Dominguez, P.M.; Redmond, D.; Chen, Z.; Ennishi, D.; Scott, D.W.; Cimmino, L.; Ghione, P.; Chaudhuri, J.; Gascoyne, R.D.; et al. AICDA drives epigenetic heterogeneity and accelerates germinal center-derived lymphomagenesis. Nat. Commun. 2018, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Gazumyan, A.; Bothmer, A.; Klein, I.A.; Nussenzweig, M.C.; McBride, K.M. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv. Cancer Res. 2012, 113, 167–190. [Google Scholar]
- Nakanishi, T.; Xu, X.; Wynn, C.; Yamada, T.; Pan, F.; Erickson, L.; Teo, H.; Nakagawa, T.; Masunaga, T.; Abe, J.; et al. Absence of Activation-induced Cytidine Deaminase, a Regulator of Class Switch Recombination and Hypermutation in B Cells, Suppresses Aorta Allograft Vasculopathy in Mice. Transplantation 2015, 99, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, M.; Alsughayyir, J.; Qureshi, M.S.; Mallik, M.; Ali, J.M.; Gamper, I.; Moseley, E.L.; Peacock, S.; Kosmoliaptsis, V.; Goddard, M.J.; et al. Germinal Center Alloantibody Responses Mediate Progression of Chronic Allograft Injury. Front. Immunol. 2018, 9, 3038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erlebacher, A. Why isn’t the fetus rejected? Curr. Opin. Immunol. 2001, 13, 590–593. [Google Scholar] [CrossRef]
- Buckley, R.H. Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu. Rev. Immunol. 2004, 22, 625–655. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isakov, N. Histocompatibility and Reproduction: Lessons from the Anglerfish. Life 2022, 12, 113. https://doi.org/10.3390/life12010113
Isakov N. Histocompatibility and Reproduction: Lessons from the Anglerfish. Life. 2022; 12(1):113. https://doi.org/10.3390/life12010113
Chicago/Turabian StyleIsakov, Noah. 2022. "Histocompatibility and Reproduction: Lessons from the Anglerfish" Life 12, no. 1: 113. https://doi.org/10.3390/life12010113