Tripeptidyl Peptidase 1 (TPP1) Deficiency in a 36-Year-Old Patient with Cerebellar-Extrapyramidal Syndrome and Dilated Cardiomyopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient
2.2. Laboratory Analyses
2.2.1. Pathological Examination of Explanted Heart
- Numerous cardiomyocytes showed hypertrophy and perinuclear vacuolization containing amorphous deposits suggesting the possibility of metabolic disorder, possibly Fabry disease (Figure 6A). Normal alfa-galactosidase activity in peripheral blood leukocytes and plasma excluded this diagnosis.
- The presence of remarkable thinning and fatty–fibrous replacement of right ventricular wall strongly suggested ARVC-like (resembling arrhythmogenic right ventricular cardiomyopathy) pattern (Figure 6B,C).
2.2.2. Next Generation Sequencing (NGS)
2.2.3. Ultra-Structure Studies
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stengel, C. Beretning om et maerkeligt Sygdomstilfaelde hos fire Soedskende i Naerheden af Roeraas. Eyr Et Med. Tidskr. 1826, 1, 347–352. [Google Scholar]
- Jansky, J. Sur un cas jusqu’a présente non décrit de I´idiotie amaurotique familiàle compliquée par une hypoplasie du cervelet. Sborna Lék 1908, 13, 165–196. [Google Scholar]
- Bielschowsky, M. Ueber spätinfantile amaurotische Idiotie mit Kleinhirnsymptomen. Dtsch. Z. Nervenheilkd. 1913, 50, 7–29. [Google Scholar]
- Nelvagal, H.R.; Lange, J.; Takahashi, K.; Tarczyluk-Wells, M.A.; Cooper, J.D. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim. Biophys. Acta Mol. Basis. Dis. 2020, 1866, 165570. [Google Scholar] [CrossRef] [PubMed]
- Golabek, A.A.; Walus, M.; Wisniewski, K.E.; Kida, E. Glycosaminoglycans modulate activation, activity, and stability of tripeptidyl-peptidase I in vitro and in vivo. J. Biol. Chem. 2005, 280, 7550–7561. [Google Scholar] [CrossRef] [Green Version]
- Sleat, D.E.; Gedvilaite, E.; Zhang, Y.; Lobel, P.; Xing, J. Analysis of large-scale whole exome sequencing data to determine the prevalence of genetically-distinct forms of neuronal ceroid lipofuscinosis. Gene 2016, 593, 284–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mole, S.E.; Anderson, G.; Band, H.A.; Berkovic, S.F.; Cooper, J.D.; Kleine Holthaus, S.M.; McKay, T.R.; Medina, D.L.; Rahim, A.A.; Schulz, A.; et al. Clinical challenges and future therapeutic approaches for neuronal ceroid lipofuscinosis. Lancet Neurol. 2019, 18, 107–116. [Google Scholar] [CrossRef]
- Nickel, M.; Simonati, A.; Jacoby, D. Disease characteristics and progression in patients with late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease: An observational cohort study. Lancet Child. Adolesc Health 2018, 2, 582–590. [Google Scholar] [CrossRef]
- Steinfeld, R.; Heim, P.; von Gregory, H.; Meyer, K.; Ullrich, K.; Goebel, H.H.; Kohlschütter, A. Late infantile neuronal ceroid lipofuscinosis: Quantitative description of the clinical course in patients with CLN2 mutations. Am. J. Med. Genet. 2002, 112, 347–354. [Google Scholar] [CrossRef]
- Chen, Z.R.; Liu, D.T.; Meng, H.; Liu, L.; Bian, W.J.; Liu, X.R.; Zhu, W.W.; He, Y.; Wang, J.; Tang, B.; et al. Homozygous missense TPP1 mutation associated with mild late infantile neuronal ceroid lipofuscinosis and the genotype-phenotype correlation. Seizure 2019, 69, 180–185. [Google Scholar] [CrossRef]
- Kovacs, K.; Patel, S.; Orlin, A.; Kim, K.; Van Everen, S.; Conner, T.; Sondhi, D.; Kaminsky, S.; D’Amico, D.; Crystal, R.; et al. Symmetric Age Association of Retinal Degeneration in Patients with CLN2-Associated Batten Disease. Ophthalmol. Retin. 2020, 4, 728–736. [Google Scholar] [CrossRef]
- Chang, E.H.; Zabner, J. Precision Genomic Medicine in Cystic Fibrosis. Clin. Trans. Sci. 2015, 8, 606–610. [Google Scholar] [CrossRef] [Green Version]
- Elleder, M.; Dvoráková, L.; Stolnaja, L.; Vlásková, H.; Hůlková, H.; Druga, R.; Poupetová, H.; Kostálová, E.; Mikulástík, J. Atypical CLN2 with later onset and prolonged course: A neuropathologic study showing different sensitivity of neuronal subpopulations to TPP1 deficiency. Acta Neuropathol. 2008, 116, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Giacopo, R.; Cianetti, L.; Caputo, V.; La Torraca, I.; Piemonte, F.; Ciolfi, A.; Petrucci, S.; Carta, C.; Mariotti, P.; Leuzzi, V.; et al. Protracted late infantile ceroid lipofuscinosis due to TPP1 mutations: Clinical, molecular and biochemical characterization in three sibs. J. Neurol. Sci. 2015, 356, 65–71. [Google Scholar] [CrossRef]
- Lourenço, C.M.; Pessoa, A.; Mendes, C.C.; Rivera-Nieto, C.; Vergara, D.; Troncoso, M.; Gardner, E.; Mallorens, F.; Tavera, L.; Lizcano, L.A.; et al. Revealing the clinical phenotype of atypical neuronal ceroid lipofuscinosis type 2 disease: Insights from the largest cohort in the world. J. Paediatr. Child. Health 2021, 57, 519–525. [Google Scholar] [CrossRef]
- Dy, M.E.; Sims, K.B.; Friedman, J. TPP1 deficiency: Rare cause of isolated childhood-onset progressive ataxia. Neurology 2015, 85, 1259–1261. [Google Scholar] [CrossRef]
- Sun, Y.; Almomani, R.; Breedveld, G.J.; Santen, G.W.; Aten, E.; Lefeber, D.J.; Hoff, J.I.; Brusse, E.; Verheijen, F.W.; Verdijk, R.M.; et al. Autosomal recessive spinocerebellar ataxia 7 (SCAR7) is caused by variants in TPP1, the gene involved in classic late-infantile neuronal ceroid lipofuscinosis 2 disease (CLN2 disease). Hum. Mutat. 2013, 34, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Breedveld, G.J.; Van Wetten, B.; Te Raa, G.D.; Brusse, E.; Van Swieten, J.C.; Oostra, B.A.; Maat-Kievit, J.A. A new locus for a childhood onset, slowly progressive autosomal recessive spinocerebellar ataxia maps to chromosome 11p15. J. Med. Genet. 2004, 41, 858–866. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://panelapp.genomicsengland.co.uk (accessed on 3 September 2021).
- Gardner, E.; Bailey, M.; Schulz, A.; Aristorena, M.; Miller, N.; Mole, S.E. Mutation update: Review of TPP1 gene variants associated with neuronal ceroid lipofuscinosis CLN2 disease. Hum. Mutat. 2019, 40, 1924–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NCL Resource—A Gateway for Batten Disease. Available online: https://www.ucl.ac.uk/ncl-disease (accessed on 3 September 2021).
- Leiden Open Variation Database LOVD 3. Available online: https://databases.lovd.nl/shared/genes/TPP1 (accessed on 3 September 2021).
- Cooper, J.D.; Mole, S.E. Future perspectives: What lies ahead for Neuronal Ceroid Lipofuscinosis research? Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165681. [Google Scholar] [CrossRef]
- Cox, G.F.; Sleeper, L.A.; Lowe, A.M.; Towbin, J.A.; Colan, S.D.; Orav, E.J.; Lurie, P.R.; Messere, J.E.; Wilkinson, J.D.; Lipshultz, S.E. Factors associated with establishing a causal diagnosis for children with cardiomyopathy. Pediatrics 2006, 118, 1519–1531. [Google Scholar] [CrossRef] [Green Version]
- Szymańska, E.; Szymańska, S.; Truszkowska, G.; Ciara, E.; Pronicki, M.; Shin, Y.S.; Podskarbi, T.; Kępka, A.; Śpiewak, M.; Płoski, R.; et al. Variable clinical presentation of glycogen storage disease type IV: From severe hepatosplenomegaly to cardiac insufficiency. Some discrepancies in genetic and biochemical abnormalities. Arch. Med. Sci. 2018, 14, 237–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostergaard, J.R. Juvenile neuronal ceroid lipofuscinosis (Batten disease): Current insights. Degener. Neurol. Neuromuscul. Dis. 2016, 6, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Sakajiri, K.; Matsubara, N.; Nakajima, T.; Fukuhara, N.; Makifuchi, T.; Wakabayashi, M.; Oyanagi, S.; Kominami, E. A family with adult type ceroid lipofuscinosis (Kufs’ disease) and heart muscle disease: Report of two autopsy cases. Intern. Med. (Tokyo Jpn.) 1995, 34, 1158–1163. [Google Scholar] [CrossRef] [Green Version]
- Rietdorf, K.; Coode, E.E.; Schulz, A.; Wibbeler, E.; Bootman, M.D.; Ostergaard, J.R. Cardiac pathology in neuronal ceroid lipofuscinoses (NCL): More than a mere co-morbidity. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165643. [Google Scholar] [CrossRef] [PubMed]
- Fukumura, S.; Saito, Y.; Saito, T.; Komaki, H.; Nakagawa, E.; Sugai, K.; Sasaki, M.; Oka, A.; Takamisawa, I. Progressive conduction defects and cardiac death in late infantile neuronal ceroid lipofuscinosis. Dev. Med. Child. Neurol. 2012, 54, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.L.; Johnson, G.C.; Leach, S.B.; Williamson, B.G.; Coates, J.R.; Whiting, R.; Vansteenkiste, D.P.; Whitney, M.S. Extraneuronal pathology in a canine model of CLN2 neuronal ceroid lipofuscinosis after intracerebroventricular gene therapy that delays neurological disease progression. Gene Ther. 2017, 24, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Guelbert, N.; Atanacio, N.; Denzler, I.; Embiruçu, E.K.; Mancilla, N.; Naranjo, R.; Pessoa, A.; Spécola, N.; Tavera, L.; Troncoso, M.; et al. Position of Experts Regarding Follow-Up of Patients with Neuronal Ceroid Lipofuscinosis-2 Disease in Latin America. J. Inborn Errors Metab. Screen. 2020, 8, e20200012. [Google Scholar] [CrossRef]
- Fealey, M.E.; Edwards, W.D.; Grogan, M.; Orszulak, T.A. Neuronal ceroid lipofuscinosis in a 31-years old woman presenting a bi-ventricular heart failure with restrictive features. Cardiovasc. Pathol. 2009, 18, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Reske-Nielsen, E.; Baandrup, U.; Bjerregaard, P.; Bruun, I. Cardiac involvement in juvenile amaurotic idiocy--A specific heart muscle disorder. Histological findings in 13 autopsied patients. Acta Pathol. Microbiol. Scand. A 1981, 89, 357–365. [Google Scholar]
- Hofman, I.L.; van der Wal, A.C.; Dingemans, K.P.; Becker, A.E. Cardiac pathology in neuronal ceroid lipofuscinoses—A clinicopathologic correlation in three patients. Eur. J. Paediatr. Neurol. 2001, 5 (Suppl. A), 213–217. [Google Scholar] [CrossRef]
- Tomiyasu, H.; Takahashi, W.; Ohta, T.; Yoshii, F.; Shibuya, M.; Shinohara, Y. An autopsy case of juvenile neuronal ceroid-lipofuscinosis with dilated cardiomyopathy. Rinsho Shinkeigaku 2000, 40, 350–357. [Google Scholar] [PubMed]
- Schaper, J.; Froede, R.; Hein, S.; Buck, A.; Hashizume, H.; Speiser, B.; Friedl, A.; Bleese, N. Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 1991, 83, 504–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Age | Symptoms |
---|---|
NEUROLOGIC | |
4 years | dysarthria (speech disturbances and stuttering) |
22 years | ataxia, mild right hand muscle weakness, and tremor |
28 years | MRI of the brain—severe cerebellar atrophy and moderate cortical and subcortical atrophy |
32 years | - slow progression of the neurological symptoms—dysarthria, ataxia, dystonia, and tremor of the right hand - psychological assessment—slightly decreased mental acuity - CT of the brain—severe cerebellar atrophy - VEP examination—bilateral slowed neural conduction in the visual pathways - BAEP examination—bilateral hearing impairment |
CARDIOLOGIC | |
4 years | cardiac arrhythmia (paroxysmal supraventricular tachycardia (SVT) and unclassified cardiomyopathy) |
30 years | - Cardiac conduction system disease (right bundle branch block, RBBB; and left anterior fascicular block, LAFB) - mild symptoms of biventricular heart failure |
32 years | - paroxysmal supraventricular tachycardia and paroxysmal atrial flutter - dilated cardiomyopathy with heart failure - implantation of CRT defibrillator capable of cardiac resynchronization therapy (CRT-D) |
33 years | successful cardiac transplantation |
Analysis | Proband | Mother | Father | Reference Range |
---|---|---|---|---|
Explanted heart tissue—light microscope | - severe myocyte hypertrophy - in the cells: perinuclear vacuoli - zation with inclusions - ARVC-like lesion | n.d. | n.d. | - |
Explanted heart tissue—transmission electron microscopy (ultrastructure cell examination) | - enlarged and bizarre shaped nuclei - extensive loss of myofibrils with formation of vacuoles and/or intermyofibrillar spaces - accumulation of glycogen granules in sarcoplasm - increased amount of mitochondria - absence of lipofuscin accumulation as well as of ultrastructural curvilinear profiles, fingerprint bodies, and granular osmiophilic deposits (GRODs) in lysosomes | n.d. | n.d. | - |
Alfa-galactosidase | - plasma: 5.8 nmol/mL/h - blood leukocytes: 12.4 nmol/mg protein/h | n.d. | n.d. | - plasma: 8.6 ± 1.5 - blood leukocytes: 10 ± 2.5 |
NGS—TruSight One sequencing panel: TPP1 gene ABCD1 gene | p.Leu13Pro, VUS with minor pathogenic evidence (PM2, PP2) /p.Tyr508Cys, likely pathogenic (PM1, PM2, PP2, PP3) p.Arg17His, VUS (PP2, PP3, BS2) | p.Tyr508Cys p.Arg17His | p.Leu13Pro - | One novel and one previously reported variants Novel variant |
VLCFA in serum | C24:0/C22:0 = 0.898 C26:0/C22:0 = 0.010 | C24:0/C22:0 = 0.847 C26:0/C22:0 = 0.011 | n.d. | <0.960 <0.030 |
TPP1 activity in blood leukocytes | 8.8 U/mg protein/h | 51 | 57 | 47.4 ± 10.7 range 30–81 |
Clinical and Laboratory Features | CLN2 Late Infantile | CLN2 Juvenile | SCAR7 (7 Patients) | Our Patient |
---|---|---|---|---|
General | very severely affected | less severely affected | mild phenotype and protracted course | mild phenotype and protracted course |
Age of onset | 2–4 years | 6–10 years | childhood or teenage | childhood |
Age of death | 5–15 years | 12–40 years | > 60 years | alive at 37 |
Clinical findings | seizures, dementia, visual loss | seizures, dementia, visual loss, ataxia | cerebellar ataxia, pyramidal signs/no, deep sensory loss | cerebellar ataxia, tremor, dystonia, cardiomyopathy |
Neuroimaging | cerebral atrophy | cerebral atrophy | cerebral atrophy | cerebral atrophy |
TPP1 enzyme activity | extremely low/none | residual/very low | residual | residual |
Ultra-structure features (EM) | curvilinear bodies | curvilinear bodies/ GROD/ fingerprint profiles | none/ GROD/ fingerprint profiles | none |
TPP1 gene variants (alleles) | Many (null/null) | Many (null/partial affected) | nonsense/missense (null/minor modification) | missense/missense |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ługowska, A.; Purzycka-Olewiecka, J.K.; Płoski, R.; Truszkowska, G.; Pronicki, M.; Felczak, P.; Śpiewak, M.; Podlecka-Piętowska, A.; Sitek, M.; Bilińska, Z.T.; et al. Tripeptidyl Peptidase 1 (TPP1) Deficiency in a 36-Year-Old Patient with Cerebellar-Extrapyramidal Syndrome and Dilated Cardiomyopathy. Life 2022, 12, 3. https://doi.org/10.3390/life12010003
Ługowska A, Purzycka-Olewiecka JK, Płoski R, Truszkowska G, Pronicki M, Felczak P, Śpiewak M, Podlecka-Piętowska A, Sitek M, Bilińska ZT, et al. Tripeptidyl Peptidase 1 (TPP1) Deficiency in a 36-Year-Old Patient with Cerebellar-Extrapyramidal Syndrome and Dilated Cardiomyopathy. Life. 2022; 12(1):3. https://doi.org/10.3390/life12010003
Chicago/Turabian StyleŁugowska, Agnieszka, Joanna K. Purzycka-Olewiecka, Rafał Płoski, Grażyna Truszkowska, Maciej Pronicki, Paulina Felczak, Mateusz Śpiewak, Aleksandra Podlecka-Piętowska, Martyna Sitek, Zofia T. Bilińska, and et al. 2022. "Tripeptidyl Peptidase 1 (TPP1) Deficiency in a 36-Year-Old Patient with Cerebellar-Extrapyramidal Syndrome and Dilated Cardiomyopathy" Life 12, no. 1: 3. https://doi.org/10.3390/life12010003
APA StyleŁugowska, A., Purzycka-Olewiecka, J. K., Płoski, R., Truszkowska, G., Pronicki, M., Felczak, P., Śpiewak, M., Podlecka-Piętowska, A., Sitek, M., Bilińska, Z. T., Leszek, P., & Bednarska-Makaruk, M. (2022). Tripeptidyl Peptidase 1 (TPP1) Deficiency in a 36-Year-Old Patient with Cerebellar-Extrapyramidal Syndrome and Dilated Cardiomyopathy. Life, 12(1), 3. https://doi.org/10.3390/life12010003