Light in the Rational Treatment of Autism? Effects of Metformin on Steroid Hormones in a Patient with Polycystic Ovarian Syndrome (PCOS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Participant
2.2. Statistical Analysis
3. Results
4. Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flory, J.; Lipska, K. Metformin in 2019. JAMA 2019, 321, 1926–1927. [Google Scholar] [CrossRef]
- Gasser, B.; Kurz, J.; Buerki, S.; Mohaupt, M. Metformin-Treatment Option for Social Impairment? An Open Clinical Trial to Elucidate the Effects of Metformin Treatment on Steroid Hormones and Social Behavior. Life 2022, 12, 998. [Google Scholar] [CrossRef]
- American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S111–S124. [Google Scholar] [CrossRef]
- Zhou, J.; Massey, S.; Story, D.; Li, L. Metformin: An Old Drug with New Applications. Int. J. Mol. Sci. 2018, 19, 2863. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, B.; Yang, Y.; Wang, Y.; Zhao, Z.; Miao, Z.; Zhu, J. Metformin Exerts Antidepressant Effects by Regulated DNA Hydroxymethylation. Epigenomics 2019, 11, 655–667. [Google Scholar] [CrossRef]
- Viollet, B.; Guigas, B.; Garcia, N.S.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and Molecular Mechanisms of Metformin: An Overview. Clin. Sci. 2012, 122, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, A.; Hahn, D.; Kempná, P.; Hofer, G.; Nuoffer, J.-M.; Mullis, P.E.; Flück, C.E. Metformin Inhibits Human Androgen Production by Regulating Steroidogenic Enzymes HSD3B2 and CYP17A1 and Complex I Activity of the Respiratory Chain. Endocrinology 2012, 153, 4354–4366. [Google Scholar] [CrossRef] [Green Version]
- Martin-Montalvo, A.; Mercken, E.M.; Mitchell, S.J.; Palacios, H.H.; Mote, P.L.; Scheibye-Knudsen, M.; Gomes, A.P.; Ward, T.M.; Minor, R.K.; Blouin, M.-J.; et al. Metformin Improves Healthspan and Lifespan in Mice. Nat. Commun. 2013, 4, 2192. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, B.K.; Saltin, B. Evidence for Prescribing Exercise as Therapy in Chronic Disease. Scand. J. Med. Sci. Sports 2006, 16, 3–63. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Nader, G.A. Molecular Effects of Exercise in Patients with Inflammatory Rheumatic Disease. Nat. Clin. Pract. Rheumatol. 2008, 4, 597–604. [Google Scholar] [CrossRef]
- Zhu, W.; Han, B.; Fan, M.; Wang, N.; Wang, H.; Zhu, H.; Cheng, T.; Zhao, S.; Song, H.; Qiao, J. Oxidative Stress Increases the 17,20-Lyase-Catalyzing Activity of Adrenal P450c17 through P38α in the Development of Hyperandrogenism. Mol. Cell. Endocrinol. 2019, 484, 25–33. [Google Scholar] [CrossRef]
- Pangrazzi, L.; Balasco, L.; Bozzi, Y. Natural Antioxidants: A Novel Therapeutic Approach to Autism Spectrum Disorders? Antioxidants 2020, 9, 1186. [Google Scholar] [CrossRef]
- Rossignol, D.A.; Frye, R.E. Evidence Linking Oxidative Stress, Mitochondrial Dysfunction, and Inflammation in the Brain of Individuals with Autism. Front. Physiol. 2014, 5, 150. [Google Scholar] [CrossRef] [Green Version]
- Aishworiya, R.; Valica, T.; Hagerman, R.; Restrepo, B. An Update on Psychopharmacological Treatment of Autism Spectrum Disorder. Neurotherapeutics 2022, 19, 248–262. [Google Scholar] [CrossRef]
- Gantois, I.; Popic, J.; Khoutorsky, A.; Sonenberg, N. Metformin for Treatment of Fragile X Syndrome and Other Neurological Disorders. Annu. Rev. Med. 2019, 70, 167–181. [Google Scholar] [CrossRef]
- Fatemi, S.H.; Folsom, T.D. The role of fragile X mental retardation protein in major mental disorders. Neuropharmacology 2011, 60, 1221–1226. [Google Scholar] [CrossRef] [Green Version]
- Monyak, R.E.; Emerson, D.; Schoenfeld, B.P.; Zheng, X.; Chambers, D.B.; Rosenfelt, C.; Langer, S.; Hinchey, P.; Choi, C.H.; McDonald, T.V.; et al. Insulin signaling misregulation underlies circadian and cognitive deficits in a Drosophila fragile X model. Mol. Psychiatry 2016, 22, 1140–1148. [Google Scholar] [CrossRef] [Green Version]
- Dy, A.B.; Tassone, F.; Eldeeb, M.; Salcedo-Arellano, M.; Tartaglia, N.; Hagerman, R. Metformin as targeted treatment in fragile X syndrome. Clin. Genet. 2017, 93, 216–222. [Google Scholar] [CrossRef]
- Biag, H.M.B.; Potter, L.A.; Wilkins, V.; Afzal, S.; Rosvall, A.; Salcedo-Arellano, M.J.; Rajaratnam, A.; Manzano-Nunez, R.; Schneider, A.; Tassone, F.; et al. Metformin treatment in young children with fragile X syndrome. Mol. Genet. Genom. Med. 2019, 7, e956. [Google Scholar] [CrossRef] [Green Version]
- Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The Autism-Spectrum Quotient (AQ): Evidence from Asperger Syndrome/High-Functioning Autism, Males and Females, Scientists and Mathematicians. J. Autism Dev. Disord. 2001, 31, 5–17. [Google Scholar] [CrossRef]
- Vogt, B.; Dick, B.; N’Gankam, V.; Frey, F.J.; Frey, B.M. Reduced 11B-hydroxysteroid dehydrogenase activity in patients with the nephrotic syndrome. J. Clin. Endocrinol. Metab. 1999, 84, 811–814. [Google Scholar] [PubMed] [Green Version]
- Ye, W.; Xie, T.; Song, Y.; Zhou, L. The role of androgen and its related signals in PCOS. J. Cell. Mol. Med. 2020, 25, 1825–1837. [Google Scholar] [CrossRef] [PubMed]
- ACSM. Guidelines for Exercise Testing and Prescription, 11th ed.; Wolters Kluwer Health: Philadelphia, PA, USA, 2021. [Google Scholar]
- Duan, X.; Zhou, M.; Zhou, G.; Zhu, Q.; Li, W. Effect of metformin on adiponectin in PCOS: A meta-analysis and a systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 267, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Li, S.; Chang, Y.; Fang, C.; Liu, H.; Zhang, X.; Wang, Y. Effect of metformin treatment during pregnancy on women with PCOS: A systematic review and meta-analysis. Clin. Investig. Med. 2016, 39, 120–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burghen, G.A.; Givens, J.R.; Kitabchi, A.E. Correlation of Hyperandrogenism with Hyperinsulinism in Polycystic Ovarian Disease*. J. Clin. Endocrinol. Metab. 1980, 50, 113–116. [Google Scholar] [CrossRef]
- Nestler, J.E.; Jakubowicz, D.J. Lean Women with Polycystic Ovary Syndrome Respond to Insulin Reduction with Decreases in Ovarian P450c17? Activity and Serum Androgens 1. J. Clin. Endocrinol. Metab. 1997, 82, 4075–4079. [Google Scholar] [CrossRef]
- Morin-Papunen, L.; Vauhkonen, I.; Koivunen, R.; Ruokonen, A.; Martikainen, H.; Tapanainen, J.S. Metformin versus Ethinyl Estradiol-Cyproterone Acetate in the Treatment of Nonobese Women with Polycystic Ovary Syndrome: A Randomized Study. J. Clin. Endocrinol. Metab. 2003, 88, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.; Goswami, S.; Giacomini, K.M.; Altman, R.B.; Klein, T.E. Metformin pathways: Pharmacokinetics and pharmacodynamics. Pharm. Genom. 2012, 22, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Gasser, B.A.; Buerki, S.F.; Kurz, J.; Mohaupt, M.G. Hyperandrogenism? Increased 17, 20-Lyase Activity? A Metanalysis and Systematic Review of Altered Androgens in Boys and Girls with Autism. Int. J. Mol. Sci. 2021, 22, 12324. [Google Scholar] [CrossRef]
- Gasser, B.A.; Kurz, J.; Dick, B.; Mohaupt, M.G. Steroid Metabolites Support Evidence of Autism as a Spectrum. Behav. Sci. 2019, 9, 52. [Google Scholar] [CrossRef]
- Gasser, B.A.; Kurz, J.; Dick, B.; Mohaupt, M.G. Reply to ‘Alteration of Steroidogenesis in Boys with Autism Spectrum Disorders’. Nat. Transl. Psychiatry 2021, 11, 278. [Google Scholar] [CrossRef] [PubMed]
- Gasser, B.A.; Kurz, J.; Dick, B.; Mohaupt, M.G. Are Steroid Hormones Dysregulated in Autistic Girls? Diseases 2020, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasser, B.A.; Kurz, J.; Senn, W.; Escher, G.; Mohaupt, M.G. Stress-Induced Alterations of Social Behavior Are Reversible by Antagonism of Steroid Hormones in C57/BL6 Mice. Naunyn. Schmiedebergs Arch. Pharmacol. 2020, 394, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cai, Y.; Fan, X. Metformin Administration During Early Postnatal Life Rescues Autistic-Like Behaviors in the BTBR T+ Itpr3tf/J Mouse Model of Autism. Front. Behav. Neurosci. 2018, 12, 290. [Google Scholar] [CrossRef] [Green Version]
- Bradstreet, J.J.; Smith, S.; Granpeesheh, D.; El-Dahr, J.M.; Rossignol, D. Spironolactone might be a desirable immunologic and hormonal intervention in autism spectrum disorders. Med. Hypotheses 2006, 68, 979–987. [Google Scholar] [CrossRef]
- Wink, L.K.; Adams, R.; Pedapati, E.V.; Dominick, K.C.; Fox, E.; Buck, C.; Erickson, C.A. Brief report: Metformin for antipsychotic_induced weight gain in youth with autism spectrum disorder. J. Autism Dev. Disord. 2017, 47, 2290–2294. [Google Scholar] [CrossRef]
- Protic, D.; Kaluzhny, P.; Tassone, F.; Hagerman, R.J. Prepubertal metformin treatment in fragile X syndrome alleviated macroorchidism: A case study. Adv. Clin. Transl. Res. 2019, 3, 1–5. [Google Scholar]
- Protic, D.; Aydin, E.Y.; Tassone, F.; Tan, M.M.; Hagerman, R.J.; Schneider, A. Cognitive and behavioral improvement in adults with fragile X syndrome treated with metformin-two cases. Mol. Genet. Genom. Med. 2019, 7, e745. [Google Scholar] [CrossRef]
First Visit | Second Visit | Third Visit | Reference | |||
---|---|---|---|---|---|---|
Metabolite | Abbreviation | (µg/24 h) | (µg/24 h) | (µg/24 h) | (µg/24 h) | |
Progesterone metabolites | 17-Hydroxypregnanolone | 17-HP | 189.0 | 231.0 | 74.5 | 21–254 |
Pregnanediol | PD | 312.0 | 2941.0 | 188.6 | 72–1411 | |
Pregnanetriol | PT | 655.0 | 621.0 | 342.9 | 150–806 | |
11-Oxo-Pregnanetriol | PTONE | 12.0 | 3.0 | 8.5 | 6–36 | |
Corticosterone metabollites | TH-Deoxycorticost. | THDOC | 19.0 | 17.0 | 8.2 | 2–21 |
TH-11-DH-corticost. | THA | 335.0 | 187.0 | 250.5 | 37–142 | |
TH-corticosterone | THB | 298.0 | 93.0 | 94.4 | 54–206 | |
5a-TH-corticosteron | 5a-THB | 640.0 | 194.0 | 185.2 | 78–338 | |
Aldosterone metabolites | TH-aldosterone | THALDO | 25.0 | 9.0 | 13.6 | 6–30 |
Androgen metabolites | Androsterone | ANDRO | 1556.0 | 982.0 | 850.4 | 184–1705 |
Etiocholanolone | ETIO | 1364.0 | 670.0 | 614.7 | 279–1825 | |
Dihydroandrosterone | DH-ANDRO | 30.0 | 21.0 | 22.8 | 9–54 | |
11-Oxo-etiocholanolone | 11-OXO-ETIO | 430.0 | 344.0 | 205.5 | 109–616 | |
11b-OH-androsterone | 11b-OH-ANDRO | 1487.0 | 772.0 | 776.1 | 259–827 | |
11b-OH-etiocholanolone | 11b-OH-ETIO | 429.0 | 340.0 | 107.6 | 63–633 | |
Dehydroepiandrosterone | DHEA | 22.0 | 18.0 | 11.1 | 14–374 | |
Androstenediol | ANDRO-DIOL | 36.0 | 23.0 | 8.0 | 14–144 | |
16a-OH-DHEA | 16a-OH-DHA | 102.0 | 72.0 | 56.1 | 20–398 | |
Androstenetriol | 5-AT | 130.0 | 60.0 | 71.2 | 51–399 | |
Pregnenetriol | 5-PT | 138.0 | 24.0 | 27.3 | 8–253 | |
Testosterone | TESTOSTERONE | 21.0 | 7.0 | 5.3 | 3–25 | |
5a-Dihydrotestosterone | 5a-DIHYDROTEST | 22.0 | 18.0 | 18.5 | 3–28 | |
Estrogen metabolites | Estriol | ESTRIOL | 11.0 | 7.0 | 8.8 | 1–22 |
17b-Estradiol | 17b-ESTRADIOL | 8.0 | 5.0 | 5.7 | 1–7 | |
11-Deoxycortisol metabolites | TH-11-deoxycortisol | THS | 123.0 | 37.0 | 51.2 | 27–89 |
Cortisol metabolites | Cortisone | CORTISONE | 248.0 | 110.0 | 90.3 | 74–234 |
TH-cortisone | THE | 5684.0 | 2180.0 | 2810.7 | 1162–3430 | |
a-cortolone | a-CORTOLONE | 1874.0 | 495.0 | 805.6 | 517–1397 | |
b-cortolone | b-CORTOLONE | 832.0 | 240.0 | 388.7 | 222–632 | |
20a-Dihydrocortison | 20a-DHE | 29.0 | 8.0 | 10.0 | 9–30 | |
20b-Dihydrocortison | 20b-DHE | 90.0 | 27.0 | 30.3 | 27–86 | |
Cortisol | CORTISOL | 198.0 | 59.0 | 65.1 | 43–160 | |
TH-cortisol | THF | 3330.0 | 836.0 | 1287.1 | 672–1968 | |
5a-TH-cortisol | 5a-THF | 2227.0 | 718.0 | 1061.8 | 266–1369 | |
a-cortol | a-CORTOL | 433.0 | 99.0 | 174.5 | 125–372 | |
b-cortol | b-CORTOL | 481.0 | 121.0 | 200.3 | 164–501 | |
20a-Dihydrocortisol | 20a-DHF | 67.0 | 17.0 | 11.9 | 22–93 | |
20b-Dihydrocortisol | 20b-DHF | 121.0 | 41.0 | 47.7 | 23–111 | |
6b-OH-cortisol | 6b-OH-F | 264.0 | 81.0 | 78.6 | 41–191 | |
18-OH-cortisol | 18-OH-F | 552.0 | 124.0 | 137.9 | 66–380 | |
Total | 24,824.0 | 12,852.0 | 11,207.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasser, B.; Calin, A.-E.; Escher, G.; Kurz, J.; Emmenegger, A.; Buerki, S.; Schmidt-Trucksäss, A.; Mohaupt, M. Light in the Rational Treatment of Autism? Effects of Metformin on Steroid Hormones in a Patient with Polycystic Ovarian Syndrome (PCOS). Life 2022, 12, 1736. https://doi.org/10.3390/life12111736
Gasser B, Calin A-E, Escher G, Kurz J, Emmenegger A, Buerki S, Schmidt-Trucksäss A, Mohaupt M. Light in the Rational Treatment of Autism? Effects of Metformin on Steroid Hormones in a Patient with Polycystic Ovarian Syndrome (PCOS). Life. 2022; 12(11):1736. https://doi.org/10.3390/life12111736
Chicago/Turabian StyleGasser, Benedikt, Anca-Elena Calin, Genevieve Escher, Johann Kurz, Aglaia Emmenegger, Samuel Buerki, Arno Schmidt-Trucksäss, and Markus Mohaupt. 2022. "Light in the Rational Treatment of Autism? Effects of Metformin on Steroid Hormones in a Patient with Polycystic Ovarian Syndrome (PCOS)" Life 12, no. 11: 1736. https://doi.org/10.3390/life12111736
APA StyleGasser, B., Calin, A. -E., Escher, G., Kurz, J., Emmenegger, A., Buerki, S., Schmidt-Trucksäss, A., & Mohaupt, M. (2022). Light in the Rational Treatment of Autism? Effects of Metformin on Steroid Hormones in a Patient with Polycystic Ovarian Syndrome (PCOS). Life, 12(11), 1736. https://doi.org/10.3390/life12111736