Surgical Treatment Options for Epiglottic Collapse in Adult Obstructive Sleep Apnoea: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Search Results and Article Selection
3.2. Partial Epiglottectomy
3.3. Epiglottis Stiffening Operation
3.4. Glossoepiglottopexy
3.5. Supraglottoplasty
3.6. Transoral Robotic Surgery (TORS)
3.7. Maxillomandibular Advancement
3.8. Hypoglossal Nerve Stimulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faber, J.; Faber, C.; Faber, A.P. Obstructive sleep apnea in adults. Dent. Press J. Orthod. 2019, 24, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.-L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [Green Version]
- American Academy of Sleep Medicine. The International Classification of Sleep Disorders, Revised: Diagnostic and Coding Manual; American Academy of Sleep Medicine: Chicago, IL, USA, 2001. [Google Scholar]
- Shahar, E.; Whitney, C.W.; Redline, S.; Lee, E.T.; Newman, A.B.; Nieto, F.J.; O′Connor, G.T.; Boland, L.L.; Schwartz, J.E.; Samet, J.M. Sleep-disordered breathing and cardiovascular disease: Cross-sectional results of the Sleep Heart Health Study. Am. J. Respir. Crit. Care Med. 2001, 163, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Sateia, M. International classification of sleep disorders-third edition: Highlights and modifications. Chest 2014, 146, 1387–1394. [Google Scholar] [CrossRef]
- Amos, J.M.; Durr, M.L.; Nardone, H.C.; Baldassari, C.M.; Duggins, A.; Ishman, S.L. Systematic Review of Drug-Induced Sleep Endoscopy Scoring Systems. Otolaryngol. Neck Surg. 2017, 158, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.M.; Tan, S.N.; Shin, M.-H.; Lee, J.; Kim, H.C.; Lim, S.C.; Yang, H.C. The Site of Airway Collapse in Sleep Apnea, Its Associations with Disease Severity and Obesity, and Implications for Mechanical Interventions. Am. J. Respir. Crit. Care Med. 2021, 204, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Kezirian, E.J.; Hohenhorst, W.; de Vries, N. Drug-induced sleep endoscopy: The VOTE classification. Eur. Arch. Otorhinolaryngol. 2011, 268, 1233–1236. [Google Scholar] [CrossRef]
- Stuck, B.A.; Maurer, J.T. Airway evaluation in obstructive sleep apnea. Sleep Med. Rev. 2008, 12, 411–436. [Google Scholar] [CrossRef]
- Sin, D.D.; Mayers, I.; Man, G.C.; Pawluk, L. Long-term compliance rates to continuous positive airway pressure in obstructive sleep apnea: A population-based study. Chest 2002, 121, 430–435. [Google Scholar] [CrossRef]
- Certal, V.; Nishino, N.; Camacho, M.; Capasso, R. Reviewing the Systematic Reviews in OSA Surgery. Otolaryngol. Neck Surg. 2013, 149, 817–829. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J.; GRADE Working Group. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiser, C. Advanced titration to treat a floppy epiglottis in selective upper airway stimulation. Laryngoscope 2016, 126 (Suppl. S7), S22–S24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verse, T.; Pirsig, W. Age-related changes in the epiglottis causing failure of nasal continuous positive airway pressure therapy. J. Laryngol. Otol. 1999, 113, 1022–1025. [Google Scholar] [CrossRef] [PubMed]
- Oluwasanmi, A.F.; Mal, R.K. Diathermy epiglottectomy: Endoscopic technique. J. Laryngol. Otol. 2001, 115, 289–292. [Google Scholar] [CrossRef]
- Liu, S.Y.-C.; Huon, L.-K.; Iwasaki, T.; Yoon, A.; Riley, R.; Powell, N.; Torre, C.; Capasso, R. Efficacy of Maxillomandibular Advancement Examined with Drug-Induced Sleep Endoscopy and Computational Fluid Dynamics Airflow Modeling. Otolaryngol. Neck Surg. 2016, 154, 189–195. [Google Scholar] [CrossRef]
- Li, H.-Y.; Fang, T.-J.; Lin, J.-L.; Lee, Z.-L.; Lee, L.-A. Laryngomalacia causing sleep apnea in an osteogenesis imperfecta patient. Am. J. Otolaryngol. 2002, 23, 378–381. [Google Scholar] [CrossRef]
- Golz, A.; Goldenberg, D.; Westerman, S.T.; Catalfumo, F.J.; Netzer, A.; Westerman, L.M.; Joachims, H.Z. Laser partial epiglottidectomy as a treatment for obstructive sleep apnea and laryngomalacia. Ann. Otol. Rhinol. Laryngol. 2000, 109 Pt 1, 1140–1145. [Google Scholar] [CrossRef]
- Liu, S.Y.; Huon, L.K.; Powell, N.B.; Riley, R.; Cho, H.G.; Torre, C.; Capasso, R. Lateral Pharyngeal Wall Tension After Maxillomandibular Advancement for Obstructive Sleep Apnea Is a Marker for Surgical Success: Observations from Drug-Induced Sleep Endoscopy. J. Oral Maxillofac. Surg. 2015, 73, 1575–1582. [Google Scholar] [CrossRef]
- Kayhan, F.T.; Kaya, K.H.; Koç, A.K.; Yegin, Y.; Yazici, Z.M.; Türkeli, S.; Sayin, I. Multilevel Combined Surgery with Transoral Robotic Surgery for Obstructive Sleep Apnea Syndrome. J. Craniofac. Surg. 2016, 27, 1044–1048. [Google Scholar] [CrossRef]
- Leone, F.; Marciante, G.A.; Re, C.; Bianchi, A.; Costantini, F.; Salamanca, F.; Salvatori, P. Obstructive sleep apnoea after radiotherapy for head and neck cancer. Acta Otorhinolaryngol. Ital. 2020, 40, 338–342. [Google Scholar] [CrossRef]
- Arora, A.; Chaidas, K.; Garas, G.; Amlani, A.; Darzi, A.; Kotecha, B.; Tolley, N.S. Outcome of TORS to tongue base and epiglottis in patients with OSA intolerant of conventional treatment. Sleep Breath. 2016, 20, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Man Sung, C.; Lim, S.C.; Yang, H.C. Partial epiglottectomy improves residual apnea-hypopnea index in patients with epiglottis collapse. J. Clin. Sleep Med. 2020, 16, 1607–1610. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Trask, D.K.; Kominsky, A.H. Preoperative Predictors of Response to Hypoglossal Nerve Stimulation for Obstructive Sleep Apnea. Otolaryngol. Head Neck Surg. 2020, 162, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Shehan, J.N.; Du, E.; Cohen, M.B. Robot-assisted epiglottopexy as a method for managing adult obstructive sleep apnea. Am. J. Otolaryngol. 2020, 41, 102742. [Google Scholar] [CrossRef]
- Salamanca, F.; Leone, F.; Bianchi, A.; Bellotto, R.G.S.; Costantini, F.; Salvatori, P. Surgical treatment of epiglottis collapse in obstructive sleep apnoea syndrome: Epiglottis stiffening operation. Acta Otorhinolaryngol. Ital. 2019, 39, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Catalfumo, F.; Golz, A.; Westerman, S.; Gilbert, L.; Joachims, H.; Goldenberg, D. The epiglottis and obstructive sleep apnoea syndrome. J. Laryngol. Otol. 1998, 112, 940–943. [Google Scholar] [CrossRef]
- Roustan, V.; Barbieri, M.; Incandela, F.; Missale, F.; Camera, H.; Braido, F.; Mora, R.; Peretti, G. Transoral glossoepiglottopexy in the treatment of adult obstructive sleep apnoea: A surgical approach. Acta Otorhinolaryngol. Ital. 2018, 38, 38–44. [Google Scholar] [CrossRef]
- Kent, D.; Stanley, J.; Aurora, R.N.; Levine, C.; Gottlieb, D.J.; Spann, M.D.; Torre, C.A.; Green, K.; Harrod, C.G. Referral of adults with obstructive sleep apnea for surgical consultation: An American Academy of Sleep Medicine clinical practice guideline. J. Clin. Sleep Med. 2021, 17, 2499–2505. [Google Scholar] [CrossRef]
- Torre, C.; Camacho, M.; Liu, S.Y.-C.; Huon, L.-K.; Capasso, R. Epiglottis collapse in adult obstructive sleep apnea: A systematic review. Laryngoscope 2016, 126, 515–523. [Google Scholar] [CrossRef]
- Fernández-Julián, E.; García-Pérez, M.A.; García-Callejo, J.; Ferrer, F.; Martí, F.; Marco, J. Surgical planning after sleep versus awake techniques in patients with obstructive sleep apnea. Laryngoscope 2014, 124, 1970–1974. [Google Scholar] [CrossRef]
- Lan, M.C.; Liu, S.Y.; Lan, M.Y.; Modi, R.; Capasso, R. Lateral pharyngeal wall collapse associated with hypoxemia in obstructive sleep apnea. Laryngoscope 2015, 125, 2408–2412. [Google Scholar] [CrossRef] [PubMed]
- Vonk, P.E.; Ravesloot, M.J.L.; Kasius, K.M.; van Maanen, J.P.; de Vries, N. Floppy epiglottis during drug-induced sleep endoscopy: An almost complete resolution by adopting the lateral posture. Sleep Breath. 2020, 24, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Woodson, B.T. A method to describe the pharyngeal airway. Laryngoscope 2015, 125, 1233–1238. [Google Scholar] [CrossRef] [PubMed]
- Sung, C.M.; Kim, H.C.; Yang, H.C. The clinical characteristics of patients with an isolate epiglottic collapse. Auris Nasus Larynx 2020, 47, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Dieleman, E.; Veugen, C.C.A.F.M.; Hardeman, J.A.; Copper, M.P. Drug-induced sleep endoscopy while administering CPAP therapy in patients with CPAP failure. Sleep Breath. 2021, 25, 391–398. [Google Scholar] [CrossRef]
- Kim, D.K.; Lee, J.W.; Lee, J.H.; Lee, J.S.; Na, Y.S.; Kim, M.J.; Lee, M.J.; Park, C.H. Drug induced sleep endoscopy for poor-responder to uvulopalatopharyngoplasty in patient with obstructive sleep apnea patients. Korean J. Otorhinolaryngol.-Head Neck Surg. 2014, 57, 96–102. [Google Scholar] [CrossRef]
- Huyett, P.; Kim, S.; Johnson, J.T.; Soose, R.J. Obstructive sleep apnea in the irradiated head and neck cancer patient. Laryngoscope 2017, 127, 2673–2677. [Google Scholar] [CrossRef]
- Kanemaru, S.-I.; Kojima, H.; Fukushima, H.; Tamaki, H.; Tamura, Y.; Yamashita, M.; Umeda, H.; Ito, J. A case of floppy epiglottis in adult: A simple surgical remedy. Auris Nasus Larynx 2007, 34, 409–411. [Google Scholar] [CrossRef]
- Kuo, I.C.; Hsin, L.J.; Lee, L.A.; Fang, T.J.; Tsai, M.S.; Lee, Y.C.; Shen, S.C.; Li, H.Y. Prediction of Epiglottic Collapse in Obstructive Sleep Apnea Patients: Epiglottic Length. Nat. Sci. Sleep. 2021, 13, 1985–1992. [Google Scholar] [CrossRef]
- Sung, C.M.; Kim, H.C.; Kim, J.; Kim, J.G.; Lim, S.C.; Shin, M.H.; Nam, K.; Lee, J.; Vena, D.; White, D.P.; et al. Patients with Epiglottic Collapse are Less Adherent to Autotitrating Positive Airway Pressure Therapy for Obstructive Sleep Apnea. Ann. Am. Thorac. Soc. 2022, 19, 1907–1912. [Google Scholar] [CrossRef]
- Dedhia, R.C.; Rosen, C.A.; Soose, R.J. What is the role of the larynx in adult obstructive sleep apnea? Laryngoscope 2014, 124, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.O.; Jung, S.Y.; Al-Dilaijan, K.; Min, J.Y.; Lee, K.H.; Kim, S.W. Is Epiglottis Surgery Necessary for Obstructive Sleep Apnea Patients with Epiglottis Obstruction? Laryngoscope 2019, 129, 2658–2662. [Google Scholar] [CrossRef] [PubMed]
- Waters, T. Alternative interventions for obstructive sleep apnea. Clevel. Clin. J. Med. 2019, 86, 34–41. [Google Scholar] [CrossRef]
- Kim, H.Y.; Sung, C.M.; Jang, H.B.; Kim, H.C.; Lim, S.C.; Yang, H.C. Patients with epiglottic collapse showed less severe obstructive sleep apnea and good response to treatment other than continuous positive airway pressure: A case-control study of 224 patients. J. Clin. Sleep Med. 2021, 17, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.R.; Chung, Y.-S. Epiglottic Collapse in Obstructive Sleep Apnea. Sleep Med. Res. 2021, 12, 15–19. [Google Scholar] [CrossRef]
- Kent, D.T.; Rogers, R.; Soose, R.J. Drug-induced sedation endoscopy in the evaluation of OSA patients with incomplete oral appliance therapy response. Otolaryngol. Head Neck Surg. 2015, 153, 302–307. [Google Scholar] [CrossRef]
- Bartolomeo, M.; Bigi, A.; Pelliccia, P.; Makeieff, M. Surgical treatment of a case of adult epiglottic laryngomalacia. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2015, 132, 45–47. [Google Scholar] [CrossRef] [Green Version]
- Vicini, C.; Dallan, I.; Canzi, P.; Frassineti, S.; La Pietra, M.G.; Montevecchi, F. Transoral robotic tongue base resection in obstructive sleep apnoea-hypopnoea syndrome: A preliminary report. ORL J. Otorhinolaryngol. Relat. Spec. 2010, 72, 22–27. [Google Scholar] [CrossRef]
- Zhou, N.; Ho, J.-P.; Huang, Z.; Spijker, R.; de Vries, N.; Aarab, G.; Lobbezoo, F.; Ravesloot, M.; de Lange, J. Maxillomandibular advancement versus multilevel surgery for treatment of obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med. Rev. 2021, 57, 101471. [Google Scholar] [CrossRef]
Study | Study Type | Patients Nr | Sex | Age (Years) | BMI (kg/m2) | Physical Examination | Surgical Procedure | Follow-Up | Study Quality (GRADE) |
---|---|---|---|---|---|---|---|---|---|
Heiser [13] | CR | 1 | Male | 64 | 25.9 | Hypoglossal nerve stimulation | 6 months | Very low | |
Verse [14] | CR | 1 | Male | 70 | 24.2 | Large epiglottis adhered to posterior pharyngeal wall | CO2 partial epiglottic resection | 7 days | Very low |
Oluwasamni [15] | CS | 4 | Male | 50–65 | Floppy epiglottis | Endoscopic partial epiglottidectomy | 2 months–3.5 years | Very low | |
Liu [16] | RCS | 20 | 17 males/ 3 females | 44 ± 12 | Maxillomandibular advancement | 6 months | Low | ||
Li [17] | CR | 1 | Male | 24 | Long epiglottis touching the uvula and tilted posteriorly against the pharyngeal wall | Supraglottoplasty | 6 months | Very low | |
Golz [18] | RCS | 27 | 21 males/ 6 females | 19–68 | 23.4 ± 4.2 | Long, lax and flaccid epiglottis collapsing into the laryngeal inlet | CO2 partial epiglottectomy | 14–52 months (mean:32.3 months) | Low |
Liu [19] | RCS | 4/16 | 15 males/1 female | 47 ± 10.9 | 29.4 ± 5.1 | Partial collapse (anterioposterior:2, lateral:1), complete anterioposterior:1 | Maxillomandibular advancement | 6 months | Very low |
Kayhan [20] | RCS | 19 males/6 females | 50.1± 8.5 | 30.7 ± 5.5 | TORS | 3 months | Low | ||
Leone [21] | RCS | 1/6 | Male | 58 | 25.3 | Floppy epiglottis, epiglottis malacia | Epiglottis stiffening operation | 8 months | Very low |
Arora [22] | PCS | 10/14 | 13 males/1 female | 54.3 ± 14.6 | 28.7 ± 2.8 | Concurrent epiglottic collapse | TORS | 18.9 ± 6.2 months | Low |
Jeong [23] | CS | 2 | Male | Pt1: 50 Pt2: 58 | Pt1:29.1 Pt2:25 | Complete epiglottic collapse | Partial epiglottectomy | 1 year | Very low |
Xiao [24] | RCS | 13/48 | 32 males/16 females | 57–69 (66) | 28.6 | Hypoglossal nerve stimulation | 3 months | Low | |
Shehan [25] | CS | 2 | Male | Pt1: 60 Pt2: 55 | Robotic-assisted epiglottopexy | Pt1: 1 year | Low | ||
Salamanca [26] | RCS | 14 | 13 males/1 female | 47–76 | 25.6 (22.1–34) | Epiglottis stiffening operation | 3 months | Low | |
Catalfumo [27] | PCS | 12 | 42.3 ± 14.6 | Nine patients: stage 2 epiglottic position (45–90 degrees), Three patients: stage 3 epiglottic position (over 90 degrees) | CO2 partial epiglottis resection | 1 year | Low | ||
Roustan [28] | CS | 20 | 16 males/4 females | 38–63 | Transoral glossoepiglottopexy | 6 months | Low |
Study | Preoperative ODI (Events/h) | Preoperative AHI (Episodes/h) | Preoperative ESS | Preoperative SaO2 (%) | Postoperative ODI (Events/h) | Postoperative AHI (Episodes/h) | Postoperative ESS |
---|---|---|---|---|---|---|---|
Heiser [13] | 36.3 | Min: 76 | 20.7 | ||||
Verse [14] | 11.1 | 4.8 | 7 | Min: 77 | 3.8 | 0.4 | |
Oluwasamni [15] | |||||||
Liu [16] | 38.7 ± 30.3 | 53.6 ± 26.6 | 8.1 ± 9.2 | 9.5 ± 7.4 | |||
Li [17] | 21 | 9 | Min: 89.1 | 6.9 | 5 | ||
Golz [18] | 26–65 (45 ± 14.6) | Min: 58–87 (Mean: 66 ± 17.6) | 14 ± 5.1 | ||||
Liu [19] | 45 ± 29.7 | 59.8 ± 25.6 | 19.5 ± 2.9 | Min: 80.8 ± 7.6 | 5.7 ± 4.4 | 9.3 ± 7.1 | 7.1 ± 2.6 |
Kayhan [20] | 28.7 ± 17.8 | 13.5 ± 2.8 | Min: 80.7 ± 7.6 | 9.4 ± 12.4 | 3.4 ± 1.6 | ||
Leone [21] | 47.7 | 4.7 | |||||
Arora [22] | 35.6 ± 19.7 | 14.9 ± 5 | Mean: 92.9 ± 1.8 | 21.2 ± 24.6 | All patients: normal (<10) | ||
Jeong [23] | Pt1: 46.1 | Pt1: 57.8, Pt2: 28.4 | Pt1 min: 73, Pt2 min: 69 | Pt1: 50.5, Pt2: 25.7 | |||
Xiao [24] | |||||||
Shehan [25] | Pt1: 35, Pt2: 28 | Pt2: 8 | Pt1: 31, Pt2: 6 | Pt1: 3, Pt2: 2 | |||
Salamanca [26] | 0.1–57.6 | 1–9 | 0.2–6.8 | 1–7 | |||
Catalfumo [27] | 42 ± 16.4 | Min: 68 ± 8.6 | 12 ± 4.6 | 8 ± 3.2 | |||
Roustan [28] | 23 ± 14.3 | 23.6 ± 6.5 | 16.5 ± 4.3 | Mean: 86.9 ± 2.3 | 5.2 ± 3.2 | 3.1 ± 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallianou, K.; Chaidas, K. Surgical Treatment Options for Epiglottic Collapse in Adult Obstructive Sleep Apnoea: A Systematic Review. Life 2022, 12, 1845. https://doi.org/10.3390/life12111845
Vallianou K, Chaidas K. Surgical Treatment Options for Epiglottic Collapse in Adult Obstructive Sleep Apnoea: A Systematic Review. Life. 2022; 12(11):1845. https://doi.org/10.3390/life12111845
Chicago/Turabian StyleVallianou, Kyriaki, and Konstantinos Chaidas. 2022. "Surgical Treatment Options for Epiglottic Collapse in Adult Obstructive Sleep Apnoea: A Systematic Review" Life 12, no. 11: 1845. https://doi.org/10.3390/life12111845
APA StyleVallianou, K., & Chaidas, K. (2022). Surgical Treatment Options for Epiglottic Collapse in Adult Obstructive Sleep Apnoea: A Systematic Review. Life, 12(11), 1845. https://doi.org/10.3390/life12111845