Arsenic Pollution and Anaerobic Arsenic Metabolizing Bacteria in Lake Van, the World’s Largest Soda Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Water and Sediment Sampling
2.3. Chemical Analysis
2.4. Isolation of Anaerobic and Alkaliphilic Arsenate-Reducing and Arsenite-Oxidizing Bacteria
2.5. Arsenic Transformation Assay
2.6. Physiological Characterization and Identification of Arsenic-Resistant Bacteria
2.7. PCR Amplification of Arsenic-Related Marker Genes
2.8. Effect of Physicochemical Parameters
2.9. Arsenic Tolerance Assay
3. Results
3.1. Sample Collection
3.2. Determination of Heavy Metal Amount in Van Lake Samples
3.3. Isolation of Arsenate and Arsenite Metabolizing Anaerobic Bacteria
3.4. Silver Nitrate Test
3.5. Identification of Arsenic-Resistant Bacteria
3.6. Detection of Arsenic Marker Genes
3.7. Effect of Physicochemical Parameters
3.8. MICs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zavarzina, D.G.; Tourova, T.P.; Kolganova, T.V.; Boulygina, E.S.; Zhilina, T.N. Description of Anaerobacillus alkalilacustre gen. nov., sp. nov.—strictly anaerobic diazotrophic Bacillus isolated from soda lake and transfer of Bacillus arseniciselenatis, Bacillus macyae, and Bacillus alkalidiazotrophicus to Anaerobacillus as the new Combinations A. arseniciselenatis comb. nov., A. macyae com. nov., and A. alkalidiazotrophicus com. nov. Microbiology 2009, 78, 723–731. [Google Scholar]
- Valdés, N.; Rivera-Araya, J.; Bijman, J.; Escudero, L.; Demergasso, C.; Fernández, S.; Ferrer, A.; Chávez, R.; Levicán, G. Draft genome sequence of Nitrincola sp. strain A-D6, an arsenic resistant Gammaproteobacterium isolated from a salt flat. Genome Announc. 2014, 2, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, U.; Chatterjee, S.; Mondal, N.K. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol. Rep. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stolz, J.; Basu, P.; Oremland, R. Microbial transformation of elements: The case of arsenic and selenium. Int. Microbiol. 2002, 5, 201–207. [Google Scholar]
- Krumova, K.; Nikolovski, M.; Groudeva, V. Isolation and identification of arsenic-transforming bacteria from arsenic contaminated sites in Bulgaria. Biotechnol. Biotechnol. EQ 2008, 22, 721–728. [Google Scholar] [CrossRef]
- Kale, S.P.; Salaskar, D.; Ghosh, S.; Sounderajan, S. Isolation and identification of arsenic resistant Providencia rettgeri (KDM3) from industrial effluent contaminated soil and studies on its arsenic resistance mechanisma. J. Microb. Biochem. Technol. 2015, 7, 194–201. [Google Scholar]
- Selim Reza, A.H.M.; Jean, J.S.; Yang, H.J.; Lee, M.K.; Woodall, B.; Liu, C.C.; Lee, J.F.; Luo, S.D. Occurence of arsenic in core sediments and groundwater in The Chapai-Nawabganj District, Northwestern Bangladesh. Water. Res. 2010, 44, 2021–2037. [Google Scholar] [CrossRef]
- Baba, A.; Sozbilir, H. Source of arsenic based on geological and hydrogeochemical properties of geothermal system in Western Turkey. Chem. Geol. 2012, 334, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Salam, M.A.; Hossain, M.S.; Ali, M.E.; Asad, M.A.; Ali, M.H. Isolation and characterization of arsenic resistant bacteria from different environment in South-West Region of Bangledesh. Res. J. Environ. Sci. 2009, 3, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Saltikov, C.W.; Olson, B.H. Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl. Environ. Microbiol. 2002, 68, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Handley, K.M.; Héry, M.; Lloyd, J.R. Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidazing bacterium isolated from hydrothermal sediment. Int. J. Syst. Evol. Microbiol. 2009, 59, 886–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zargar, K.; Hoeft, S.; Oremland, R.; Saltikov, C.W. Identification of a novel oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola echrlichii Strain MLHE-1. J. Bacteriol. 2010, 192, 3755–3762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakya, S.; Pradhan, B.; Smith, L.; Shrestha, J.; Tuladhar, S. Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal. J. Environ. Manag. 2012, 95, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Blum, J.S.; Kulp, T.R.; Han, S.; Lanoil, B.; Saltikov, C.W.; Stolz, J.F.; Miller, L.G.; Oremland, R.S. Desulfohalophilus alkaliarsenatis gen. nov., sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles Lake, California. Extremophiles 2012, 16, 727–742. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S.; Schumann, P.; Das, S.K. Pannonibacter indica sp. nov., a highly arsenate-tolerant bacterium isolated from a hot spring in India. Arch. Microbiol. 2013, 195, 1–8. [Google Scholar] [CrossRef]
- The Geology of Lake Van; PLATES, Publ. No. 169; Degens, E.T.; Kurtman, F. (Eds.) MTA: Ankara, Turkey, 1978; 158p. [Google Scholar]
- Reimer, A.; Landmann, G.; Kempe, S. Lake Van, eastern Anatolia, hydrochemistry and history. Aquat. Geochem. 2009, 15, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Çağatay, M.N.; Öğretmen, N.; Damcı, E.; Stockhecke, M.; Sancar, Ü.; Eriş, K.K.; Özeren, S. Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey. Quat. Sci. Rev. 2014, 104, 97–116. [Google Scholar] [CrossRef]
- Glombitza, C.; Stockhecke, M.; Schubert, C.J.; Vetter, A.; Kallmeyer, J. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey). Front. Microbiol. 2013, 4, 209. [Google Scholar] [CrossRef] [Green Version]
- Stockhecke, M.; Anselmetti, F.S.; Meydan, A.F.; Odermatt, D.; Sturm, M. The annual particle cycle in Lake Van (Turkey). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 333, 148–159. [Google Scholar] [CrossRef]
- Aydın, E.; Parlak, M.; Guducuoglu, H.; Bayram, Y. Determination of microbiological pollution level of Lake Van and Lake Erçek situated within the borders of Van province. Türk Mikrobiyol. Cem. Derg. 2001, 51, 132–142. [Google Scholar] [CrossRef]
- Landmann, G.; Reimer, A. Climatically induced lake level changes at Lake Van, Turkey, during the pleistocene/holocene transition. Glob. Biogeochem. Cycles 1996, 10, 797–808. [Google Scholar] [CrossRef]
- Altunkaynak, A. Forecasting surface water level fluctuation of Lake Van by artificial neural networks. Water Resour. Manag. 2007, 21, 399–408. [Google Scholar] [CrossRef]
- Zhao, F.J.; McGrath, S.P.; Meharg, A.A. Arsenic as a food chain contaminant: Mechanisms of plant uptake and metabolism and mitigation strategies. Annu. Rev. Plant. Biol. 2010, 61, 535–559. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Donahoe, R.J.; Redwine, J.C. In situ chemical fixation of arsenic-contaminated soils: An experimental study. Sci. Total Environ. 2007, 387, 28–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widdel, F.; Pfenning, N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids ı. ısolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp., nov. Arch. Microbiol. 1981, 129, 395–400. [Google Scholar] [CrossRef]
- Saltikov, C.W.; Wildman, R.A.; Newman, D.K. Expression dynamics of arsenic respiration and detoxification in Shewanella sp. atrain ANA-3. J. Bacteriol. 2005, 187, 7390–7396. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Kazy, S.F.; Sar, P. Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicol. 2013, 22, 363–376. [Google Scholar] [CrossRef]
- Conrad, A. The Arx Anaerobic Arsenite-Oxidization Pathway Is Conserved in Halomonas and Ectothiorhodospira Strains Isolated from Big Soda Lake; University of California: Santa Cruz, NV, USA, 2014. [Google Scholar]
- Benson, H.J. Microbiological Applications, Laboratory Manual in General Microbiology, 8th ed.; W. C. Brown House: Dubuque, IA, USA, 2002; p. 440. [Google Scholar]
- Ersoy Omeroglu, E. Isolation, Fenotypic and Molecular Characterization of Bioluminescent Bacteria from Izmir Bay. Doctoral Thesis, Ege University, Bornova, Turkey, 2011. [Google Scholar]
- Bilgehan, H. Klinik Mikrobiyolojik Tanı, 4th ed.; Baris Yayinlari-Fakulteler Kitabevi: İzmir, Turkey, 2004. [Google Scholar]
- Yumoto, I.; Hirota, K.; Nodasaka, Y.; Yokota, Y.; Hoshino, T.; Nakajima, K. Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int. J. Syst. Evol. Microbiol. 2004, 54, 2379–2383. [Google Scholar] [CrossRef]
- Chang, J.S.; Yoon, I.H.; Kim, K.W. Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines. J. Microbiol. Biotech. 2007, 17, 812–821. [Google Scholar]
- Ersoy Omeroglu, E.; Karaboz, I.; Sukatar, A.; Yasa, I.; Kocyigit, A. Determination of heavy metal susceptibilities of Vibrio harveyi strains by using 2, 3, 5-triphenyltetrazolium chloride (TTC). Rapp. Comm. Int. Mer. Médit. 2007, 38, 364. [Google Scholar]
- Borsodi, A.K.; Aszalós, J.M.; Bihari, P.; Nagy, I.; Schumann, P.; Spröer, C.; Kovács, A.L.; Bóka, K.; Dobosy, P.; Óvári, M.; et al. Anaerobacillus alkaliphilus sp. nov., a novel alkaliphilic and moderately halophilic bacterium. Int. J. Syst. Evol. Microbiol. 2019, 69, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Ben Fekih, I.; Zhang, C.; Li, Y.P.; Zhao, Y.; Alwathnani, H.A.; Saquib, Q.; Rensing, C.; Cervantes, C. Distribution of arsenic resistance genes in prokaryotes. Front. Microbiol. 2018, 9, 2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savarimuthu, X.; Hira-Smith, M.M.; Yuan, Y.; von Ehrenstein, O.S.; Das, S.; Ghosh, N.; Mazumder, D.N.G.; Smith, A.H. Seasonal variation of arsenic concentration in tubewells in West Bengal, India. J. Health Popul. Nutr. 2006, 24, 277–281. [Google Scholar]
- Boldareva, E.N.; Briantseva, I.A.; Tsapin, A.; Nelson, K.; DIu, S.; Turova, T.P.; Boĭchenko, V.A.; Boĭchenko, V.A.; Stadnichuk, I.N.; Gorlenko, V.M. The new bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline soda Mono Lake (California, United States). Mikrobiologiia 2007, 76, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Liao, T.; Xue, Y.; Ma, Y. Bacillus deliensis sp. nov., An alkaliphilic, Gram-positive bacterium isolated from a soda lake. Int. J. Syst. Evol. Microbiol. 2012, 62, 949–953. [Google Scholar] [CrossRef] [Green Version]
- Ersoy Omeroglu, E.; Sudagidan, M.; Yurt, M.N.Z.; Tasbasi, B.B.; Acar, E.E.; Ozalp, V.C. Microbial community of soda Lake Van as obtained from direct and enriched water, sediment and fish samples. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Yamamura, S.; Amachi, S. Microbiology of inorganic arsenic: From metabolism to bioremediation. J. Biosci. Bioeng. 2014, 118, 1–9. [Google Scholar] [CrossRef]
- Yang, H.C.; Fu, H.L.; Lin, Y.F.; Rosen, B.P. Pathways of arsenic uptake and efflux. Curr. Top. Membr. 2012, 69, 325–358. [Google Scholar] [CrossRef] [Green Version]
- Saltikov, C.W.; Newman, D.K. Genetic identification of a respiratory arsenate reductase. PNAS Microbiol. 2003, 100, 10983–10988. [Google Scholar] [CrossRef] [Green Version]
- Kudo, K.; Yamaguchi, N.; Makino, T.; Ohtsuka, T.; Kimura, K.; Dong, D.T.; Amachi, S. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. Strain PSR-1. App. Environ. Microbiol. 2013, 79, 4635–4642. [Google Scholar] [CrossRef] [Green Version]
- Antón, A.I. Isolation of Bacteria That As(V) to As(III); Marine Biological Laboratuary: Woods Hole, MA, USA, 1998. [Google Scholar]
- Sinha, R.K.; Krishnan, K.P.; Kurian, P.J. Draft genome sequence of Idiomarina sp. strain 5.13, a highly stress-resistant bacterium isolated from the Southwest Indian Ridge. Genome Announc. 2017, 5, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macur, R.; Jackson, C.R.; Botero, L.M.; Mcdermott, T.R.; Inskeep, W.P. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ. Sci. Technol. 2004, 38, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.P.; Liu, B.; Liu, G.H.; Ge, C.B.; Chen, Q.Q.; Zhu, Y.J.; Chen, Z. Genome sequence of Anaerobacillus macyae JMM-4T (DSM 16346), the first genomic ınformation of the newly established genus Anaerobacillus. Genome Announc. 2015, 3, 1–2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamamura, N.; Itai, T.; Liu, Y.; Reysenbach, A.L.; Damdinsuren, N.; Inskeep, W.P. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. Environ. Microbiol. Rep. 2014, 6, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Jha, S.; Mahatma, M.K.; Jha, A.; Kumar, G.N. Characterization of arsenite tolerant Halomonas sp. Alang-4, originated from heavy metal polluted shore of Gulf of Cambay. J. Environ. Sci. Health A 2016, 51, 478–486. [Google Scholar] [CrossRef]
- Ma, Y.; Xue, Y.; Grant, W.D.; Collins, N.C.; Duckworth, A.W.; Van Steenbergen, R.P.; Jones, B.E. Alkalimomas amylolytica gen. nov., and sp. nov., Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa. Extremophiles 2004, 8, 193–200. [Google Scholar] [CrossRef]
- Pham, T.H.; Lai, T.H.; Dang, P.N.; Inoue, D.; Sei, K.; Ike, M. Identification of some predominant bacteria isolated from JetA1 Fuel in Vietnam by sequence analysis of 16S rRNA gene. OUKA 2008, 301–308. Available online: https://hdl.handle.net/11094/13035 (accessed on 24 October 2022).
- Zhong, Z.P.; Liu, Y.; Liu, H.C.; Wang, F.; Zhou, Y.G.; Liu, Z.P. Marinobacter halophilus sp. nov., a halophilic bacterium isolated from a salt lake. Int. J. Syst. Evol. Microbiol. 2015, 65, 2838–2845. [Google Scholar] [CrossRef]
Season | Winter | Spring | Summer | Autumn |
---|---|---|---|---|
Sampling date | 20 January 2015 | 12 May 2015 | 28 August 2015 | 25 November 2015 |
Sample code | ||||
Water | WS-1 | WS-3 | WS-4 | WS-5 |
Sediment | S-1 | S-3 | S-4 | S-5 |
Coordinate * | 38°25′31″ N 43°16′53″ E | 38°25′31″ N 43°16′53″ E | 38°25′31″ N 43°16′53″ E | 38°25′31″ N 43°16′53″ E |
Hour * | 14:32 | 09:55 | 10:30 | 14:45 |
pH ** | 9.52 | 9.86 | 9.82 | 9.80 |
Temperature ** | 3 °C | 10.8 °C | 23.2 °C | 11.1 °C |
Dissolved O2 ** | 11.31 mg/L | 9.86 mg/L | 6.39 mg/L | 8.82 mg/L |
Moisture * | 87% | 91% | 37% | 69% |
Pressure * | 811 hPa | 834 hPa | 1021 hPa | 815 hPa |
Heavy Metal | Season | ||||||||
---|---|---|---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | ||||||
WS-1 | S-1 | WS-3 | S-3 | WS-4 | S-4 | WS-5 | S-5 | ||
Na | 7587.000 | 17,430.000 | 7230.000 | 4885.000 | 8471.00 | 6616.0 | 13,690.000 | 20,800.00 | Concentration of heavy metal (mg/kg or mg/L) |
Mg | 104.000 | 19,660.000 | 98.060 | 7028.000 | 107.60 | 7716.0 | 167.200 | 73,670.00 | |
Al | 0.253 | 21,100.000 | 0.005 | 7931.000 | 1.40 | 8848.0 | 4.032 | 24,830.00 | |
K | 409.200 | 7220.000 | 462.000 | 3401.000 | 459.10 | 2774.0 | 737.400 | 11,360.00 | |
Ca | 34.060 | 125,200.000 | 3.949 | 30,760.000 | 11.20 | 25,980.0 | 23.080 | 233,500.00 | |
V | 0.005 | 57.130 | 0.004 | 22.800 | 0.01 | 19.58 | 0.019 | 79.570 | |
Cr | 0.012 | 80.760 | ND | 30.950 | 0.01 | 30.03 | 0.083 | 131.800 | |
Mn | 0.024 | 509.900 | ND | 173.400 | 0.04 | 148.70 | 0.057 | 771.300 | |
Fe | 0.080 | 18,800.000 | ND | 7043.000 | 3.06 | 7272.0 | 2.491 | 281,800.00 | |
Co | ND | 10.520 | ND | 3.963 | ND | 3.8 | ND | 16.010 | |
Ni | 0.011 | 69.120 | 0.021 | 26.540 | ND | 31.4 | 0.036 | 93.030 | |
Cu | ND | 14.230 | ND | 7.818 | ND | 4.9 | 0.185 | 8.558 | |
Zn | 0.714 | 53.840 | 0.250 | 31.030 | ND | 13.13 | 0.222 | 26.100 | |
As | 0.214 | 9.370 | 0.263 | 2.730 | 0.14 | 2.61 | 0.261 | 26.070 | |
Se | 0.150 | 0.999 | 0.100 | 4.830 | 0.07 | 2.49 | 0.039 | 1.207 | |
Mo | 0.012 | 1.423 | 0.007 | 1.727 | 0.02 | 1.01 | 0.027 | 1.194 | |
Ag | ND | 81.610 | ND | 0.235 | ND | ND | 0.008 | 0.354 | |
Cd | ND | 0.186 | ND | 0.085 | ND | 0.06 | ND | 0.199 | |
Sn | ND | 1.711 | ND | 0.740 | 0.07 | 0.29 | 0.120 | 6.546 | |
Sb | ND | 0.299 | ND | 0.164 | ND | ND | ND | 0.528 | |
Ba | 0.003 | 133.800 | 0.013 | 56.880 | 0.04 | 38.78 | 0.043 | 297.200 | |
Hg | ND | ND | ND | 0.591 | 0.13 | 0.015 | ND | ND | |
Tl | ND | 0.259 | ND | 0.103 | ND | ND | ND | 0.181 | |
Pb | 0.045 | 8.456 | ND | 4.075 | 0.003 | 2.35 | 0.024 | 15.160 |
No. | Isolate | Sample | Season | Medium | Closest Neighbor | Percentage Similarity | Accession Number | |
---|---|---|---|---|---|---|---|---|
e− acceptor | e− donor | |||||||
1 | 4-S-1-1 A | Sediment | Winter | Na-nitrate (10 mM) | As(III) (0.5 mM) | Alkalimonas delamerensis | 98% | KY681793 |
2 | 4-S-1 A2 | Sediment | Idiomarina sp. | 99% | KY681796 | |||
3 | 1-WS-1 | Lake water | As(V) (10 mM) | Na-lactate (10 mM) | Branchybacterium paraconglomeratum | 99% | KY681785 | |
4 | 1-WS-1-1 | Lake water | Microbacterium schleiferi | 99% | KY681786 | |||
5 | 1-S-1 (2) | Sediment | Anaerobacillus sp. | 99% | KY681780 | |||
6 | 2-WS-1-1 | Lake water | As(V) (10 mM) | Na-acetate (10 mM) | Nitrincola sp. | 98% | KY989222 | |
7 | 3-S-1 K | Sediment | Na-nitrate (10 mM) | As(III) (1 mM) | Halomonas sp. | 99% | KY681792 | |
8 | 3-S-1 A | Sediment | Marinobacter halophilus | 99% | KY681791 | |||
9 | 1-S-3-1 | Sediment | Spring | As(V) (10 mM) | Na-lactate (10 mM) | Anaerobacillus sp. | 99% | KY681781 |
10 | 3-S-4-1 | Sediment | Autumn | Na-nitrate (10 mM) | As(III) (1 mM) | Halomonas sp. | 100% | KY989223 |
11 | 1-WS-5-1 | Lake water | Summer | As(V) (10 mM) | Na-lactate (10 mM) | Halomonas campisalis | 100% | KY681788 |
12 | 1-S-5 (3) | Sediment | Summer | Halomonas sp. | 99% | KY681784 |
Characteristics | Strains | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
Colony color | Blue | Blue | Cream | Cream | Cream | Cream | Cream | Blue | Transparent | Cream | Cream | Blue |
Gram staining | Gr(-) | Gr(-) | Gr(+) | Gr(+) | Gr(+) | Gr(-) | Gr(-) | Gr(-) | Gr(+) | Gr(-) | Gr(-) | Gr(-) |
Cell morphology | Bacil | Bacil | Bacil | Bacil | Bacil | Bacil | Bacil | Bacil | Bacil | Bacil | Bacil | Coccobacil |
Formation of | ||||||||||||
Capsule | - | + | + | + | + | + | + | + | + | + | + | + |
Endospore | - | + | + | - | + | + | + | - | - | + | + | + |
PHB | + | + | + | - | + | + | + | - | - | - | - | + |
Nitrate reduction | + | - | - | - | + | + | - | + | + | + | + | + |
Production of | ||||||||||||
Lipase | - | - | - | - | - | - | - | - | + | - | - | - |
Lecithinase | - | - | - | - | - | + | + | - | - | + | - | + |
Amylase | + | - | + | - | + | - | - | - | + | + | + | + |
Protease | - | + | - | - | + | + | + | + | - | - | - | - |
Gelatinase | - | - | - | - | - | - | - | - | - | - | - | - |
Assimilation of | ||||||||||||
Glucose | + | + | + | + | + | + | + | + | + | + | + | + |
Lactose | + | + | + | + | + | + | + | + | + | + | + | + |
Mannose | + | + | - | + | + | + | + | + | + | + | + | + |
Fructose | + | + | + | + | + | + | + | + | - | + | + | - |
Galactose | + | + | + | + | + | + | - | - | - | + | + | + |
Fermentation of | ||||||||||||
Glucose | + | - | - | - | - | + | - | - | - | - | + | - |
Lactose | + | - | + | + | - | + | + | + | - | + | + | + |
Mannose | + | - | + | - | - | + | + | + | - | + | - | + |
Fructose | + | + | - | - | - | + | - | - | - | + | + | + |
Galactose | - | + | + | - | - | + | - | - | - | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ersoy Omeroglu, E.; Sudagidan, M.; Ogun, E. Arsenic Pollution and Anaerobic Arsenic Metabolizing Bacteria in Lake Van, the World’s Largest Soda Lake. Life 2022, 12, 1900. https://doi.org/10.3390/life12111900
Ersoy Omeroglu E, Sudagidan M, Ogun E. Arsenic Pollution and Anaerobic Arsenic Metabolizing Bacteria in Lake Van, the World’s Largest Soda Lake. Life. 2022; 12(11):1900. https://doi.org/10.3390/life12111900
Chicago/Turabian StyleErsoy Omeroglu, Esra, Mert Sudagidan, and Erdal Ogun. 2022. "Arsenic Pollution and Anaerobic Arsenic Metabolizing Bacteria in Lake Van, the World’s Largest Soda Lake" Life 12, no. 11: 1900. https://doi.org/10.3390/life12111900
APA StyleErsoy Omeroglu, E., Sudagidan, M., & Ogun, E. (2022). Arsenic Pollution and Anaerobic Arsenic Metabolizing Bacteria in Lake Van, the World’s Largest Soda Lake. Life, 12(11), 1900. https://doi.org/10.3390/life12111900