Plazomicin against Multidrug-Resistant Bacteria: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Question
2.2. Research Strategy and Data Sources
2.3. Citation Management
2.4. Inclusion Criteria
2.5. Title and Abstract Screening
2.6. Quality Assessment and Extrapolation of the Characteristics of the Studies
2.7. Data Synthesis
3. Results
3.1. Identification of the Eligible Studies
3.2. Characteristics of the Included Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Database | Search String | Studies Detected (Number) |
---|---|---|
MEDLINE (via Ovid) |
| 192 |
EMBASE | ‘plazomicin’/exp OR ‘achn 490’ OR ‘achn490’ OR ‘plazomicin’ OR ‘plazomicin sulfate’ OR ‘plazomicin sulphate’ OR ‘zemdri’ | 504 |
CENTRAL | “plazomicin” OR “achn 490” OR “zemdri” | 23 |
ClinicalTrials.gov | plazomicin OR achn490 OR zemdri | 10 |
EU-CTR | plazomicin OR achn490 OR zemdri | 2 |
References
- Saravolatz, L.D.; Stein, G.E. Plazomicin: A New Aminoglycoside. Clin. Infect. Dis. 2020, 70, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi, P.K.; Haddad, J.; Mobashery, S. Aminoglycosides: Perspectives on Mechanisms of Action and Resistance and Strategies to Counter Resistance. Antimicrob. Agents Chemother. 2000, 44, 3249–3256. [Google Scholar] [CrossRef] [Green Version]
- Justice, M.C.; Ku, T.; Hsu, M.-J.; Carniol, K.; Schmatz, D.; Nielsen, J. Mutations in Ribosomal Protein L10e Confer Resistance to the Fungal-specific Eukaryotic Elongation Factor 2 Inhibitor Sordarin. J. Biol. Chem. 1999, 274, 4869–4875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovmar, M.; Nilsson, K.; Lukk, E.; Vimberg, V.; Tenson, T.; Ehrenberg, M. Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency. EMBO J. 2009, 28, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Eljaaly, K.; Alharbi, A.; Alshehri, S.; Ortwine, J.K.; Pogue, J.M. Plazomicin: A Novel Aminoglycoside for the Treatment of Resistant Gram-Negative Bacterial Infections. Drugs 2019, 79, 243–269. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.S.; Miller, G.H. Combating evolution with intelligent design: The neoglycoside ACHN-490. Curr. Opin. Microbiol. 2010, 13, 565–573. [Google Scholar] [CrossRef]
- Castanheira, M.; Davis, A.P.; Mendes, R.E.; Serio, A.W.; Krause, K.M.; Flamm, R.K. In Vitro Activity of Plazomicin against Gram-Negative and Gram-Positive Isolates Collected from U.S. Hospitals and Comparative Activities of Aminoglycosides against Carbapenem-Resistant Enterobacteriaceae and Isolates Carrying Carbapenemase Genes. Antimicrob. Agents Chemother. 2018, 62, e00313-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, J.A.; Burgess, D.S. Plazomicin: A new aminoglycoside in the fight against antimicrobial resistance. Ther. Adv. Infect. Dis. 2020, 7, 2049936120952604. [Google Scholar] [CrossRef] [PubMed]
- Lebeaux, D.; Chauhan, A.; Letoffe, S.; Fischer, F.; de Reuse, H.; Beloin, C.; Ghigo, J.M. pH-mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms. J. Infect. Dis. 2014, 210, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y.; Wachino, J.I.; Arakawa, Y. Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases. Infect. Dis. Clin. N. Am. 2016, 30, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Thwaites, M.; Hall, D.; Stoneburner, A.; Shinabarger, D.; Serio, A.W.; Krause, K.M.; Marra, A.; Pillar, C. Activity of plazomicin in combination with other antibiotics against multidrug-resistant Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 2018, 92, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Achaogen. Zemdri© (Plazomicin) for Injection, for Intravenous Use: US Prescribing Information. Available online: http://zemdri.com/assets/pdf/ (accessed on 27 October 2022.).
- Mingeot-Leclercq, M.-P.; Tulkens, P.M. Aminoglycosides: Nephrotoxicity. Antimicrob. Agents Chemother. 1999, 43, 1003–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fosso, M.Y.; Li, Y.; Garneau-Tsodikova, S. New trends in the use of aminoglycosides. MedChemComm 2014, 5, 1075–1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jospe-Kaufman, M.; Siomin, L.; Fridman, M. The relationship between the structure and toxicity of aminoglycoside antibiotics. Bio. Med. Chem. Lett. 2020, 30, 127218. [Google Scholar] [CrossRef]
- Tang, H.J.; Lai, C.C. Plazomicin-associated Nephrotoxicity. Clin. Infect. Dis. 2020, 71, 1130–1131. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Aromataris, E.; Munn, Z.; Briggs, I.J. JBI Manual for Evidence Synthesis; JBI: Adelaide, Australia, 2020. [Google Scholar]
- The EndNote Team. EndNote, 20.4.1; Clarivate: Philadelphia, PA, USA,, 2013. [Google Scholar]
- Microsoft Corporation. Microsoft Excel, 2209 Build 16.0.15629.20200; Microsoft Corporation: Albuquerque, NM, USA, 2020. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; 2022.07.1+554; PBC: Boston, MA, USA, 2022. [Google Scholar]
- U.S. Food and Drug Administration; Center for Drug Evaluation and Research. Zemdri Approval Letter Reference ID: 4282864; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2018.
- Wright, H.; Bonomo, R.A.; Paterson, D.L. New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clin. Microbiol. Infect. 2017, 23, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Di Franco, S.; Alfieri, A.; Petrou, S.; Damiani, G.; Passavanti, M.B.; Pace, M.C.; Leone, S.; Fiore, M. Current status of COVID-19 treatment: An opinion review. World J. Virol. 2020, 9, 27–37. [Google Scholar] [CrossRef]
- Coppola, N.; Maraolo, A.E.; Onorato, L.; Scotto, R.; Calo, F.; Atripaldi, L.; Borrelli, A.; Corcione, A.; De Cristofaro, M.G.; Durante-Mangoni, E.; et al. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics 2022, 11, 1263. [Google Scholar] [CrossRef]
- Adrie, C.; Garrouste-Orgeas, M.; Essaied, W.I.; Schwebel, C.; Darmon, M.; Mourvillier, B.; Ruckly, S.; Dumenil, A.S.; Kallel, H.; Argaud, L.; et al. Attributable mortality of ICU-acquired bloodstream infections: Impact of the source, causative micro-organism, resistance profile and antimicrobial therapy. J. Infect. 2017, 74, 131–141. [Google Scholar] [CrossRef]
- Corona, A.; Bertolini, G.; Lipman, J.; Wilson, A.P.; Singer, M. Antibiotic use and impact on outcome from bacteraemic critical illness: The BActeraemia Study in Intensive Care (BASIC). J. Antimicrob. Chemother. 2010, 65, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The "Old" and the "New" Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Franco, S.; Alfieri, A.; Fiore, M.; Fittipaldi, C.; Pota, V.; Coppolino, F.; Sansone, P.; Pace, M.C.; Passavanti, M.B. A Literature Overview of Secondary Peritonitis Due to Carbapenem-Resistant Enterobacterales (CRE) in Intensive Care Unit (ICU) Patients. Antibiotics 2022, 11, 1347. [Google Scholar] [CrossRef] [PubMed]
- Hansen, G.T. Continuous Evolution: Perspective on the Epidemiology of Carbapenemase Resistance Among Enterobacterales and Other Gram-Negative Bacteria. Infect. Dis. Ther. 2021, 10, 75–92. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.M.E.; Cloutier, D.J.; Komirenko, A.S.; Cebrik, D.S.; Krause, K.M.; Keepers, T.R.; Connolly, L.E.; Miller, L.G.; Friedland, I.; Dwyer, J.P. Once-Daily Plazomicin for Complicated Urinary Tract Infections. N. Engl. J. Med. 2019, 380, 729–740. [Google Scholar] [CrossRef] [PubMed]
- McKinnell, J.A.; Dwyer, J.P.; Talbot, G.H.; Connolly, L.E.; Friedland, I.; Smith, A.; Jubb, A.M.; Serio, A.W.; Krause, K.M.; Daikos, G.L. Plazomicin for Infections Caused by Carbapenem-Resistant Enterobacteriaceae. N. Engl. J. Med. 2019, 380, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Choi, T.; Komirenko, A.S.; Riddle, V.; Kim, A.; Dhuria, S.V. No Effect of Plazomicin on the Pharmacokinetics of Metformin in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2019, 8, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Gall, J.; Choi, T.; Riddle, V.; Van Wart, S.; Gibbons, J.A.; Seroogy, J. A Phase 1 Study of Intravenous Plazomicin in Healthy Adults to Assess Potential Effects on the QT/QTc Interval, Safety, and Pharmacokinetics. Clin. Pharmacol. Drug Dev. 2019, 8, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Hawkey, P.M.; Warren, R.E.; Livermore, D.M.; McNulty, C.A.M.; Enoch, D.A.; Otter, J.A.; Wilson, A.P.R. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: Report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J. Antimicrob. Chemother. 2018, 73, iii2–iii78. [Google Scholar] [CrossRef] [Green Version]
- Earle, W.; Bonegio, R.G.B.; Smith, D.B.; Branch-Elliman, W. Plazomicin for the treatment of multidrug-resistant Klebsiella bacteraemia in a patient with underlying chronic kidney disease and acute renal failure requiring renal replacement therapy. BMJ Case Rep. 2021, 14, e243609. [Google Scholar] [CrossRef]
- Theuretzbacher, U.; Paul, M. Developing a new antibiotic for extensively drug-resistant pathogens: The case of plazomicin. Clin. Microbiol. Infect. 2018, 24, 1231–1233. [Google Scholar] [CrossRef] [PubMed]
Plazomicin Molecular Characteristics | Protection against AMEs Conferred from the Molecular Characteristics | Traditional Aminoglycosides Inactivated by AMEs |
---|---|---|
Lacks hydroxyl groups in the 3′ and 4′ positions | O-nucleotidyltransferase (ANT(4′)) | Amikacin and tobramycin |
O-phosphotransferase (APH(3′)) | Amikacin | |
Presence of unsaturated hydroxyethyl group at position 6′ | N-acetyltransferase (AAC(6′)) | Amikacin, gentamicin and tobramycin |
N-1 substitution with 4-amino-2-hydroxybutanoic acid | N-acetyltransferase (AAC(3′)) | Gentamicin and tobramycin |
O-nucleotidyltransferase (ANT(2′)) | Gentamicin and tobramycin | |
O-phosphotransferase (APH(2′)) | Amikacin, gentamicin, and tobramycin |
Review | 226 |
Off-topic | 147 |
Letter | 20 |
Pharmacology | 14 |
Congress | 5 |
Animal | 5 |
Genome | 5 |
Guideline | 2 |
Duplicates | 27 |
Total Excluded | 451 |
Year of Publication | Identification Number | Study Phase | Study Title | Reference (URL) |
---|---|---|---|---|
2021 | NCT04699656 | Phase 1 | Plazomicin Study in ESRD Patients Receiving IHD | https://ClinicalTrials.gov/show/NCT04699656 (accessed on 27 October 2022) |
2017 | NCT03270553 | Phase 1 | A Study to Assess the Effect of Plazomicin on the Pharmacokinetics of Metformin | https://ClinicalTrials.gov/show/NCT03270553 (accessed on 27 October 2022) |
2017 | NCT03177278 | Phase 1 | A Study to Assess the Metabolism, Excretion, and Mass Balance of Radio-Labeled Plazomicin | https://ClinicalTrials.gov/show/NCT03177278 (accessed on 27 October 2022) |
2012 | NCT01462136 Published in 2018 | Phase 1 | PK Study of ACHN-490 Injection in Renally Impaired Subjects | https://ClinicalTrials.gov/show/NCT01462136 (accessed on 27 October 2022) |
2012 | NCT01514929 Published in 2019 | Phase 1 | A Study to Evaluate the Effect of IV ACHN-490 Injection on the QT/QTc Interval in Healthy Volunteers | https://ClinicalTrials.gov/show/NCT01462136 (accessed on 27 October 2022) |
2010 | NCT01034774 | Phase 1 | Phase 1 Study to Determine Safety, Blood PK and Lung Penetration | https://ClinicalTrials.gov/show/NCT01034774 (accessed on 27 October 2022) |
2009 | NCT00822978 Published in 2012 | Phase 1 | Phase 1 Study for Safety of ACHN-490 | https://ClinicalTrials.gov/show/NCT00822978 (accessed on 27 October 2022) |
2018 | NCT01096849 | Phase 2 | A Multicenter, Randomized, Double-Blind, Phase 2 Study of the Efficacy and Safety of Plazomicin Compared with Levofloxacin in the Treatment of Complicated Urinary Tract Infection and Acute Pyelonephritis | https://clinicaltrials.gov/ct2/show/NCT01096849 (accessed on 27 October 2022) |
2012 | NCT01096849 | Phase 2 | A Study of Plazomicin Compared with Levofloxacin for the Treatment of Complicated Urinary Tract Infection (cUTI) and Acute Pyelonephritis (AP) | https://ClinicalTrials.gov/show/NCT01096849 (accessed on 27 October 2022) |
2019 | NCT01970371 Published in 2018 and 2019 | Phase 3 | Evaluation of Plazomicin, Tigecycline, and Meropenem Pharmacodynamic Exposure against Carbapenem-Resistant Enterobacteriaceae in Patients with Bloodstream Infection or Hospital-Acquired/Ventilator-Associated Pneumonia from the CARE Study (ACHN-490-007) | https://ClinicalTrials.gov/show/NCT01970371 (accessed on 27 October 2022) |
2019 | NCT02486627 | Phase 3 | Once-Daily Plazomicin for Complicated Urinary Tract Infections | https://ClinicalTrials.gov/show/NCT02486627 (accessed on 27 October 2022) |
2017 | NCT00676169 Published in 2018 and 2019 | Phase 3 | Microbiological outcomes with plazomicin (PLZ) versus meropenem (MEM) in patients with complicated urinary tract infections (CUTI), including acute pyelonephritis (AP) in the epic study | https://ClinicalTrials.gov/show/ NCT00676169 (accessed on 27 October 2022) |
2016 | NCT01970371 | Phase 3 | A Study of Plazomicin Compared with Colistin in Patients with Infection Due to Carbapenem-Resistant Enterobacteriaceae (CRE) | https://ClinicalTrials.gov/show/ NCT01970371 (accessed on 27 October 2022) |
2016 | 2015-001588-37 | Phase 3 | A Phase 3, Randomized, Multicenter, Double-Blind Study to Evaluate the Efficacy and Safety of Plazomicin Compared with Meropenem followed by Optional Oral Therapy for the Treatment of complicated urinary tract infections | https://www.clinicaltrialsregister.eu/ctr-search/search?query=eudract_number:2015-001588-37 (accessed on 27 October 2022) |
2016 | 2013-001997-18 | Phase 3 | A Phase 3, Multicenter, Randomized, Open-Label Study to Evaluate the Efficacy and Safety of Plazomicin Compared with Colistin in Patients with Infection due to Carbapenem-Resistant Enterobacteriaceae (CRE) | https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-001997-18/results (accessed on 27 October 2022) |
Antibiotic Used As Comparator | Number of Studies | Percentage |
---|---|---|
Meropenem | 7 | 43.75% |
Colistin | 5 | 31.25% |
Levofloxacin | 1 | 6.25% |
Ceftazidime-Avibactam | 2 | 12.50% |
Meropenem-Vaborbactam | 1 | 6.25% |
Cefiredocol | 1 | 6.25% |
Ceftolozane-Tazobactam | 1 | 6.25% |
Tigecycline | 1 | 6.25% |
Bacteria Species | Number of Studies | Number of Studies (%) |
---|---|---|
Multiple bacteria * | 3 | 4.55% |
Staphylococcus aureus | 3 | 4.55% |
Pseudomonas aeruginosa | 3 | 4.55% |
Klebsiella Pneumoniae | 16 | 24.24% |
Gram-negative spp. ** | 6 | 9.09% |
Enterobacterales spp. | 12 | 18.18% |
Enterobacteriaceae spp. | 19 | 28.79% |
ENT *** | 12 + 19 | 46.97% |
Escherichia coli | 6 | 9.09% |
Acinetobacter baumannii | 3 | 4.55% |
Brucella spp. | 1 | 1.52% |
Enterococcus Faecium | 1 | 1.52% |
Gram-positive spp. ** | 1 | 1.52% |
Enterobacter spp. | 1 | 1.52% |
Type of Antibiotic Resistance | Number of Studies | Number of Studies (%) |
---|---|---|
Carbapenem-resistant (none declared specifically) | 23 | 43.40% |
MDR | 15 | 28.30% |
NDM | 2 | 3.77% |
ESBLs | 4 | 7.55% |
AME | 3 | 5.66% |
KPC | 6 | 11.32% |
ESCREC | 1 | 1.89% |
Quinolone-resistant | 1 | 1.89% |
MRSA | 3 | 5.66% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfieri, A.; Di Franco, S.; Donatiello, V.; Maffei, V.; Fittipaldi, C.; Fiore, M.; Coppolino, F.; Sansone, P.; Pace, M.C.; Passavanti, M.B. Plazomicin against Multidrug-Resistant Bacteria: A Scoping Review. Life 2022, 12, 1949. https://doi.org/10.3390/life12121949
Alfieri A, Di Franco S, Donatiello V, Maffei V, Fittipaldi C, Fiore M, Coppolino F, Sansone P, Pace MC, Passavanti MB. Plazomicin against Multidrug-Resistant Bacteria: A Scoping Review. Life. 2022; 12(12):1949. https://doi.org/10.3390/life12121949
Chicago/Turabian StyleAlfieri, Aniello, Sveva Di Franco, Valerio Donatiello, Vincenzo Maffei, Ciro Fittipaldi, Marco Fiore, Francesco Coppolino, Pasquale Sansone, Maria Caterina Pace, and Maria Beatrice Passavanti. 2022. "Plazomicin against Multidrug-Resistant Bacteria: A Scoping Review" Life 12, no. 12: 1949. https://doi.org/10.3390/life12121949
APA StyleAlfieri, A., Di Franco, S., Donatiello, V., Maffei, V., Fittipaldi, C., Fiore, M., Coppolino, F., Sansone, P., Pace, M. C., & Passavanti, M. B. (2022). Plazomicin against Multidrug-Resistant Bacteria: A Scoping Review. Life, 12(12), 1949. https://doi.org/10.3390/life12121949