Nasal Microbiota and Neuroinflammation: Relationship between Nasal Flora and Multiple Sclerosis Onset/Progression
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. The Link between Nasal Microbiota and Neuroinflammation
- (1)
- The Olfactory Route
- (2)
- The Trigeminal Route
- (3)
- Systemic Route
4.2. Multiple Sclerosis and Nasal Microbiota: Hypothesis concerning a Possible Relationship
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, L. Gut, oral and nasal microbiota and Parkinson’s disease. Microb. Cell Factories 2020, 19, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, P.A.; Aho, V.T.; Paulin, L.; Pekkonen, E.; Auvinen, P.; Scheperjans, F. Oral and nasal microbiota in Parkinson’s disease. Park. Relat. Disord. 2017, 38, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heintz-Buschart, A.; Pandey, U.; Wicke, T.; Sixel-Döring, F.; Janzen, A.; Sittig-Wiegand, E.; Trenkwalder, C.; Oertel, W.H.; Mollenhauer, B.; Wilmes, P. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 2017, 33, 88–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Bharathi, M.; Chaiyasut, C. Nasal Microbiota, Olfactory Health, Neurological Disorders and Aging—A Review. Microorganisms 2022, 10, 1405. [Google Scholar] [CrossRef] [PubMed]
- Lazarini, F.; Roze, E.; Lannuzel, A.; Lledo, P.-M. The microbiome–nose–brain axis in health and disease. Trends Neurosci. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017, 19, 1–10. [Google Scholar]
- Di Stadio, A.; Costantini, C.; Renga, G.; Pariano, M.; Ricci, G.; Romani, L. The Microbiota/Host Immune System Interaction in the Nose to Protect from COVID-19. Life 2020, 10, 345. [Google Scholar] [CrossRef]
- Valery, P.C.; Lucas, R.M.; Williams, D.B.; Pender, M.P.; Chapman, C.; Coulthard, A.; Dear, K.; Dwyer, T.; Kilpatrick, T.J.; McMichael, A.J.; et al. Occupational Exposure and Risk of Central Nervous System Demyelination. Am. J. Epidemiol. 2013, 177, 954–961. [Google Scholar] [CrossRef]
- Poser, C.M.; Benedikz, J.; Hibberd, P.L. The epidemiology of multiple sclerosis: The Iceland model onset-adjusted prevalence rate and other methodological considerations. J. Neurol. Sci. 1992, 111, 143–152. [Google Scholar] [CrossRef]
- Horwitz, H.; Ahlgren, B.; Nærum, E. Effect of occupation on risk of developing MS: An insurance cohort study. BMJ Open 2013, 3, e002894. [Google Scholar] [CrossRef] [Green Version]
- Gay, F. Bacterial transportable toxins of the nasopharyngeal microbiota in multiple sclerosis. Nose-to-brain direct. Rev. Neurol. 2019, 175, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Restrepo-Jiménez, P.; Monsalve, D.M.; Pacheco, Y.; Acosta-Ampudia, Y.; Ramírez-Santana, C.; Leung, P.S.C.; Ansari, A.A.; Gershwin, M.E.; Anaya, J.M. Molecular mimicry and autoimmunity. J. Autoimmun. 2018, 95, 100–123. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Tian, S.; Liu, J.; Cao, R.; Yue, P.; Cai, X.; Shang, Q.; Yang, M.; Han, L.; Zhang, D.-K. Dual role of the nasal microbiota in neurological diseases—An unignorable risk factor or a potential therapy carrier. Pharmacol. Res. 2022, 179, 106189. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Boltz, D.; Sturm-Ramirez, K.; Shepherd, K.R.; Jiao, Y.; Webster, R.; Smeyne, R.J. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc. Natl. Acad. Sci. USA 2009, 106, 14063–14068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marttila, R.J.; Rinne, U.K.; Halonen, P.; Madden, D.L.; Sever, J.L. Herpesviruses and parkinsonism. Herpes simplex virus types 1 and 2, and cytomegalovirus antibodies in serum and CSF. Arch Neurol. 1981, 38, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Bopeththa, B.V.K.M.; Ralapanawa, U. Post encephalitic parkinsonism following dengue viral infection. BMC Res. Notes 2017, 10, 655. [Google Scholar] [CrossRef]
- Ganaraja, V.H.; Kamble, N.; Netravathi, M.; Holla, V.V.; Koti, N.; Pal, P.K. Stereotypy with Parkinsonism as a Rare Sequelae of Dengue Encephalitis: A Case Report and Literature Review. Tremor Other Hyperkinetic Mov. 2021, 11. [Google Scholar] [CrossRef]
- Hemling, N.; Röyttä, M.; Rinne, J.; Pöllänen, P.; Broberg, E.; Tapio, V.; Vahlberg, T.; Hukkanen, V. Herpesviruses in brains in Alzheimer’s and Parkinson’s diseases. Ann. Neurol. 2003, 54, 267–271. [Google Scholar] [CrossRef]
- Gay, F. Staphylococcal immune complexes and myelinolytic toxin in early acute multiple sclerosis lesions—An immunohistological study supported by multifactorial cluster analysis and antigen-imprint isoelectric focusing. Mult. Scler. Relat. Disord. 2013, 2, 213–232. [Google Scholar] [CrossRef]
- Branton, W.G.; Lu, J.-Q.; Surette, M.G.; Holt, R.A.; Lind, J.; Laman, J.D.; Power, C. Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Sci. Rep. 2016, 6, 37344. [Google Scholar] [CrossRef] [Green Version]
- Ergene, E.; Rupp, F.W.; Qualls, C.R.; Ford, C.C. Acute optic neuritis: Association with paranasal sinus inflammatory changes on magnetic resonance imaging. J. Neuroimaging 2000, 10, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.L.; Crowe, P.; Chavda, S.V.; Pahor, A.L. The incidence of sinusitis in patients with multiple sclerosis. Rhinol. J. 1997, 35, 118–119. [Google Scholar]
- Munster, V.J.; Prescott, J.B.; Bushmaker, T.; Long, D.; Rosenke, R.; Thomas, T.; Scott, D.; Fischer, E.R.; Feldmann, H.; De Wit, E. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci. Rep. 2012, 2, 736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, A.T.; Stauft, C.; Aboellail, T.A.; Toth, A.M.; Jarvis, D.; Powers, A.M.; Olson, K.E. Bioluminescent Imaging and Histopathologic Characterization of WEEV Neuroinvasion in Outbred CD-1 Mice. PLoS ONE 2013, 8, e53462. [Google Scholar] [CrossRef]
- Mori, I.; Nishiyama, Y.; Yokochi, T.; Kimura, Y. Olfactory transmission of neurotropic viruses. J. NeuroVirol. 2005, 11, 129–137. [Google Scholar] [CrossRef]
- Meinhardt, J.; Radke, J.; Dittmayer, C.; Franz, J.; Thomas, C.; Mothes, R.; Laue, M.; Schneider, J.; Brünink, S.; Greuel, S.; et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat. Neurosci. 2021, 24, 168–175. [Google Scholar] [CrossRef]
- I Chowdhury, S.; Lee, B.J.; Onderci, M.; Weiss, M.L.; Mosier, D. Neurovirulence of glycoprotein C(gC)-deleted bovine herpesvirus type-5 (BHV-5) and BHV-5 expressing BHV-1 gC in a rabbit seizure model. J. NeuroVirol. 2000, 6, 284–295. [Google Scholar] [CrossRef]
- van Riel, D.; Leijten, L.M.; Verdijk, R.M.; GeurtsvanKessel, C.; van der Vries, E.; van Rossum, A.M.; Osterhaus, A.D.; Kuiken, T. Evidence for influenza virus CNS invasion along the olfactory route in an immunocompromised infant. J. Infect. Dis. 2014, 210, 419–423. [Google Scholar] [CrossRef]
- van Ginkel, F.W.; McGhee, J.R.; Watt, J.M.; Campos-Torres, A.; Parish, L.A.; Briles, D.E. Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. Proc. Natl. Acad. Sci. USA 2003, 100, 14363–14367. [Google Scholar] [CrossRef] [Green Version]
- Shusterman, D.; Hummel, T. Symposium overview: Nasal trigeminal function: Qualitative, quantitative, and temporal effects. Ann. N. Y. Acad. Sci. 2009, 1170, 181–183. [Google Scholar] [CrossRef]
- Johnson, N.J.; Hanson, L.R.; Frey, I.W.H. Trigeminal Pathways Deliver a Low Molecular Weight Drug from the Nose to the Brain and Orofacial Structures. Mol. Pharm. 2010, 7, 884–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St John, J.A.; Ekberg, J.A.; Dando, S.J.; Meedeniya, A.C.; Horton, R.E.; Batzloff, M.; Owen, S.J.; Holt, S.; Peak, I.R.; Ulett, G.C.; et al. Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: Implications for the pathogenesis of neurological melioidosis. mBio 2014, 5, e00025. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, J.; Hao, Y.; Wang, B.; Wang, Y.; Liu, Q.; Zhao, J.; Li, Y.; Wang, P.; Wang, X.; et al. Predicting the recurrence of chronic rhinosinusitis with nasal polyps using nasal microbiota. Allergy 2021, 77, 540–549. [Google Scholar] [CrossRef]
- Cho, D.-Y.; Hunter, R.C.; Ramakrishnan, V.R. The Microbiome and Chronic Rhinosinusitis. Immunol. Allergy Clin. N. Am. 2020, 40, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Kawabori, S.; Nakamura, A.; Okude, Y. The Reactivity of Mast Cells in Nasal Mucosa. Auris Nasus Larynx 1987, 14, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Ciprandi, G.; Italian Cometa Study Group; Natoli, V.; Puccinelli, P.; Incorvaia, C. Allergic rhinitis: The eligible candidate to mite immunotherapy in the real world. Allergy, Asthma Clin. Immunol. 2017, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Conti, P.; Kempuraj, D. Important role of mast cells in multiple sclerosis. Mult. Scler. Relat. Disord. 2016, 5, 77–80. [Google Scholar] [CrossRef]
- Magomedov, M.M.; Magomedov, G.M. [Acid-base equilibrium and mucociliary clearance in the nasal cavity in the patients with chronic rhinitis and inflammatory diseases of paranasal sinuses]. Vestnik Otorinolaringol. 2013, 2, 43–45. [Google Scholar]
- Loosen, S.H.; Doege, C.; Meuth, S.G.; Luedde, T.; Kostev, K.; Roderburg, C. Infectious mononucleosis is associated with an increased incidence of multiple sclerosis: Results from a cohort study of 32,116 outpatients in Germany. Front. Immunol. 2022, 13, 937583. [Google Scholar] [CrossRef]
- Di Stadio, A.; Romani, L.; Bernitsas, E. Could SARS-CoV2 affect MS progression? Mult. Scler. Relat. Disord. 2020, 46, 102540. [Google Scholar] [CrossRef]
- Di Stadio, A.; Della Volpe, A.; Ralli, M.; Ricci, G. Gender differences in COVID-19 infection. The estrogen effect on upper and lower airways. Can it help to figure out a treatment? Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 5195–5196. [Google Scholar] [CrossRef] [PubMed]
- Song, W.-J.; Hui, C.K.M.; Hull, J.H.; Birring, S.S.; McGarvey, L.; Mazzone, S.B.; Chung, K.F. Confronting COVID-19-associated cough and the post-COVID syndrome: Role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir. Med. 2021, 9, 533–544. [Google Scholar] [CrossRef] [PubMed]
Authors | Observational Model | Number of Cases Included in Each Study | Aim | Interventions | Results |
---|---|---|---|---|---|
Gay et al. [19] | MS human autopsy tissues | 21 | (1) To identify bacterial toxins or antigens in MS autopsy tissues (2) To search for specific bacterial antibody in the CSF of MS cases | (1)Ttissues were screened for bacterial antigens using immunohistological methods (2) Oligoclonal IgG in CSF were screened using isoelectric focusing and antigen imprinting methods | Anti-staphylococcal antibodies detected antigen co-locating with IgG/C3d immune complexes in pre-demyelinatin and in primary lesions |
Branton et al. [20] | MS human autopsy tissues and controls | 44 | To investigate the composition of microbiota in autopsied brain samples from patients with MS and controls nonMS | (1) RNAseq analyses (2) Histopathology, immunohistochemistry and in situ hybridization | (1) RNAseq analyses showed a predominance of Proteobacteria in progressive MS patients’ white matter, associated with increased inflammatory gene expression; (2) Bacterial peptidoglycan immunodetection was correlated with demyelination and neuroinflammation in MS brains |
Ergene et al. [21] | Patients with new onset acute optic neuritis and control patients | 71 | To evaluate paranasal sinus inflammatory changes | Radiological study with MRI | Frequency of the maxillary sinusitis was significantly higher (p = 0.02) in patients with optic neuritis than in controls |
Jones et al. [22] | Patients affected by MS | 108 | To evaluate paranasal sinus inflammatory changes | Radiological study with MRI | The incidence of sinus disease is higher than in some other studies of normal population |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gioacchini, F.M.; Ferlito, S.; Ralli, M.; Scarpa, A.; La Mantia, I.; Re, M.; Romani, L.; Di Stadio, A. Nasal Microbiota and Neuroinflammation: Relationship between Nasal Flora and Multiple Sclerosis Onset/Progression. Life 2022, 12, 2043. https://doi.org/10.3390/life12122043
Gioacchini FM, Ferlito S, Ralli M, Scarpa A, La Mantia I, Re M, Romani L, Di Stadio A. Nasal Microbiota and Neuroinflammation: Relationship between Nasal Flora and Multiple Sclerosis Onset/Progression. Life. 2022; 12(12):2043. https://doi.org/10.3390/life12122043
Chicago/Turabian StyleGioacchini, Federico Maria, Salvatore Ferlito, Massimo Ralli, Alfonso Scarpa, Ignazio La Mantia, Massimo Re, Luigina Romani, and Arianna Di Stadio. 2022. "Nasal Microbiota and Neuroinflammation: Relationship between Nasal Flora and Multiple Sclerosis Onset/Progression" Life 12, no. 12: 2043. https://doi.org/10.3390/life12122043
APA StyleGioacchini, F. M., Ferlito, S., Ralli, M., Scarpa, A., La Mantia, I., Re, M., Romani, L., & Di Stadio, A. (2022). Nasal Microbiota and Neuroinflammation: Relationship between Nasal Flora and Multiple Sclerosis Onset/Progression. Life, 12(12), 2043. https://doi.org/10.3390/life12122043