Particle Therapy: Clinical Applications and Biological Effects
Abstract
:1. Introduction
1.1. Clinical Applications of Particle Therapy
1.1.1. Neutrons
1.1.2. Protons
1.1.3. Carbon Ions
2. Molecular Responses to Particle Therapy
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Doyen, J.; Falk, A.T.; Floquet, V.; Hérault, J.; Hannoun-Lévi, J.-M. Proton beams in cancer treatments: Clinical outcomes and dosimetric comparisons with photon therapy. Cancer Treat. Rev. 2016, 43, 104–112. [Google Scholar] [CrossRef]
- Wilson, R.R. Radiological Use of Fast Protons. Radiology 1946, 47, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Durante, M. Proton beam therapy in Europe: More centres need more research. Br. J. Cancer 2018, 120, 777–778. [Google Scholar] [CrossRef] [Green Version]
- Burnet, N.; Mackay, I.R.; Smith, E.; Chadwick, A.L.; Whitfield, A.G.; Thomson, D.J.; Lowe, M.; Kirkby, N.F.; Crellin, A.M.; Kirkby, K. Proton beam therapy: Perspectives on the National Health Service England clinical service and research programme. Br. J. Radiol. 2020, 93, 20190873. [Google Scholar] [CrossRef] [PubMed]
- De Ruysscher, D.; Lodge, M.M.; Jones, B.; Brada, M.; Munro, A.; Jefferson, T.; Pijls-Johannesma, M. Charged particles in radiotherapy: A 5-year update of a systematic review. Radiother. Oncol. 2012, 103, 5–7. [Google Scholar] [CrossRef]
- Suit, H.; DeLaney, T.; Goldberg, S.; Paganetti, H.; Clasie, B.; Gerweck, L.; Niemierko, A.; Hall, E.; Flanz, J.; Hallman, J.; et al. Proton vs. carbon ion beams in the definitive radiation treatment of cancer patients. Radiother. Oncol. 2010, 95, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Rockhill, J.K.; Laramore, G.E. Neutron Radiotherapy. In Clinical Radiation Oncology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 373–380.e2. [Google Scholar] [CrossRef]
- Antonelli, F.; Campa, A.; Esposito, G.; Giardullo, P.; Belli, M.; Dini, V.; Meschini, S.; Simone, G.; Sorrentino, E.; Gerardi, S.; et al. Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death. Radiat. Res. 2015, 183, 417–431. [Google Scholar] [CrossRef] [PubMed]
- Asaithamby, A.; Uematsu, N.; Chatterjee, A.; Story, M.D.; Burma, S.; Chen, D.J. Repair of HZE-Particle-Induced DNA Double-Strand Breaks in Normal Human Fibroblasts. Radiat. Res. 2008, 169, 437–446. [Google Scholar] [CrossRef]
- Malouff, T.D.; Seneviratne, D.S.; Ebner, D.K.; Stross, W.C.; Waddle, M.R.; Trifiletti, D.M.; Krishnan, S. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front. Oncol. 2021, 11, 601820. [Google Scholar] [CrossRef] [PubMed]
- Goodhead, D.T. Neutrons are forever! Historical perspectives. Int. J. Radiat. Biol. 2019, 95, 957–984. [Google Scholar] [CrossRef] [PubMed]
- Timoshchuk, M.-A.; Dekker, P.; Hippe, D.S.; Parvathaneni, U.; Liao, J.J.; Laramore, G.E.; Dillon, J.K. The efficacy of neutron radiation therapy in treating salivary gland malignancies. Oral Oncol. 2018, 88, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Hirose, K.; Konno, A.; Hiratsuka, J.; Yoshimoto, S.; Kato, T.; Ono, K.; Otsuki, N.; Hatazawa, J.; Tanaka, H.; Takayama, K.; et al. Boron neutron capture therapy using cyclotron-based epithermal neutron source and borofalan (10B) for recurrent or locally advanced head and neck cancer (JHN002): An open-label phase II trial. Radiother. Oncol. 2020, 155, 182–187. [Google Scholar] [CrossRef]
- Wang, L.-W.; Chen, Y.-W.; Ho, C.-Y.; Liu, Y.-W.H.; Chou, F.-I.; Liu, Y.-H.; Liu, H.-M.; Peir, J.-J.; Jiang, S.-H.; Chang, C.-W.; et al. Fractionated Boron Neutron Capture Therapy in Locally Recurrent Head and Neck Cancer: A Prospective Phase I/II Trial. Int. J. Radiat. Oncol. 2016, 95, 396–403. [Google Scholar] [CrossRef]
- Lee, J.-C.; Chuang, K.-S.; Liu, Y.-W.H.; Lin, T.-Y.; Teng, Y.-C.; Wang, L.-W. A comparison of dose distributions in gross tumor volume between boron neutron capture therapy alone and combined boron neutron capture therapy plus intensity modulation radiation therapy for head and neck cancer. PLoS ONE 2019, 14, e0210626. [Google Scholar] [CrossRef] [PubMed]
- Miyatake, S.-I.; Kawabata, S.; Hiramatsu, R.; Kuroiwa, T.; Suzuki, M.; Kondo, N.; Ono, K. Boron Neutron Capture Therapy for Malignant Brain Tumors. Neurol. Med.-Chir. 2016, 56, 361–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.nccn.org/ (accessed on 3 July 2022).
- AIM Clinical Appropriateness Guidelines for Radiation Oncology; AIM Specialty Health: Chicago, IL, USA, 2019.
- Lin, A.; Chang, J.H.C.; Grover, R.S.; Hoebers, F.J.P.; Parvathaneni, M.U.; Patel, S.H.; Thariat, J.; Thomson, M.D.J.; Langendijk, J.A.; Frank, S.J. PTCOG Head and Neck Subcommittee Consensus Guidelines on Particle Therapy for the Management of Head and Neck Tumors. Int. J. Part. Ther. 2021, 8, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Kamran, S.C.; Light, J.O.; Efstathiou, J.A. Proton versus photon-based radiation therapy for prostate cancer: Emerging evidence and considerations in the era of value-based cancer care. Prostate Cancer Prostatic Dis. 2019, 22, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Baumann, B.C.; Mitra, N.; Harton, J.; Xiao, Y.; Wojcieszynski, A.P.; Gabriel, P.E.; Zhong, H.; Geng, H.; Doucette, A.; Wei, J.; et al. Comparative Effectiveness of Proton vs Photon Therapy as Part of Concurrent Chemoradiotherapy for Locally Advanced Cancer. JAMA Oncol. 2020, 6, 237–246. [Google Scholar] [CrossRef]
- Lin, S.H.; Hobbs, B.P.; Verma, V.; Tidwell, R.S.; Smith, G.L.; Lei, X.; Corsini, E.; Mok, I.; Wei, X.; Yao, L.; et al. Randomized Phase IIB Trial of Proton Beam Therapy Versus Intensity-Modulated Radiation Therapy for Locally Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 1569–1579. [Google Scholar] [CrossRef]
- Kajioka, E.H.; Andres, M.L.; Li, J.; Mao, X.W.; Moyers, M.F.; Nelson, G.A.; Slater, J.M.; Gridley, D.S. Acute Effects of Whole-Body Proton Irradiation on the Immune System of the Mouse. Radiat. Res. 2000, 153, 587–594. [Google Scholar] [CrossRef]
- Ogata, T.; Teshima, T.; Kagawa, K.; Hishikawa, Y.; Takahashi, Y.; Kawaguchi, A.; Suzumoto, Y.; Nojima, K.; Furusawa, Y.; Matsuura, N. Particle irradiation suppresses metastatic potential of cancer cells. Cancer Res. 2005, 65, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhao, W.; Tian, S.; Slater, J.M.; Deng, Z.; Gridley, D.S. Expression of Genes Involved in Mouse Lung Cell Differentiation/Regulation after Acute Exposure to Photons and Protons with or without Low-Dose Preirradiation. Radiat. Res. 2011, 176, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Girdhani, S.; Sachs, R.; Hlatky, L. Biological effects of proton radiation: An update: Figure 1. Radiat. Prot. Dosim. 2015, 166, 334–338. [Google Scholar] [CrossRef]
- Bishop, A.J.; Greenfield, B.; Mahajan, A.; Paulino, A.C.; Okcu, M.F.; Allen, P.K.; Chintagumpala, M.; Kahalley, L.S.; McAleer, M.F.; McGovern, S.L.; et al. Proton Beam Therapy Versus Conformal Photon Radiation Therapy for Childhood Craniopharyngioma: Multi-institutional Analysis of Outcomes, Cyst Dynamics, and Toxicity. Int. J. Radiat. Oncol. 2014, 90, 354–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, R.B.; Sethi, R.; Depauw, N.; Pulsifer, M.B.; Adams, J.; McBride, S.M.; Ebb, D.; Fullerton, B.C.; Tarbell, N.J.; Yock, T.I.; et al. Proton Radiation Therapy for Pediatric Medulloblastoma and Supratentorial Primitive Neuroectodermal Tumors: Outcomes for Very Young Children Treated With Upfront Chemotherapy. Int. J. Radiat. Oncol. 2013, 87, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Ladra, M.M.; Szymonifka, J.D.; Mahajan, A.; Friedmann, A.M.; Yeap, B.Y.; Goebel, C.P.; Macdonald, S.M.; Grosshans, D.R.; Rodriguez-Galindo, C.; Marcus, K.J.; et al. Preliminary Results of a Phase II Trial of Proton Radiotherapy for Pediatric Rhabdomyosarcoma. J. Clin. Oncol. 2014, 32, 3762–3770. [Google Scholar] [CrossRef] [Green Version]
- McGovern, S.L.; Okcu, M.F.; Munsell, M.F.; Kumbalasseriyil, N.; Grosshans, D.R.; McAleer, M.F.; Chintagumpala, M.; Khatua, S.; Mahajan, A. Outcomes and Acute Toxicities of Proton Therapy for Pediatric Atypical Teratoid/Rhabdoid Tumor of the Central Nervous System. Int. J. Radiat. Oncol. 2014, 90, 1143–1152. [Google Scholar] [CrossRef] [Green Version]
- Indelicato, D.J.; Rotondo, R.L.; Vega, R.B.M.; Holtzman, A.L.; Looi, W.S.; Morris, C.G.; Sandler, E.S.; Aldana, P.R.; Bradley, J.A. Local Control After Proton Therapy for Pediatric Chordoma. Int. J. Radiat. Oncol. 2020, 109, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Indelicato, D.J.; Bradley, J.A.; Rotondo, R.L.; Nanda, R.H.; Logie, N.; Sandler, E.S.; Aldana, P.R.; Ranalli, N.J.; Beier, A.D.; Morris, C.G.; et al. Outcomes following proton therapy for pediatric ependymoma. Acta Oncol. 2017, 57, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Donahue, B.R.; MacDonald, S. Protons for pediatric ependymoma: Where are we now? Neuro-Oncology 2022, 24, 1203–1204. [Google Scholar] [CrossRef]
- Sakthivel, V.; Ganesh, K.M.; McKenzie, C.; Boopathy, R.; Selvaraj, J. Second malignant neoplasm risk after craniospinal irradiation in X-ray-based techniques compared to proton therapy. Australas. Phys. Eng. Sci. Med. 2019, 42, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Ares, C.; Hug, E.B.; Lomax, A.J.; Bolsi, A.; Timmermann, B.; Rutz, H.P.; Schuller, J.C.; Pedroni, E.; Goitein, G. Effectiveness and Safety of Spot Scanning Proton Radiation Therapy for Chordomas and Chondrosarcomas of the Skull Base: First Long-Term Report. Int. J. Radiat. Oncol. 2009, 75, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Walser, M.; Bojaxhiu, B.; Kawashiro, S.; Tran, S.; Beer, J.; Leiser, D.; Pica, A.; Bachtiary, B.; Weber, D. Clinical Outcome of Sacral Chordoma Patients Treated with Pencil Beam Scanning Proton Therapy. Clin. Oncol. 2021, 33, e578–e585. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, I.; Trifiletti, D.M.; Lehrer, E.J.; Showalter, T.N.; Dutta, S.W. Protons versus photons for the treatment of chordoma. Cochrane Database Syst. Rev. 2021, 2021, CD013224. [Google Scholar] [CrossRef]
- Fujii, O.; Demizu, Y.; Hashimoto, N.; Araya, M.; Takagi, M.; Terashima, K.; Mima, M.; Iwata, H.; Niwa, Y.; Jin, D.; et al. A retrospective comparison of proton therapy and carbon ion therapy for stage I non-small cell lung cancer. Radiother. Oncol. 2013, 109, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Makita, C.; Nakamura, T.; Takada, A.; Takayama, K.; Suzuki, M.; Azami, Y.; Kato, T.; Tsukiyama, I.; Hareyama, M.; Kikuchi, Y.; et al. High-dose proton beam therapy for stage I non-small cell lung cancer: Clinical outcomes and prognostic factors. Acta Oncol. 2014, 54, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Sugahara, S.; Tokita, M.; Satoh, H.; Tsuboi, K.; Ishikawa, S.; Tokuuye, K. Proton Beam Therapy for Patients With Medically Inoperable Stage I Non–Small-Cell Lung Cancer at the University of Tsukuba. Int. J. Radiat. Oncol. 2010, 78, 467–471. [Google Scholar] [CrossRef]
- Sejpal, S.; Komaki, R.; Tsao, A.; Chang, J.Y.; Liao, Z.; Wei, X.; Allen, P.K.; Lu, C.; Gillin, M.; Cox, J.D. Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer 2011, 117, 3004–3013. [Google Scholar] [CrossRef] [PubMed]
- Higgins, K.A.; O’Connell, K.; Liu, Y.; Gillespie, T.W.; McDonald, M.W.; Pillai, R.N.; Patel, K.R.; Patel, P.R.; Robinson, C.G.; Simone, C.B., II; et al. National Cancer Database Analysis of Proton Versus Photon Radiation Therapy in Non-Small Cell Lung Cancer. Int. J. Radiat. Oncol. 2016, 97, 128–137. [Google Scholar] [CrossRef]
- Wong, M.R.X.; Faught, J.; Gargone, M.M.; Myers, W.; Krasin, M.; Faught, A.; Acharya, S. Cardiac-Sparing and Breast-Sparing Whole Lung Irradiation Using Intensity-Modulated Proton Therapy. Int. J. Part. Ther. 2021, 7, 65–73. [Google Scholar] [CrossRef]
- Bryant, C.; Smith, T.L.; Henderson, R.H.; Hoppe, B.S.; Mendenhall, W.M.; Nichols, R.C.; Morris, C.G.; Williams, C.R.; Su, Z.; Li, Z.; et al. Five-Year Biochemical Results, Toxicity, and Patient-Reported Quality of Life After Delivery of Dose-Escalated Image Guided Proton Therapy for Prostate Cancer. Int. J. Radiat. Oncol. 2016, 95, 422–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendenhall, N.P.; Hoppe, B.S.; Nichols, R.C.; Mendenhall, W.M.; Morris, C.G.; Li, Z.; Su, Z.; Williams, C.R.; Costa, J.; Henderson, R.H. Five-Year Outcomes from 3 Prospective Trials of Image-Guided Proton Therapy for Prostate Cancer. Int. J. Radiat. Oncol. 2014, 88, 596–602. [Google Scholar] [CrossRef]
- Takagi, M.; Demizu, Y.; Fujii, O.; Terashima, K.; Niwa, Y.; Daimon, T.; Tokumaru, S.; Fuwa, N.; Hareyama, M.; Okimoto, T. Proton Therapy for Localized Prostate Cancer: Long-Term Results From a Single-Center Experience. Int. J. Radiat. Oncol. 2020, 109, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Mizumoto, M.; Okumura, T.; Hashimoto, T.; Fukuda, K.; Oshiro, Y.; Fukumitsu, N.; Abei, M.; Kawaguchi, A.; Hayashi, Y.; Ookawa, A.; et al. Proton Beam Therapy for Hepatocellular Carcinoma: A Comparison of Three Treatment Protocols. Int. J. Radiat. Oncol. 2011, 81, 1039–1045. [Google Scholar] [CrossRef] [PubMed]
- Bush, D.A.; Smith, J.C.; Slater, J.D.; Volk, M.L.; Reeves, M.E.; Cheng, J.; Grove, R.; de Vera, M.E.; Bush, D.A.; Smith, J.C.; et al. Randomized Clinical Trial Comparing Proton Beam Radiation Therapy with Transarterial Chemoembolization for Hepatocellular Carcinoma: Results of an Interim Analysis. Int. J. Radiat. Oncol. 2016, 95, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Parzen, J.S.; Hartsell, W.; Chang, J.; Apisarnthanarax, S.; Molitoris, J.; Durci, M.; Tsai, H.; Urbanic, J.; Ashman, J.; Vargas, C.; et al. Hypofractionated proton beam radiotherapy in patients with unresectable liver tumors: Multi-institutional prospective results from the Proton Collaborative Group. Radiat. Oncol. 2020, 15, 1–8. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Suzuki, M.; Yamaguchi, H.; Seto, I.; Machida, M.; Takagawa, Y.; Jingu, K.; Kikuchi, Y.; Murakami, M. Successful treatment with proton beam therapy for a solitary sternal metastasis of breast cancer: A case report. J. Med Case Rep. 2022, 16, 1–8. [Google Scholar] [CrossRef]
- Rana, S.; Greco, K.; Samuel, E.J.J.; Bennouna, J. Radiobiological and dosimetric impact of RayStation pencil beam and Monte Carlo algorithms on intensity-modulated proton therapy breast cancer plans. J. Appl. Clin. Med Phys. 2019, 20, 36–46. [Google Scholar] [CrossRef]
- Raptis, A.; Ödén, J.; Ardenfors, O.; Flejmer, A.M.; Toma-Dasu, I.; Dasu, A. Cancer risk after breast proton therapy considering physiological and radiobiological uncertainties. Phys. Medica 2020, 76, 1–6. [Google Scholar] [CrossRef]
- Paganetti, H.; Depauw, N.; Johnson, A.; Forman, R.B.; Lau, J.; Jimenez, R. The risk for developing a secondary cancer after breast radiation therapy: Comparison of photon and proton techniques. Radiother. Oncol. 2020, 149, 212–218. [Google Scholar] [CrossRef]
- Chung, C.; Trofimov, A.; Adams, J.; Kung, J.; Kirsch, D.G.; Yoon, S.; Doppke, K.; Bortfeld, T.; Delaney, T.F. Comparison of 3D Conformal Proton Therapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Photon Therapy for Retroperitoneal Sarcoma. Sarcoma 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- LaRiviere, M.J.; Santos, P.M.G.; Hill-Kayser, C.E.; Metz, J.M. Proton Therapy. Hematol. Clin. N. Am. 2019, 33, 989–1009. [Google Scholar] [CrossRef] [PubMed]
- Eaton, B.R.; Esiashvili, N.; Kim, S.; Weyman, E.A.; Thornton, L.T.; Mazewski, C.; MacDonald, T.; Ebb, D.; MacDonald, S.M.; Tarbell, N.J.; et al. Clinical Outcomes Among Children With Standard-Risk Medulloblastoma Treated With Proton and Photon Radiation Therapy: A Comparison of Disease Control and Overall Survival. Int. J. Radiat. Oncol. 2015, 94, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Dabaja, B.S.; Hoppe, B.S.; Plastaras, J.P.; Newhauser, W.; Rosolova, K.; Flampouri, S.; Mohan, R.; Mikhaeel, N.G.; Kirova, Y.; Specht, L.; et al. Proton therapy for adults with mediastinal lymphomas: The International Lymphoma Radiation Oncology Group guidelines. Blood 2019, 133, 1384–1385. [Google Scholar] [CrossRef]
- Qi, W.-X.; Fu, S.; Zhang, Q.; Guo, X.-M. Charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: A systematic review and meta-analysis. Radiother. Oncol. 2015, 114, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Sanford, N.N.; Pursley, J.; Noe, B.; Yeap, B.Y.; Goyal, L.; Clark, J.W.; Allen, J.N.; Blaszkowsky, L.S.; Ryan, D.P.; Ferrone, C.R.; et al. Protons versus Photons for Unresectable Hepatocellular Carcinoma: Liver Decompensation and Overall Survival. Int. J. Radiat. Oncol. 2019, 105, 64–72. [Google Scholar] [CrossRef]
- Kim, T.H.; Koh, Y.H.; Kim, B.H.; Kim, M.J.; Lee, J.H.; Park, B.; Park, J.-W. Proton beam radiotherapy vs. radiofrequency ablation for recurrent hepatocellular carcinoma: A randomized phase III trial. J. Hepatol. 2020, 74, 603–612. [Google Scholar] [CrossRef]
- Kammerer, E.; Le Guevelou, J.; Chaikh, A.; Danhier, S.; Geffrelot, J.; Levy, C.; Saloux, E.; Habrand, J.-L.; Thariat, J. Proton therapy for locally advanced breast cancer: A systematic review of the literature. Cancer Treat. Rev. 2018, 63, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Orecchia, R.; Loeffler, J.S. Charged-particle therapy in cancer: Clinical uses and future perspectives. Nat. Rev. Clin. Oncol. 2017, 14, 483–495. [Google Scholar] [CrossRef]
- Malouff, T.D.; Mahajan, A.; Krishnan, S.; Beltran, C.; Seneviratne, D.S.; Trifiletti, D.M. Carbon Ion Therapy: A Modern Review of an Emerging Technology. Front. Oncol. 2020, 10, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krimmer, J.; Dauvergne, D.; Létang, J.M.; Testa, É. Prompt-gamma monitoring in hadrontherapy: A review. Nucl. Instrum. Methods Phys. Res. Sect. A 2018, 878, 58–73. [Google Scholar] [CrossRef]
- Nandy, M. Secondary Radiation in Ion Therapy and Theranostics: A Review. Front. Phys. 2021, 8. [Google Scholar] [CrossRef]
- Available online: ClinicalTrials.gov (accessed on 3 July 2022).
- Particle Therapy Co-Operative Group. Available online: https://www.ptcog.ch/index.php/facilities-in-operation (accessed on 3 July 2022).
- Seidensaal, K.; Mattke, M.; Haufe, S.; Rathke, H.; Haberkorn, U.; Bougatf, N.; Kudak, A.; Blattmann, C.; Oertel, S.; Kirchner, M.; et al. The role of combined ion-beam radiotherapy (CIBRT) with protons and carbon ions in a multimodal treatment strategy of inoperable osteosarcoma. Radiother. Oncol. 2021, 159, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Liermann, J.; Ben-Josef, E.; Syed, M.; Debus, J.; Herfarth, K.; Naumann, P. Carbon ion radiotherapy as definitive treatment in locally recurrent pancreatic cancer. Strahlenther. Onkol. 2021, 198, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Shiba, S.; Shibuya, K.; Okamoto, M.; Okano, N.; Kubo, N.; Kaminuma, T.; Sato, H.; Okazaki, S.; Miyasaka, Y.; Kawamura, H.; et al. Carbon-ion Radiotherapy for Oligometastatic Colorectal Cancer in the Liver or Lung. Anticancer Res. 2021, 41, 1997–2005. [Google Scholar] [CrossRef]
- Kaneko, T.; Suefuji, H.; Koto, M.; Demizu, Y.; Saitoh, J.-I.; Tsuji, H.; Okimoto, T.; Ohno, T.; Shioyama, Y.; Nemoto, K.; et al. Multicenter Study of Carbon-ion Radiotherapy for Oropharyngeal Non-squamous Cell Carcinoma. In Vivo 2021, 35, 2239–2245. [Google Scholar] [CrossRef]
- Balosso, J.; Febvey-Combes, O.; Iung, A.; Lozano, H.; Alloh, A.S.; Cornu, C.; Hervé, M.; Akkal, Z.; Lièvre, M.; Plattner, V.; et al. A randomized controlled phase III study comparing hadrontherapy with carbon ions versus conventional radiotherapy – including photon and proton therapy – for the treatment of radioresistant tumors: The ETOILE trial. BMC Cancer 2022, 22, 1–9. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Koto, M.; Windisch, P.; Ikawa, H.; Hagiwara, Y.; Tsuji, H.; Adeberg, S. Emerging Role of Carbon Ion Radiotherapy in Reirradiation of Recurrent Head and Neck Cancers: What Have We Achieved So Far? Front. Oncol. 2022, 12. [Google Scholar] [CrossRef]
- Held, T.; Tessonnier, T.; Franke, H.; Regnery, S.; Bauer, L.; Weusthof, K.; Harrabi, S.; Herfarth, K.; Mairani, A.; Debus, J.; et al. Ways to unravel the clinical potential of carbon ions for head and neck cancer reirradiation: Dosimetric comparison and local failure pattern analysis as part of the prospective randomized CARE trial. Radiat. Oncol. 2022, 17, 1–12. [Google Scholar] [CrossRef]
- Takahashi, D.; Demizu, Y.; Koto, M.; Kubo, N.; Suefuji, H.; Ikawa, H.; Ohno, T.; Shioyama, Y.; Okimoto, T.; Tsuji, H.; et al. Multicenter study of re-irradiation using carbon-ions for head and neck malignancies after photon radiotherapy. Cancer Med. 2022. [Google Scholar] [CrossRef]
- Tashiro, M.; Yoshida, Y.; Oike, T.; Nakao, M.; Yusa, K.; Hirota, Y.; Ohno, T. First Human Cell Experiments With FLASH Carbon Ions. Anticancer Res. 2022, 42, 2469–2477. [Google Scholar] [CrossRef] [PubMed]
- Tinganelli, W.; Weber, U.; Puspitasari, A.; Simoniello, P.; Abdollahi, A.; Oppermann, J.; Schuy, C.; Horst, F.; Helm, A.; Fournier, C.; et al. FLASH with carbon ions: Tumor control, normal tissue sparing, and distal metastasis in a mouse osteosarcoma model. Radiother. Oncol. 2022, 175, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Patel, S.A.; Jani, A.B.; Gillespie, T.W.; Patel, P.R.; Godette, K.D.; Hershatter, B.W.; Shelton, J.W.; McDonald, M.W. Overall Survival After Treatment of Localized Prostate Cancer With Proton Beam Therapy, External-Beam Photon Therapy, or Brachytherapy. Clin. Genitourin. Cancer 2020, 19, 255–266.e7. [Google Scholar] [CrossRef]
- Vapiwala, N.; Wong, J.K.; Handorf, E.; Paly, J.; Grewal, A.; Tendulkar, R.; Godfrey, D.; Carpenter, D.; Mendenhall, N.P.; Henderson, R.H.; et al. A Pooled Toxicity Analysis of Moderately Hypofractionated Proton Beam Therapy and Intensity Modulated Radiation Therapy in Early-Stage Prostate Cancer Patients. Int. J. Radiat. Oncol. 2021, 110, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Kubeš, J.; Haas, A.; Vondráček, V.; Andrlík, M.; Navrátil, M.; Sláviková, S.; Vítek, P.; Dědečková, K.; Prausová, J.; Ondrová, B.; et al. Ultrahypofractionated Proton Radiation Therapy in the Treatment of Low and Intermediate-Risk Prostate Cancer-5-Year Outcomes. Int. J. Radiat. Oncol. 2021, 110, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Michael, B.D. Non-DNA-Targeted Effects and Low-Dose Radiation Risk; Springer: Berlin/Heidelberg, Germany, 2009; pp. 29–33. [Google Scholar] [CrossRef]
- Elkind, M.M.; Sutton, H. X-Ray Damage and Recovery in Mammalian Cells in Culture. Nature 1959, 184, 1293–1295. [Google Scholar] [CrossRef] [PubMed]
- Terasima, T.; Tolmach, L.J. Changes in X-ray Sensitivity of HeLa Cells during the Division Cycle. Nature 1961, 190, 1210–1211. [Google Scholar] [CrossRef]
- Ha, B.G.; Park, J.-E.; Cho, H.-J.; Lim, Y.-B.; Shon, Y.H. Inhibitory effects of proton beam irradiation on integrin expression and signaling pathway in human colon carcinoma HT29 cells. Int. J. Oncol. 2015, 46, 2621–2628. [Google Scholar] [CrossRef]
- Meerz, A.; Deville, S.; Müller, J.; Cordes, N. Comparative Therapeutic Exploitability of Acute Adaptation Mechanisms to Photon and Proton Irradiation in 3D Head and Neck Squamous Cell Carcinoma Cell Cultures. Cancers 2021, 13, 1190. [Google Scholar] [CrossRef]
- Lohberger, B.; Glänzer, D.; Eck, N.; Kerschbaum-Gruber, S.; Mara, E.; Deycmar, S.; Madl, T.; Kashofer, K.; Georg, P.; Leithner, A.; et al. Activation of efficient DNA repair mechanisms after photon and proton irradiation of human chondrosarcoma cells. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Yajima, H.; Xue, L. DNA Repair Processes and Checkpoint Pathways in Human Cells Exposed to Heavy Ion Beams. Int. J. Part. Ther. 2015, 2, 439–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liew, H.; Meister, S.; Mein, S.; Tessonnier, T.; Kopp, B.; Held, T.; Haberer, T.; Abdollahi, A.; Debus, J.; Dokic, I.; et al. Combined DNA Damage Repair Interference and Ion Beam Therapy: Development, Benchmark, and Clinical Implications of a Mechanistic Biological Model. Int. J. Radiat. Oncol. 2021, 112, 802–817. [Google Scholar] [CrossRef] [PubMed]
- Cammarata, F.P.; Forte, G.I.; Petringa, G.; Cirrone, G.; Cuttone, G.; Acquaviva, R.; Caltabiano, R.; Russo, G.; Broggi, G.; Bravatà, V.; et al. Molecular Investigation on a Triple Negative Breast Cancer Xenograft Model Exposed to Proton Beams. Int. J. Mol. Sci. 2020, 21, 6337. [Google Scholar] [CrossRef] [PubMed]
- Bravatà, V.; Cammarata, F.P.; Minafra, L.; Pisciotta, P.; Scazzone, C.; Manti, L.; Savoca, G.; Petringa, G.; Cirrone, G.A.P.; Cuttone, G.; et al. Proton-irradiated breast cells: Molecular points of view. J. Radiat. Res. 2019, 60, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Calaf, G.M.; Crispin, L.A.; Roy, D.; Aguayo, F.; Muñoz, J.P.; Bleak, T.C. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model. Cancers 2021, 13, 4571. [Google Scholar] [CrossRef] [PubMed]
- Suetens, A.; Moreels, M.; Quintens, R.; Soors, E.; Buset, J.; Chiriotti, S.; Tabury, K.; Gregoire, V.; Baatout, S. Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation. J. Radiat. Res. 2014, 56, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Parodi, K.; Assmann, W.; Belka, C.; Bortfeldt, J.; Clevert, D.-A.; Dedes, G.; Kalunga, R.; Kundel, S.; Kurichiyanil, N.; Lämmer, P.; et al. Towards a novel small animal proton irradiation platform: The SIRMIO project. Acta Oncol. 2019, 58, 1470–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroll, F.; Brack, F.-E.; Bernert, C.; Bock, S.; Bodenstein, E.; Brüchner, K.; Cowan, T.E.; Gaus, L.; Gebhardt, R.; Helbig, U.; et al. Tumour irradiation in mice with a laser-accelerated proton beam. Nat. Phys. 2022, 18, 316–322. [Google Scholar] [CrossRef]
- Suckert, T.; Beyreuther, E.; Müller, J.; Azadegan, B.; Meinhardt, M.; Raschke, F.; Bodenstein, E.; Von Neubeck, C.; Lühr, A.; Krause, M.; et al. Late Side Effects in Normal Mouse Brain Tissue After Proton Irradiation. Front. Oncol. 2021, 10. [Google Scholar] [CrossRef]
- Sengupta, S.; Pater, L.E.; Krummel, D.P.; Aronow, B.J.; Hirota, Y.; Phoenix, T.N.; Sasaki, A.T. Integration of Molecular Analysis, Cutting-edge Mouse Genetic Models and Proton Therapy to Improve Outcomes for Glioma Patients. Gliomas 2021, 79–96. [Google Scholar] [CrossRef]
- Simovic, M.; Bolkestein, M.; Moustafa, M.; Wong, J.K.L.; Körber, V.; Benedetto, S.; Khalid, U.; Schreiber, H.S.; Jugold, M.; Korshunov, A.; et al. Carbon ion radiotherapy eradicates medulloblastomas with chromothripsis in an orthotopic Li-Fraumeni patient-derived mouse model. Neuro-Oncology 2021, 23, 2028–2041. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Yoshida, Y.; Hirayama, R.; Koike, S.; Matsufuji, N. Dose- and LET-dependent changes in mouse skin contracture up to a year after either single dose or fractionated doses of carbon ion or gamma rays. J. Radiat. Res. 2022, 63, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Brownstein, J.M.; Wisdom, A.J.; Castle, K.D.; Mowery, Y.M.; Guida, P.; Lee, C.-L.; Tommasino, F.; La Tessa, C.; Scifoni, E.; Gao, J.; et al. Characterizing the Potency and Impact of Carbon Ion Therapy in a Primary Mouse Model of Soft Tissue Sarcoma. Mol. Cancer Ther. 2018, 17, 858–868. [Google Scholar] [CrossRef] [Green Version]
- Helm, A.; Tinganelli, W.; Simoniello, P.; Kurosawa, F.; Fournier, C.; Shimokawa, T.; Durante, M. Reduction of Lung Metastases in a Mouse Osteosarcoma Model Treated With Carbon Ions and Immune Checkpoint Inhibitors. Int. J. Radiat. Oncol. 2020, 109, 594–602. [Google Scholar] [CrossRef]
- Jing, S.; Guo, H.; Qi, Y.; Yang, G.; Huang, Y. A portable fast neutron irradiation system for tumor therapy. Appl. Radiat. Isot. 2020, 160, 109138. [Google Scholar] [CrossRef] [PubMed]
- Broustas, C.G.; Xu, Y.; Harken, A.D.; Garty, G.; Amundson, S.A. Comparison of gene expression response to neutron and x-ray irradiation using mouse blood. BMC Genom. 2017, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Vitti, E.T.; Parsons, J.L. The Radiobiological Effects of Proton Beam Therapy: Impact on DNA Damage and Repair. Cancers 2019, 11, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, R.J.; Nickson, C.M.; Thompson, J.M.; Kacperek, A.; Hill, M.A.; Parsons, J.L. Complex DNA Damage Induced by High Linear Energy Transfer Alpha-Particles and Protons Triggers a Specific Cellular DNA Damage Response. Int. J. Radiat. Oncol. 2017, 100, 776–784. [Google Scholar] [CrossRef]
- Reindl, J.; Drexler, A.G.; Girst, S.; Greubel, C.; Siebenwirth, C.; Drexler, E.S.; Dollinger, G.; Friedl, A.A. Nanoscopic exclusion between Rad51 and 53BP1 after ion irradiation in human HeLa cells. Phys. Biol. 2015, 12, 066005. [Google Scholar] [CrossRef]
- Mitteer, R.A.; Wang, Y.; Shah, J.; Gordon, S.; Fager, M.; Butter, P.-P.; Kim, H.J.; Guardiola, C.; Carabe-Fernandez, A.; Fan, Y. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci. Rep. 2015, 5, srep13961. [Google Scholar] [CrossRef] [Green Version]
- Giedzinski, E.; Rola, R.; Fike, J.R.; Limoli, C.L. Efficient Production of Reactive Oxygen Species in Neural Precursor Cells after Exposure to 250 MeV Protons. Radiat. Res. 2005, 164, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, Z.; Li, B.; Chen, G.; Xie, X.; Wei, Y.; Wu, J.; Zhou, Y.; Du, Z. Boron neutron capture therapy induces cell cycle arrest and cell apoptosis of glioma stem/progenitor cells in vitro. Radiat. Oncol. 2013, 8, 195. [Google Scholar] [CrossRef] [Green Version]
- Jamsranjav, E.; Ito, A.; Kato, Y.; Tatebe, Y.; Takase, N.; Yoshida, S. DNA Strand Breaks Induced by Fast and Thermal Neutrons from YAYOI Research Reactor in the Presence and Absence of Boric Acid. Radiat. Res. 2019, 191, 483–489. [Google Scholar] [CrossRef]
- Dymova, M.A.; Taskaev, S.Y.; Richter, V.A.; Kuligina, E.V. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun. 2020, 40, 406–421. [Google Scholar] [CrossRef]
- He, H.; Li, J.; Jiang, P.; Tian, S.; Wang, H.; Fan, R.; Liu, J.; Yang, Y.; Liu, Z.; Wang, J. The basis and advances in clinical application of boron neutron capture therapy. Radiat. Oncol. 2021, 16, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Osu, N.; Makinoshima, H.; Oike, T.; Ohno, T. Metabolic Alteration in Cancer Cells by Therapeutic Carbon Ions. Anticancer Res. 2021, 41, 6023–6029. [Google Scholar] [CrossRef]
- Kim, B.; Bae, H.; Lee, H.; Lee, S.; Park, J.C.; Kim, K.R.; Kim, S.J. Proton Beams Inhibit Proliferation of Breast Cancer Cells by Altering DNA Methylation Status. J. Cancer 2016, 7, 344–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirjolet, C.; Nicol, A.; Limagne, E.; Mura, C.; Richard, C.; Morgand, V.; Rousseau, M.; Boidot, R.; Ghiringhelli, F.; Noel, G.; et al. Impact of proton therapy on antitumor immune response. Sci. Rep. 2021, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Wang, J.; Dai, Z.; Miao, Y.; Gan, J.; Zhao, C.; Guan, Q. Irradiation-Induced Changes in the Immunogenicity of Lung Cancer Cell Lines: Based on Comparison of X-rays and Carbon Ions. Front. Public Health 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Kageyama, S.-I.; Hirata, H.; Motegi, A.; Nakamura, M.; Hirano, Y.; Okumura, M.; Yamashita, R.; Tsuchihara, K.; Hojo, H.; et al. Comparative analysis of the immune responses in cancer cells irradiated with X-ray, proton and carbon-ion beams. Biochem. Biophys. Res. Commun. 2021, 585, 55–60. [Google Scholar] [CrossRef] [PubMed]
Reference | Particles/Settings | Cancer Type | Number of Patients and Median Age | Study Type | Results |
---|---|---|---|---|---|
Tumors of the nervous system | |||||
[28] | Proton irradiation | Medulloblastoma and supratentorial primitive neuroectodermal tumors | 15 (35 months) | Prospective study | 3-year survival ~85% |
[34] | Proton and photon therapies | Medulloblastoma | 8 (10 years) | Reduced risks of radiation-induced second malignancy when using proton therapy compared to conventional photon treatments | |
[32] | Proton therapy | Ependymoma | 179 (3.2 years) | Prospective study | Confirmed high survival rate and low severe toxicity |
Cartilage and bone tumors | |||||
[35] | Proton therapy | Chordoma and chondrosarcoma | 64 (44.5 years) | Prospective study | Confirmed safety and efficacy of spot scanning-based proton radiation therapy |
[68] | Combined ion-beam radiotherapy (protons + C-ions) | Osteosarcoma | 20 (20 years) | Clinical study single-center NCT01005043, completed | Positive dynamics with tolerant toxicity profile |
[31] | Proton therapy | Chordoma | 29 (14.8 years) | Prospective study | Low risk of serious toxicity and high efficacy |
[36] | Proton therapy | Sacral chordoma | 60 (59 years) | Retrospective study | Safety and efficacy of pencil beam scanning proton therapy |
Lung tumors | |||||
[41] | Proton and photon therapies | Lung tumors | 3D Conformal Concurrent Chemoradiation (n = 74) (61 years), IMRT Concurrent Chemoradiation (n = 66) (62 years), Proton Beam Concurrent Chemoradiation (n = 62) (67 years) | Clinical studies NCT00495170 (completed) and NCT00991094 (continued data collection on the effects of proton therapy) | The use of high-dose proton irradiation in lung cancer has been associated with low risks of esophagitis and pneumonitis |
[39] | proton therapy | Non-small cell lung cancer | 56 (77 years) | Prospective study | Both protocols conferred mild toxicity |
[38] | protons and C-ions | Non-small cell lung cancer | 111 (76 years) | Retrospective study | Similar treatment outcomes in both groups |
[40] | Proton therapy, | Non-small cell lung cancer | 55 (77 years) | Retrospective study | Confirmed efficacy and good tolerability of proton therapy in non-small cell lung cancer |
Prostate cancer | |||||
[45] | Proton therapy | Prostate cancer | 211 (68 years) | Prospective trials | High efficacy, minimal physician-assessed toxicity, and excellent patient-reported outcomes |
[44] | Proton therapy | Prostate cancer | 1327 (66 years) | Retrospective study | A pronounced decrease in toxicity compared with conventional methods |
[46] | Proton therapy | Prostate cancer | 2021 (68 years) | Retrospective study | Low toxicity and low risks of biochemical relapse |
[78] | Proton therapy, photon, brachytherapy | Prostate cancer | 276,880 (68 years) | Retrospective study | Proton therapy outcomes superior to photon-based external-beam irradiation and similar to brachytherapy |
[79] | Proton therapy and radiation therapy | Prostate cancer | 1850 (67 years) | A multicenter, retrospective study of prospectively collected data | High efficacy, low toxicity |
[80] | Proton therapy | Prostate cancer | 284 (64.5 years) | Prospective study | High efficacy, biochemical disease-free survival comparable with other methods, minimal risks of severe long-term toxicity |
Other cancers | |||||
[50] | Proton therapy | Solitary sternal metastasis of breast cancer | 1 (40 years) | Case report | Complete remission at 3 years after the treatment |
[54] | Proton and photon therapy | Retroperitoneal sarcoma | 10 (51 years) | Comparative analysis of treatment schedules for 3D Conformal Proton Therapy, Intensity-Modulated Proton Therapy, and Intensity-Modulated Photon Therapy | High efficacy in all cases |
[69] | C-ions | Locally recurrent pancreatic cancer | 13 (70 years) | Prospective (clinical experience) | Overall survival rates comparable to those after photon therapy |
[71] | C-ions | Oropharyngeal non-squamous cell carcinoma | 33 (60 years) | Retrospective study | Improved overall survival rates and low toxicity |
[70] | C-ions | Colorectal cancer with metastases to the lungs and the liver | 19 (65 years) | Retrospective study | Improved clinical outcomes |
[12] | Fast neutron | Salivary gland malignancies | 545 (54,2 years) | Retrospective study | Improved 6- and 10-year survival rates and similar osteoradionecrosis rates compared to conventional photon radiation treatment |
[72] | C-ion therapy, photon, proton radiotherapy | Sarcomas (bone and soft tissue sarcomas) and adenoid cystic carcinomas | Multicenter prospective randomized phase III trial NCT02838602 patient recruitment is ongoing on 23 March 2022. | ||
[74] | C-ion therapy and volumetric modulated arc therapy | head and neck cancer | 16 (59 years) | Prospective study | C-ion therapy resulted in significantly reduced organ at-risk dose across all patients |
[75] | C-ion therapy after photon therapy | head and neck cancer | 56 (62 years) | Multicenter retrospective study | Repetitive radiotherapy using C-ions for head and neck malignancies after photon therapy is an effective treatment with tolerable toxicity. |
[13] | Boron neutron capture therapy | head and neck cancer | 21 (62 years) | Phase II trial JHN002 study (JapicCTI-194640) | The 2-year overall survival for recurrent squamous cell carcinoma and recurrent/locally advanced non-squamous cell carcinoma was 58% and 100%, respectively. |
[59] | Proton and photon therapy | Hepatocellular carcinoma | 133 (68 years) | Retrospective study | Improved overall survival rates and low toxicity |
[60] | Proton and photon therapy | Hepatocellular carcinoma | 144 (61 years) | Phase III trial (NCT01963429) | Safety for therapy of hepatocellular carcinoma |
Reference | Experimental Model (Cell Line/Animal) | Particles | Molecular Signature |
---|---|---|---|
[84] | Human colorectal adenocarcinoma cell line HT-29 | Protons | ↓ α5β1, α6β4, αvβ3 and αvβ6 integrins; ↓ FAK and CDH1 cell adhesion molecules; ↓ RAB4, RAB11 and HAX1 integrin trafficking regulators; ↑ AMPK phosphorylation; ↑ Rab IP4 gene expression |
[90] | Breast cancer cell lines MCF10A, MCF7 and MDA-MB-231 | Protons | MCF10A and MCF7 cells responded dose-dependently; MDA-MB-231 cells showed strong pro-inflammatory response with ↑ IL-6, IL-8 and MCP-1 |
[112] | A549, MIA PaCa-2, MeWo, HuCCa-1 and U2OS cell lines | C-ions | ↑ tricarboxylic acid cycle intermediates; ↑ 2-hydroxyglutaric acid oncometabolite |
[89] | MDA-MB-231 cell line | Protons | ↑ CD24 and CD44 gene expression; ↓ CDC20, CDC25 and CCNA gene expression; ↑ Cyclin D1; FOS activation |
[113] | MCF-10A and MCF-7 cell lines | Protons | ↑ DNA methylation at LINE1 elements; ↓ proliferation rate; MDH2, STYXL1, CPE, FAM91A1, and GPR37 levels significantly changed |
[114] | colon tumors in CT26 mice | Protons | ↑ Cxcl10 and Trex1; significant enrichment for “immune response” and “interferon signaling” GO terms identified by RNA-Seq functional profiling |
[115] | A549, H520, and LLC cell lines | C-ions | ↑ HMGB1; ↓ IL-10 and TGF-β immunosuppressive factors |
[85] | Cal33, FaDu, HSC4, SAS, UTSCC5, UTSCC14 and UTSCC15 cell lines | Photons and protons | Similar efficacy of photons and protons shown by clonogenic survival and double-strand break repair tests |
[116] | KYSE450 cell line | Photons (X-rays), protons, C-ions | All types of irradiation-induced similar immune responses regulated by STING-STAT1 axis |
[97] | Medulloblastoma, SHH-activated, xenografts in mice | C-ions | ↑ PARP1/PRKDC; ↓ NHEJ1, XRCC4 |
[89] | Breast cancer, triple-negative, xenografts in mice | Protons | ↑ CD24, CD44 and CD133 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiseleva, V.; Gordon, K.; Vishnyakova, P.; Gantsova, E.; Elchaninov, A.; Fatkhudinov, T. Particle Therapy: Clinical Applications and Biological Effects. Life 2022, 12, 2071. https://doi.org/10.3390/life12122071
Kiseleva V, Gordon K, Vishnyakova P, Gantsova E, Elchaninov A, Fatkhudinov T. Particle Therapy: Clinical Applications and Biological Effects. Life. 2022; 12(12):2071. https://doi.org/10.3390/life12122071
Chicago/Turabian StyleKiseleva, Viktoriia, Konstantin Gordon, Polina Vishnyakova, Elena Gantsova, Andrey Elchaninov, and Timur Fatkhudinov. 2022. "Particle Therapy: Clinical Applications and Biological Effects" Life 12, no. 12: 2071. https://doi.org/10.3390/life12122071
APA StyleKiseleva, V., Gordon, K., Vishnyakova, P., Gantsova, E., Elchaninov, A., & Fatkhudinov, T. (2022). Particle Therapy: Clinical Applications and Biological Effects. Life, 12(12), 2071. https://doi.org/10.3390/life12122071