Effect of Inorganic and Organic Nitrogen Sources and Biofertilizer on Murcott Mandarin Fruit Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Soil Conditions
2.2. Fertilization Treatments
2.3. Data Collection
- Fruit physical parameters:
- Juice chemical characteristics:
2.4. Statistical Analysis
Statistical Examination
3. Results
3.1. Physical Fruit Characteristics
3.1.1. Fruit Weight and Size
3.1.2. Pulp and Peel Weights
3.1.3. Juice Volume/Fruit
3.1.4. Pulp and Peel/Fruit Ratio
3.1.5. Peel thickness
3.1.6. Fruit Firmness
3.2. Physiochemical Properties of ‘Murcott’ Mandarin Fruit
3.2.1. Total Soluble Solids Percentage (TSS%)
3.2.2. Total Acidity Percentage
3.2.3. TSS/Acid Ratio
3.2.4. Content of Vitamin C (Ascorbic Acid)
3.2.5. Nitrate Percentage in Fruit
3.2.6. Total Sugar Content (Reducing and Non-Reducing Sugars)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tucker, D.P.H.; Futch, S.H.; Gmitter, F.G.; Kesinger, M.C. Florida Citrus Varieties SP 102. UF/IFAS Extension; The University of Florida: Gainesville, FL, USA, 1998; p. 36. [Google Scholar]
- FAOSTAT. FAO Statistical Division. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 22 December 2020).
- Garnica, M.; Houdusse, F.; Zamarreño, A.M.; Garcia-Mina, J.M. The signal effect of nitrate supply enhances active forms of cytokinins and indole acetic content and reduces abscisic acid in wheat plants grown with ammonium. J. Plant Physiol. 2010, 167, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Kandel, B.P.; Chhetri, L.B. Effect of integrated plant nutrient management system in quality of mandarin orange (Citrus reticulata Blanco). J. Agercolere 2019, 1, 19–24. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-Metwaly, N.M.; Alzahrani, S.O.; Alkhatib, F.; Abumelha, H.M.; El-Dabea, T.; Ali El-Remaily, M.A.E.A.A. Structural, conformational and therapeutic studies on new thiazole complexes: Drug-likeness and MOE-simulation assessments. Res. Chem. Intermed. 2021, 47, 1979–2002. [Google Scholar] [CrossRef]
- Adam, M.S.S.; Abu-Dief, A.M.; Makhlouf, M.; Shaaban, S.; Alzahrani, S.O.; Alkhatib, F.; Masaret, G.S.; Mohamed, M.A.; Alsehli, M.; El-Metwaly, N.M. Tailoring, structural inspection of novel oxy and non-oxy metal-imine chelates for DNA interaction, pharmaceutical and molecular docking studies. Polyhedron 2021, 201, 115167. [Google Scholar] [CrossRef]
- El-Beeh, M.E.; El-Badawi, A.A.; Amin, A.H.; Qari, S.H.; Ramadan, M.F.; Filfilan, W.M.; El-Sayyad, H.I. Anti-aging trait of whey protein against brain damage of senile rats. J. Umm Al-Qura Univ. Appl.Sci. 2022. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Alkhatib, F.M.; Alzahrani, S.O.; Shafi, M.E.; Abdel-Hamid, S.E.; Taha, T.F.; Aboelenin, S.M.; Soliman, M.M.; Ahmed, N.H. Impact of mycogenic zinc nanoparticles on performance, behavior, immune response, and microbial load in Oreochromis niloticus. Saudi J. Biol. Sci. 2021, 28, 4592–4604. [Google Scholar] [CrossRef]
- Shamseldin, A.; El-Sheikh, M.H.; Hassan, H.; Kabeil, S. Microbial biofertilization approaches to improve yield and quality of Washington navel orange and reducing the survival of nematode in the soil. J. Am. Sci. 2010, 6, 264–271. [Google Scholar]
- Abumelha, H.M.; Alkhatib, F.; Alzahrani, S.; Abualnaja, M.; Alsaigh, S.; Alfaifi, M.Y.; Althagafi, I.; El-Metwaly, N. Synthesis and characterization for pharmaceutical models from Co (II), Ni (II) and Cu (II)-thiophene complexes; apoptosis, various theoretical studies and pharmacophore modeling. J. Mol. Liq. 2021, 328, 115483. [Google Scholar] [CrossRef]
- Obaid, R.J. Synthesis and biological evaluation of some new imidazo[1,2-c]pyrimido [5,4-e]pyrimidin-5-amine derivatives. J. Umm Al-Qura Univ. Appl. Sci. 2021, 7, 16–22. [Google Scholar]
- Abouelenien, F.; Nakashimada, Y.; Nishio, N. Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. J. Biosci. Bioeng. 2009, 107, 293–295. [Google Scholar] [CrossRef]
- Ayeni, L.S.; Adetunji, M.T. Integrated application of poultry manure and mineral fertilizer on soil chemical properties, nutrient uptake, yield and growth components of maize. Nat. Sci. 2010, 8, 60–67. [Google Scholar]
- Yang, Q.; Ren, S.; Niu, T.; Guo, Y.; Qi, S.; Han, X.; Liu, D.; Pan, F. Distribution of antibiotic-resistant bacteria in chicken manure and manure-fertilized vegetables. Environ. Sci. Pollut. Res. 2014, 21, 1231–1241. [Google Scholar] [CrossRef] [PubMed]
- Granatstein, D. 2003. Available online: http://attra.ncat.org/attra-pub/fruitover.html (accessed on 9 September 2004).
- Oagile, D.; Namasiku, M. Chicken manure-enhanced soil fertility and productivity: Effects of application rates. J. Soil Sci. Environ. 2010, 1, 46–54. [Google Scholar] [CrossRef]
- Olle, M.; Williams, I. Effective microorganisms and their influence on vegetable production—A review. J. Hortic. Sci. Biotechnol. 2013, 88, 380–386. [Google Scholar] [CrossRef]
- Paschoal, A.D.; Senanayake, Y.; Sangakkara, U. Improved soil chemical and physical conditions and their relations to yield and fruit quality of orange in a field under Kyusei Nature Farming and EM. Technology in Barzil. In Proceedings of the Fifth International Conference on Kyusei Nature Farming, Bangkok, Thailand, 23–26 October 1997; pp. 175–181. [Google Scholar]
- Fikry, A.M.; Abou Sayed Ahmed, T.; Mohsen, F.; Ibrahim, M. Effect of Nitrogen fertilization through inorganic, organic and biofertilizers sources on vegetative growth, yield and nutritional status in Murcott Tangerine trees. Plant Arch. 2020, 20, 1859–1868. [Google Scholar]
- Huang, G.; Wang, X.; Han, L. Rapid estimation of nutrients in chicken manure during plant-field composting using physicochemical properties. Bioresour. Technol. 2011, 102, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Lima, J.R.; de Moraes Silva, W.; de Medeiros, E.V.; Duda, G.P.; Corrêa, M.M.; Martins Filho, A.P.; Hammecker, C. Effect of biochar on physicochemical properties of a sandy soil and maize growth in a greenhouse experiment. Geoderma 2018, 319, 14–23. [Google Scholar] [CrossRef]
- Dasberg, S. Nitrogen fertilization in citrus orchards. Plant Soil 1987, 100, 1–9. [Google Scholar] [CrossRef]
- Tachibana, S.; Yahata, S. Optimizing nitrogen fertilizer application for a high density planting of satsuma mandarin. J. Jpn. Soc. Hortic. Sci. 1996, 65, 471–477. [Google Scholar] [CrossRef] [Green Version]
- El-Khayat, H.; Abdel-Rehiem, M. Improving mandarin productivity and quality by using mineral and bio-fertilization. Alex. J. Agric. Res. 2013, 58, 141–147. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 12th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2006. [Google Scholar]
- International Standardization Organization. Vegetables and Derived Products–Determination of Nitrite and Nitrate Content–Molecular Absorption Spectrometric Method; International Organization for Standardization: Geneva, Switzerland, 1984. [Google Scholar]
- Snedecor, W.; Cochran, W. Statistical Methods, 6th ed.; The Iowa State University Press: Amess, IA, USA, 1976. [Google Scholar]
- Duncan, D.B. Multiple range and multiple F tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Shaimaa, A.; Massoud, O. Impact of inoculation with mycorrhiza and azotobacter under different N and P rates on growth, nutrient status, yield and some soil characteristics of Washington Navel Orange Trees. Middle East J. Agric. Res. 2017, 6, 617–638. [Google Scholar]
- Abedel-Sattar, M.; EL-Tanany, M.; EL-Kouny, H. Reducing mineral fertilizers by using organic manure to improve Washington navel orange productivity and sandy soil characteristics. Alex. Sci. Exch. J. 2011, 32, 372–380. [Google Scholar]
- Bhatnagar, N.; Ryan, D.; Murphy, R.; Enright, A. A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential–Global and Irish perspective. Renew. Sustain. Energy Rev. 2022, 154, 111884. [Google Scholar] [CrossRef]
- Hijbeek, R.; Loon, M.P.v.; Ittersum, M.K.v. Fertiliser Use and Soil Carbon Sequestration: Trade-Offs and Opportunities; CCAFS Working Paper; Wageningen University & Research: Wageningen, The Netherlands, 2019. [Google Scholar]
- Albrigo, L. Effects of foliar applications of urea or nutriphite on flowering and yields of Valencia orange trees. Proc. Fla. State Hortic. Soc. 1999, 112, 1–4. [Google Scholar]
- Huett, D. Prospects for manipulating the vegetative-reproductive balance in horticultural crops through nitrogen nutrition: A review. Aust. J. Agric. Res. 1996, 47, 47–66. [Google Scholar] [CrossRef] [Green Version]
- Obreza, T.A.; Schumann, A. Keeping water and nutrients in the Florida citrus tree root zone. HortTechnology 2010, 20, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Sakakibara, H.; Takei, K.; Hirose, N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci. 2006, 11, 440–448. [Google Scholar] [CrossRef]
- El-Otmani, M.; Taibi, F.-Z.; Lmoufid, B.; Ait-Oubahou, A.; Lovatt, C. Improved use of foliar on clementine mandarin to manipulate cropping in a sustainable production system. Acta Hortic. 2002, 632, 167–175. [Google Scholar] [CrossRef]
- Khan, A.S.; Malik, A.; Pervez, M.; Saleem, B.; Rajwana, I.; Shaheen, T.; Anwar, R. Foliar application of low-biuret urea and fruit canopy position in the tree influence the leaf nitrogen status and physico-chemical characteristics of Kinnow mandarin (Citrus reticulata Blanco). Pak. J. Bot. 2009, 41, 73–85. [Google Scholar]
- Sharma, S.D.; Kumar, P. Relationship of arbuscular mycorrhizal fungi and Azotobacter with plant growth, fruit yield, soil and leaf nutrient status of mango orchards in north-western Himalayan region of India. J. Appl. Hortic. 2008, 10, 158–163. [Google Scholar] [CrossRef]
- El-Shazly, S.; El-Gazzar, A.; Soliman, E.; Abd, A. Effect of natural minerals compound, organic and Some biofertilizers application on yield, fruit quality and leaf mineral content of Balady mandarin Trees. Egypt. J. Hortic. 2015, 42, 211–230. [Google Scholar]
- Hadole, S.; Shivmala, W.; Jadhao, S. Integrated use of organic and inorganic fertilizers with bio-inoculants on yield, soil fertility and quality of Nagpur mandarin (Citrus reticulata Blanco). Int. J. Agric. Sci. 2015, 11, 242–247. [Google Scholar]
- Morgan, K.; Wheaton, T.; Castle, W.; Parsons, L. Response of citrus to irrigation, nitrogen rate and application method. Hortic. Sci. 2009, 44, 145–150. [Google Scholar]
- Montasser, A.; El-Shahat, N.; Ghobreial, G.; El-Wadoud, M. Residual effect of nitrogen fertilization on leaves and fruits of Thompson Seedless Grapes. J. Environ. Sci. 2003, 6, 465–484. [Google Scholar]
- Abou-Kassem, D.E.; Mahrose, K.M.; El-Samahy, R.A.; Shafi, M.E.; El-Saadony, M.T.; Abd El-Hack, M.E.; Emam, M.; El-Sharnouby, M.; Taha, A.E.; Ashour, E.A. Influences of dietary herbal blend and feed restriction on growth, carcass characteristics and gut microbiota of growing rabbits. Ital. J. Anim. Sci. 2021, 20, 896–910. [Google Scholar] [CrossRef]
- Swelum, A.A.; Elbestawy, A.R.; El-Saadony, M.T.; Hussein, E.O.; Alhotan, R.; Suliman, G.M.; Abd El-Hack, M.E. Ways to minimize bacterial infections, with special reference to Escherichia coli, to cope with the first-week mortality in chicks: An updated overview. Poult. Sci. 2021, 100, 101039. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Elakkad, H.A.; El-Tahan, A.M.; Alshahrani, O.A.; Alshilawi, M.S.; El-Sayed, H.; Amin, S.A.; Ahmed, A.I. Flavoring and extending the shelf life of cucumber juice with aroma compounds-rich herbal extracts at 4 °C through controlling chemical and microbial fluctuations. Saudi J. Biol. Sci. 2022, 29, 346–354. [Google Scholar] [CrossRef]
- Reda, F.; El-Saadony, M.; El-Rayes, T.; Farahat, M.; Attia, G.; Alagawany, M. Dietary effect of licorice (Glycyrrhiza glabra) on quail performance, carcass, blood metabolites and intestinal microbiota. Poult. Sci. 2021, 100, 101266. [Google Scholar] [CrossRef]
- Sangakkora, U.; Weerakera, P. Impact of effective Microorganisms on nitrogen utilization efficiency of selected food crops. In Proceedings of the Six International Conference on Kyusei Nature Farming, Pretoria, South Africa, 28–31 October 1999. [Google Scholar]
- El-Haddad, M.; Ishac, Y.; Mostafa, M. The role of biofertilizers in reducing agricultural costs, decreasing environmental pollution and raising crop yield. Arab Univ. J. Agric. Sci. 1993, 1, 147–195. [Google Scholar]
- El-Shiekh, A. Effect of some biological fertilizers on productivity and postharvest fruit quality of’Adalia’lemons grown in the united Arab emirates. In Proceedings of the III International Conference on Postharvest and Quality Management of Horticultural Products of Interest for Tropical Regions 1047, Port of Spain, Spain, 1–5 July 2013; pp. 45–50. [Google Scholar]
- Rao, N.S.S. Biofertilizers in Agriculture, 3rd ed.; BH Publishing Co. Lit.: Oxford, UK, 1982; p. 219. [Google Scholar]
- Tchan, Y. Some aspects of non-rhizobial diazotrophs: Their past and their future. In Microbiology in Action; Murrell, W.G., Kennedy, I.R., Eds.; Research Studies Press Ltd.: Letchworth, UK, 1988; pp. 193–208. [Google Scholar]
- Ishac, Y. Inoculation with associative N2-fixers Egypt. In Nitrogen Fixation with Non-Legumes, Proceedings of the Fourth International Symposium on ‘Nitrogen Fixation with Non-Legumes’, Rio de Janeiro, Brazil, 23–28 August 1987; Springer: Dordrecht, The Netherlands, 1989; pp. 241–246. [Google Scholar]
- Palaniappan, S.; Annadurai, K. Organic Farming: Theory & Practice; Scientific Publishers: Jodhpur, India, 2010. [Google Scholar]
- Hazarika, T.; Aheibam, B. Soil nutrient status, yield and quality of lemon (Citrus limon Burm.) cv.‘Assam lemon’ as influenced by bio-fertilizers, organics and inorganic fertilizers. J. Plant Nutr. 2019, 42, 853–863. [Google Scholar] [CrossRef]
- Ayuso, M.; Hernandez, T.; Garcia, C.; Pascual, J. Stimulation of barley growth and nutrient absorption by humic substances originating from various organic materials. Bioresour. Technol. 1996, 57, 251–257. [Google Scholar] [CrossRef]
- Chen, Y. Humic substances orginating from rapidly decomposing organic matter: Properties and effects on plant growth. In Humic Substances in the Global Environment and Implications on Human Health (Chapter), Proceedings of the 6th International Meeting of the International Humic Substances Society, Monopoli, Italy, 20–25 September 1992; The Science of Composting; Springer: Dordrecht, The Netherlands, 1994; pp. 382–393. [Google Scholar]
- Vercesi, A. Soil-and foliar-applied organic fertilizers in viticulture. Inf. Agrar. 2000, 56, 83–89. [Google Scholar]
- Kannaiyan, S. Biotechnology of Biofertilizers; Springer Science & Business Media: Pangbourne, UK, 2002; p. 275. [Google Scholar]
- Nandwani, D. Organic Farming for Sustainable Agriculture; Springer: Cham, Switzerland, 2016; Volume 9. [Google Scholar]
- Singh, M. Organic farming for sustainable agriculture. Indian J. Agric. Res. 2021, 1, 1–9. [Google Scholar]
- Faissal, F.A.; Aal, A.M.A.; Faraag, M.H. Partial replacement of inorganic N fertilizer in balady mandarin orchards by using organic and biofertilization. Stem 2013, 4, 21–28. [Google Scholar]
- Naik, M.; Sri Hari Babu, R. Feasibility of organic farming in guava (Psidium guajava L.). In Proceedings of the I International Guava Symposium 735, Lucknow, India, 5–8 December 2005; pp. 365–372. [Google Scholar]
- Garhwal, P.; Yadav, P.; Sharma, B.; Singh, R.; Ramniw, A. Effect of organic manure and nitrogen on growth yield and quality of kinnow mandarin in sandy soils of hot arid region. Afr. J. Agric. Res. 2014, 9, 2638–2647. [Google Scholar]
- Dapoigny, L.; De Tourdonnet, S.; Roger-Estrade, J.; Jeuffroy, M.-H.; Fleury, A. Effect of nitrogen nutrition on growth and nitrate accumulation in lettuce (Lactuca sativa L.), under various conditions of radiation and temperature. Agronomie 2000, 20, 843–855. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, B.; Mupambwa, H.A.; Silwana, S.; Mnkeni, P.N. Assessment of nutrient quality, heavy metals and phytotoxic properties of chicken manure on selected commercial vegetable crops. Heliyon 2017, 3, e00493. [Google Scholar] [CrossRef]
- Singh, R.; Kim, J.; Shepherd Jr, M.W.; Luo, F.; Jiang, X. Determining thermal inactivation of Escherichia coli O157: H7 in fresh compost by simulating early phases of the composting process. Appl. Environ. Microbiol. 2011, 77, 4126–4135. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Elbestawy, A.R.; Nahed, A.; Saad, A.M.; Salem, H.M.; El-Tahan, A.M.; Khafaga, A.F.; Taha, A.E.; AbuQamar, S.F. Necrotic enteritis in broiler chickens: Disease characteristics and prevention using organic antibiotic alternatives–a comprehensive review. Poult. Sci. 2022, 101, 101590. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Saad, A.M.; Salem, H.M.; Ashry, N.M.; Ghanima, M.M.A.; Shukry, M.; Swelum, A.A.; Taha, A.E.; El-Tahan, A.M. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: A comprehensive review. Poult. Sci. 2021, 101, 101584. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; Soliman, M.M.; Youssef, G.B.; Taha, A.E.; Soliman, S.M.; Ahmed, A.E.; El-Kott, A.F. Alternatives to antibiotics for organic poultry production: Types, modes of action and impacts on bird’s health and production. Poult. Sci. 2022, 101, 101696. [Google Scholar] [CrossRef] [PubMed]
- Elnahal, A.S.; El-Saadony, M.T.; Saad, A.M.; Desoky, E.-S.M.; El-Tahan, A.M.; Rady, M.M.; AbuQamar, S.F.; El-Tarabily, K.A. The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. Eur. J. Plant Pathol. 2022, 162, 759–792. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; ALmoshadak, A.S.; Shafi, M.E.; Albaqami, N.M.; Saad, A.M.; El-Tahan, A.M.; Desoky, E.-S.M.; Elnahal, A.S.; Almakas, A.; Abd El-Mageed, T.A. Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi J. Biol. Sci. 2021, 28, 7349–7359. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Millner, P.D. Manure Management. In The Production Contamination Problem; Matthews, K., Solomon, E., Sapers, G., Eds.; US Department of Agriculture (USDA): Beltsville, MD, USA, 2009; Volume 1, pp. 79–104. [Google Scholar]
- Barker, K.; Purswell, J.; Davis, J.; Parker, H.; Kidd, M.; McDaniel, C.; Kiess, A. Distribution of bacteria at different poultry litter depths. Int. J. Poult. Sci. 2010, 9, 10–13. [Google Scholar] [CrossRef] [Green Version]
- USDA. Chapter 2, Composting. In Part 637 Environmental Engineering, National Engineering Handbook; US Department of Agriculture (USDA): Washington, DC, USA, 2000. [Google Scholar]
- Moore, P., Jr.; Daniel, T.; Edwards, D. Reducing phosphorus runoff and inhibiting ammonia loss from poultry manure with aluminum sulfate. J. Environ. Qual. 2000, 29, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Ryckeboer, J.; Mergaert, J.; Coosemans, J.; Deprins, K.; Swings, J. Microbiological aspects of biowaste during composting in a monitored compost bin. J. Appl. Microbiol. 2003, 94, 127–137. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Alshahrani, O.A.; Saghir, S.A.; Al-Wajeeh, A.S.; Abdel-Moneim, A.M.E. Prebiotics can restrict Salmonella populations in poultry: A review. Anim. Biotechnol. 2021, 19, 1–10. [Google Scholar] [CrossRef]
- USEPA. Control of Pathogens and Vector Attraction in Sewage Sludge; U.S. Environmental Protection Agency (USEPA): Cincinnati, OH, USA, 2003.
- Tiquia, S.M.; Tam, N.F. Characterization and composting of poultry litter in forced-aeration piles. Process Biochem. 2002, 37, 869–880. [Google Scholar] [CrossRef]
- Brodie, H.; Donald, J.; Conner, D.; Tucker, J.; Harkin, H. Field evaluation of mini-composting of poultry carcasses. Poult. Sci 1994, 73, 41. [Google Scholar]
- Macklin, K.; Hess, J.; Bilgili, S. In-house windrow composting and its effects on foodborne pathogens. J. Appl. Poult. Res. 2008, 17, 121–127. [Google Scholar] [CrossRef]
- Guan, J.; Spencer, J.; Sampath, M.; Devenish, J. The fate of a genetically modified Pseudomonas strain and its transgene during the composting of poultry manure. Can. J. Microbiol. 2004, 50, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.C.; Liao, J.; Boyhan, G.; Smith, C.; Ma, L.; Jiang, X.; Doyle, M.P. Fate of manure-borne pathogen surrogates in static composting piles of chicken litter and peanut hulls. Bioresour. Technol. 2010, 101, 1014–1020. [Google Scholar] [CrossRef]
Soil Analysis | Chicken Manure Analysis | ||
---|---|---|---|
Characteristic | Values | Characteristic | Values |
Physiochemical Properties | |||
Sand | 92.51 ± 0.2 | pH | 6.70 |
Silt | 6.22 ± 0.1 | Organic C (%) | 22.11 |
Clay | 1.27 ± 0.3 | C/N ratio | 7.45 |
Texture class | Sand | N * | 3.10 |
CEC, cmolckg−1 | 3.55 ± 0.1 | K * | 16,700 |
ECe, dSm−1 | 0.79 ± 0.06 | P * | 13,300 |
pH (1:2.5) | 8.40 ± 0.2 | Ca * | 8500 |
OM, gkg−1 | 1.32 ± 0.1 | Cu * | 18.1 × 104 |
CaCO3, gkg−1 | 19.10 ± 0.3 | Mg * | 5900 |
Soluble ions, mmol L−1 | As * | 13,100 | |
Ca++ | 3.09 ± 0.1 | Zn * | 9 × 105 |
Na+ | 3.72 ± 0.2 | ||
Mg++ | 0.96 ± 0.01 | ||
K+ | 0.95 ± 0.03 | ||
Cl− | 2.11 ± 0.1 | ||
HCO3− | 1.93 ± 0.9 | ||
SO42− | 4.52 ± 0.5 |
Treatment No. | Fertilization Treatments | ||
---|---|---|---|
RD (100%) | Biofertilizer (EM1) (mL) | ||
Inorganic Nitrogen (33.5%) (NH4NO3) | Organic Nitrogen (3%) (Chicken Manure) | ||
1 | 100% | 0 | 0 |
2 | 100% | 0 | 150 mL |
3 | 75% | 25% | |
4 | 50% | 50% | |
5 | 25% | 75% | |
6 | 75% | 25% | 150 mL |
7 | 50% | 50% | 150 mL |
8 | 25% | 75% | 150 mL |
9 | 100% | 150 mL | |
10 | 100% |
Fertilization Treatments | FW (g) | FS (cm3/fruit) | PW (g) | PEW (g) | Juice Volume (cm3)/fruit | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RD (100%) | EM1 (mL/tree) | 1st Season 2018 | 2nd Season 2019 | 1st Season 2018 | 2nd Season 2019 | 1st Season 2018 | 2nd Season 2019 | 1st Season 2018 | 2nd Season 2019 | 1st Season 2018 | 2nd Season 2019 | |
Inorganic N | Organic N | |||||||||||
100 | 0 | 0 | 161.8 d | 199.0 de | 157.0 e | 188.0 d | 135.2 cd | 166.7 d | 26.6 de | 32.3 de | 85.3 b | 103.3 b |
100 | 0 | 150 | 169.1 c | 208.0 c | 169.3 d | 203.0 c | 139.4 c | 172.7 c | 29.6 c | 35.3 bc | 81.0 c | 101.0 b |
75 | 25 | 0 | 184.1 a | 226.4 a | 191.7 a | 228.7 a | 151.8 a | 187.2 a | 32.3 a | 39.2 a | 94.7 a | 109.5 a |
50 | 50 | 0 | 159.7 de | 196.4 e | 169.7 d | 228.7 a | 134.2 d | 165.5 de | 25.5 e | 30.9 e | 80.3 c | 96.7 c |
25 | 75 | 0 | 158.5 de | 195.0 e | 157.0 e | 187.7 d | 131.2 de | 161.8 ef | 27.3 d | 33.2 cde | 74.3 d | 89.3 d |
75 | 25 | 150 | 166.5 c | 204.8 cd | 173.7 c | 204.0 c | 135.5 cd | 167.1 d | 31.0 abc | 37.7 ab | 74.3 d | 89.3 d |
50 | 50 | 150 | 176.4 b | 217.0 b | 187.0 b | 215.8 b | 145.1 b | 179.0 b | 31.4 ab | 38.1 a | 81.0 c | 97.0 c |
25 | 75 | 150 | 149.6 f | 184.1 f | 147.7 f | 187.2 d | 119.3 f | 147.2 g | 30.3 bc | 36.9 ab | 73.7 d | 88.7 d |
0 | 100 | 150 | 161.7 d | 198.9 de | 159.7 e | 191.1 d | 131.1 de | 161.7 ef | 30.6 bc | 37.2 ab | 69.5 e | 83.7 e |
0 | 100 | 0 | 156.8 e | 192.9 e | 158.3 e | 189.7 d | 129.1 e | 159.2 f | 27.7 d | 33.7 cd | 76.3 d | 91.3 d |
Fertilization Treatments | T.S.S. (%) | TA * (%) | T.S.S/acid | Vit. C. (mg/100 mL) | NO3% | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RD (100%) | EM1 (mL/tree) | 1st Season 2018 | 2nd Season 2019 | 1st Season 2018 | 2nd Season 2019 | 1st Season 2018 | 2nd Season 2019 | 1st Season 2018 | 2nd Season 2019 | 1st Season 2018 | 2nd Season 2019 | |
Inorganic N | Organic N | |||||||||||
100 | 0 | 0 | 12.8 a | 12.1 ab | 1.3 a | 1.2 ab | 9.8 cdef | 10.2 bc | 40.2 de | 40.8 c | 0.46 a | 0.48 a |
100 | 0 | 150 | 11.0 b | 11.2 bcd | 1.1 cde | 1.0 cd | 10.0 bcd | 11.2 b | 50.6 a | 41.4 c | 0.43 a | 0.44 b |
75 | 25 | 0 | 10.7 bc | 10.9 cd | 1.2 abcd | 1.3 a | 8.7 def | 8.8 c | 44.0 bc | 43.9 b | 0.36 bc | 0.39 c |
50 | 50 | 0 | 9.5 cd | 10.9 cd | 1.1 de | 1.2 abc | 9.1 cdef | 9.4 bc | 45.1 b | 41.7 c | 0.41 ab | 0.42 b |
25 | 75 | 0 | 10.3 bcd | 11.1 cd | 1.3 ab | 1.2 abc | 8.0 f | 9.6 bc | 42.4 cd | 39.5 d | 0.33 cd | 0.39 c |
75 | 25 | 150 | 10.7 bc | 10.9 cd | 1.0 ef | 1.0 d | 10.7 bc | 11.1 b | 44.0 bc | 45.3 a | 0.47 a | 0.50 a |
50 | 50 | 150 | 9.7 d | 10.8 d | 1.2 bcde | 1.1 bcd | 8.1 ef | 10.2 bc | 41.8 cd | 43.3 b | 0.33 cd | 0.38 c |
25 | 75 | 150 | 12.5 a | 11.8 abc | 1.3 abc | 1.3 a | 9.9 bcde | 9.2 c | 43.5 bc | 41.3 c | 0.32 cd | 0.35 d |
0 | 100 | 150 | 13.2 a | 12. 7 a | 1.1 bcde | 0.9 d | 11.7 b | 13.5 a | 38.5 e | 41.9 c | 0.29 d | 0.29 e |
0 | 100 | 0 | 13.0 a | 12.6 a | 0.9 f | 1.2 ab | 14.7 a | 10.4 bc | 37.6 e | 43.3 b | 0.31 cd | 0.34 d |
Fertilization Treatments | Total Carbohydrates % | Total Sugars % | Reducing Sugars % | Non-Reducing Sugars % | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RD (100%) | EM1 (mL/tree) | 1st Season 2018 | 2nd Season 2019 | 1st Season 2018 | 2nd Season 2019 | 1st Season 2018 | 2nd Season 2019 | 1st Season 2018 | 2nd Season 2019 | |
Inorganic N | Organic N | |||||||||
100 | 0 | 0 | 15.4 c | 16.0 c | 7.5 b | 7.0 d | 4.3 c | 3.8 e | 3.0 bcd | 3.23 bcd |
100 | 0 | 150 | 15.4 c | 16.0 c | 7.6 b | 7.0 d | 4.5 c | 4.0 de | 3.1 abc | 2.94 d |
75 | 25 | 0 | 15.6 c | 16.2 c | 7.9 b | 7.3 d | 4.6 c | 4.1 de | 3.6 ab | 3.21 bcd |
50 | 50 | 0 | 15.6 c | 16.5 c | 8.8 a | 8.7 bc | 6.0 ab | 4.6 cd | 2.8 cd | 4.12 a |
25 | 75 | 0 | 16.7 b | 19.4 b | 8.9 a | 8.2 c | 6.5 a | 5.1 bc | 2.4 d | 3.06 cd |
75 | 25 | 150 | 17.0 b | 19.4 b | 9.0 a | 8.8 bc | 5.4 b | 5.1 bc | 3.6 ab | 3.71 abc |
50 | 50 | 150 | 17.8 a | 19.4 b | 9.1 a | 8.4 c | 5.3 c | 5.1 abc | 3.8 a | 3.27 bcd |
25 | 75 | 150 | 17.9 a | 19.4 b | 9.3 a | 8.2 c | 6.0 ab | 5.6 ab | 3.4 abc | 2.66 d |
0 | 100 | 150 | 18.3 a | 20.4 a | 9.4 a | 10.1 a | 6.5 a | 5.8 a | 3.0 bcd | 4.01 a |
0 | 100 | 0 | 17.9 a | 20.0 ab | 9.4 a | 9.4 b | 6.5 a | 5.6 ab | 2.9 bcd | 3.76 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fikry, A.M.; Radhi, K.S.; Abourehab, M.A.S.; Abou Sayed-Ahmed, T.A.M.; Ibrahim, M.M.; Mohsen, F.S.; Abdou, N.A.; Omar, A.A.; Elesawi, I.E.; El-Saadony, M.T. Effect of Inorganic and Organic Nitrogen Sources and Biofertilizer on Murcott Mandarin Fruit Quality. Life 2022, 12, 2120. https://doi.org/10.3390/life12122120
Fikry AM, Radhi KS, Abourehab MAS, Abou Sayed-Ahmed TAM, Ibrahim MM, Mohsen FS, Abdou NA, Omar AA, Elesawi IE, El-Saadony MT. Effect of Inorganic and Organic Nitrogen Sources and Biofertilizer on Murcott Mandarin Fruit Quality. Life. 2022; 12(12):2120. https://doi.org/10.3390/life12122120
Chicago/Turabian StyleFikry, Ahmed M., Khadija S. Radhi, Mohammed A. S. Abourehab, Talaat A. M. Abou Sayed-Ahmed, Mohamed M. Ibrahim, Farid S. Mohsen, Nour A. Abdou, Ahmad A. Omar, Ibrahim Eid Elesawi, and Mohamed T. El-Saadony. 2022. "Effect of Inorganic and Organic Nitrogen Sources and Biofertilizer on Murcott Mandarin Fruit Quality" Life 12, no. 12: 2120. https://doi.org/10.3390/life12122120
APA StyleFikry, A. M., Radhi, K. S., Abourehab, M. A. S., Abou Sayed-Ahmed, T. A. M., Ibrahim, M. M., Mohsen, F. S., Abdou, N. A., Omar, A. A., Elesawi, I. E., & El-Saadony, M. T. (2022). Effect of Inorganic and Organic Nitrogen Sources and Biofertilizer on Murcott Mandarin Fruit Quality. Life, 12(12), 2120. https://doi.org/10.3390/life12122120