Photobiomodulation Therapy Combined with Static Magnetic Field (PBMT–SMF) on Spatiotemporal and Kinematics Gait Parameters in Post-Stroke: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Blinding
2.4. Randomization
2.5. Outcomes Measurements
2.6. Intervention
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval
References
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Buddy Connors, J.J.; Culebras, A.; Elkind, M.S.V.; George, M.G.; Hamdan, A.D.; Higashida, R.T.; et al. An updated definition of stroke for the 21st century: A statement for the Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef] [PubMed]
- Luengo-Fernandez, R.; Violato, M.; Candio, P.; Leal, J. Economic burden of stroke across Europe: A population-based cost analysis. Eur. Stroke J. 2020, 5, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Wafa, H.A.; Wolfe, C.D.A.; Emmett, E.; Roth, G.A.; Johnson, C.O.; Wang, Y. Burden of Stroke in Europe: Thirty-Year Projections of Incidence, Prevalence, Deaths, and Disability-Adjusted Life Years. Stroke 2020, 51, 2418–2427. [Google Scholar] [CrossRef]
- Mansfield, A.; Inness, E.L.; Mcilroy, W.E. Stroke. Handb. Clin. Neurol. 2018, 159, 205–228. [Google Scholar]
- Noskin, O.; Krakauer, J.W.; Lazar, R.M.; Festa, J.R.; Handy, C.; O’Brien, K.A.; Marshall, R.S. Ipsilateral motor dysfynction from unilateral stroke: Implications for the functional neuroanatomy of hemiparesis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 401–406. [Google Scholar] [CrossRef]
- Mayo, N.E.; Wood-Dauphinee, S.; Côte, R.; Durcan, L.; Carlton, J. Activity, participation, and quality of life 6 months poststroke. Arch. Phys. Med. Rehabil. 2002, 83, 1035–1042. [Google Scholar] [CrossRef]
- Balbinot, G.; Schuch, C.P.; Oliveira, H.B.; Peyré-Tartaruga, L.A. Mechanical and energetic determinants of impaired gait following stroke: Segmental work and pendular energy transduction during treadmill walking. Biol. Open 2020, 9, bio051581. [Google Scholar] [CrossRef]
- Chen, G.; Patten, C.; Kothari, D.H.; Zajac, F.E. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture 2005, 22, 51–56. [Google Scholar] [CrossRef]
- Lefeber, N.; De Buyzer, S.; Dassen, N.; De Keersmaecker, E.; Kerckhofs, E.; Swinnen, E. Energy consumption and during walking with different modalities of assistance after stroke: A systematic review and meta-analysis. Disabil. Rehabil. 2020, 42, 1650–1666. [Google Scholar] [CrossRef]
- Peyré-Tartaruga, L.A.; Coertjenas, M. Locomotion as a Powerful Model to Study Integrative Physiology: Efficiency, Economy, and Power Relationship. Front. Physiol. 2018, 11, 1789. [Google Scholar] [CrossRef]
- Anders, J.J.; Lanzafame, R.J.; Arany, P.R. Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 2015, 33, 183–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal-Junior, E.C.P.; Lopes-Martins, R.Á.B.; Bjordal, J.M. Clinical and scientific recommendations for the use of photobiomodulation therapy in exercise performance enhancement and post-exercise recovery: Current evidence and future directions. Braz. J. Phys. Ther. 2019, 23, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, Z.; Zhang, L.; Li, Z.; Tian, X.; Fang, J.; Lu, Q.; Zhang, X. Cellular ATP levels are affected by moderate and strong static magnetic fields. Bioelectromagnetics 2018, 9, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Coballase-Urrutia, E.; Navarro, L.; Ortiz, J.L.; Verdugo-Díaz, L.; Gallardo, J.M.; Hernández, M.E.; Estrada-Rojo, F. Static Magnetic Fields Modulate the Response of Different Oxidative Stress Markers in a Restraint Stress Model Animal. Biomed. Res. Int. 2018, 2018, 3960408. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, H.; Lipovsky, A.; Nitzan, Y.; Lubart, R. Combined magnetic and pulsed laser fields produce synergistic acceleration of cellular electron transfer. Laser Ther. 2009, 18, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Antonialli, F.C.; De Marchi, T.; Tomazoni, S.S.; Vanin, A.A.; Grandinetti, V.S.; de Paiva, P.R.V.; Pinto, H.D.; Miranda, E.F.; de Carvalho, P.T.C.; Leal-Junior, E.C.P. Phototherapy in skeletal muscle performance and recovery after exercise: Effect of combination of super pulsed laser and light-emitting diodes. Lasers Med. Sci. 2014, 29, 1967–1976. [Google Scholar] [CrossRef] [PubMed]
- Miranda, E.F.; Tomazoni, S.S.; de Paiva, P.R.V.; Pinto, H.D.; Smith, D.; Santos, L.A.; de Carvalho, P.T.C.; Leal-Junior, E.C.P. When is the best moment to apply photobiomodulation therapy (PBMT) when associated to a treadmill endurance-training program? A randomized, triple-blinded, placebo-controlled clinical trial. Lasers Med. Sci. 2018, 33, 719–727. [Google Scholar] [CrossRef]
- Pinto, H.D.; Vanin, A.A.; Miranda, E.F.; Tomazoni, S.S.; Johnson, D.S.; Albuquerque-Pontes, G.M.; Junior, I.O.A.; Grandinetti, V.S.; Casalechi, H.L.; de Carvalho, P.T.C.; et al. Photobiomodulation therapy improves performance and accelerates recovery of high-level rugby players in field test: A randomized, crossover, double-blind, placebo-controlled clinical study. J. Strength Cond. Res. 2016, 30, 3329–3338. [Google Scholar] [CrossRef]
- De Marchi, T.; Leal-Junior, E.C.P.; Lando, K.C.; Cimadon, F.; Vanin, A.A.; da Rosa, D.P.; Salvador, M. Photobiomodulation therapy before futsal matches improves the staying time of athletes in the court and accelerates post-exercise recovery. Lasers Med. Sci. 2019, 34, 139–148. [Google Scholar] [CrossRef]
- Langella, L.G.; Casalechi, H.L.; Tomazoni, S.S.; Johnson, D.S.; Albertini, R.; Pallotta, R.C.; Marcos, R.L.; de Carvalho, P.T.C.; Pinto Leal-Junior, E.C.P. Photobiomodulation therapy (PBMT) on acute pain and inflammation in patients who underwent total hip arthroplasty-a randomized, triple-blind, placebo-controlled clinical trial. Lasers Med. Sci. 2018, 33, 1933–1940. [Google Scholar] [CrossRef]
- Miranda, E.F.; de Oliveira, L.V.; Antonialli, F.C.; Vanin, A.A.; de Carvalho, P.T.C.; Leal-Junior, E.C. Phototherapy with combination of super-pulsed laser and light-emitting diodes is beneficial in improvement of muscular performance (strength and muscular endurance), dyspnea, and fatigue sensation in patients with chronic obstructive pulmonary disease. Lasers Med. Sci. 2015, 30, 437–443. [Google Scholar] [CrossRef]
- Casalechi, H.L.; Dumont, A.J.L.; Ferreira, L.A.B.; de Paiva, P.R.V.; Machado, C.S.M.; de Carvalho, P.T.C.; Oliveira, C.S.; Leal-Junior, E.C. Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: A randomized, sham-controlled, triple-blind, crossover, clinical trial. Lasers Med. Sci. 2020, 35, 1253–1262. [Google Scholar] [CrossRef]
- Liu, W. A narrative review of gait training after stroke and a proposal for developing a novel gait training device that provides minimal assistance. Top. Stroke Rehabil. 2018, 25, 375–383. [Google Scholar] [CrossRef]
- Wonsetler, E.C.; Bowden, M.G. A systematic review of mechanisms of gait speed change post-stroke. Part 2: Exercise capacity, muscle activation, kinetics, and kinematics. Top. Stroke Rehabil. 2017, 24, 394–403. [Google Scholar] [CrossRef]
- Belfiore, P.; Miele, A.; Gallè, F.; Liguori, G. Adapted physical activity and stroke: A systematic review. J. Sports Med. Phys. Fit. 2018, 58, 1867–1875. [Google Scholar] [CrossRef]
- Davis, R.B.; Ounpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Leal-Junior, E.C.P.; de Oliveira, M.F.D.; Joensen, J.; Stausholm, M.B.; Bjordal, J.M.; Tomazoni, S.S. What is the optimal time-response window for the use of photobiomodulation therapy combined with static magnetic field (PBMT-sMF) for the improvement of exercise performance and recovery, and for how long the effects last? A randomized, triple-blinded, placebo-controlled trial. BMC. Sports Sci. Med. Rehabil. 2020, 12, 64. [Google Scholar]
- Cho, K.H.; Pyo, S.; Shin, G.S.; Hong, S.D.; Lee, S.H.; Lee, D.; Song, S.; Lee, G. A novel one arm motorized walker for hemiplegic stroke survivors: A feasibility study. Biomed. Eng. 2018, 30, 14. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.A.B.; Cimolin, V.; Neto, H.P.; Grecco, L.A.C.; Lazzari, R.D.; Dumont, A.J.L.; Galli, M.; Oliveira, C.S. Effect of postural insoles on gait pattern in individuals with hemiparesis: A randomized controlled clinical trial. J. Bodyw. Mov. Ther. 2018, 22, 792–797. [Google Scholar] [CrossRef]
- Wonsetler, E.C.; Bowden, M.G. A systematic review of mechanisms of gait speed change post-stroke. Part 1: Spatiotemporal parameters and asymmetry ratios. Top. Stroke Rehabil. 2017, 24, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Bowden, M.G.; Balasubramanian, C.K.; Behrman, A.L.; Kautz, S.A. Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabil. Neural Repair 2008, 22, 672–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyaert, C.; Vasa, R.; Frykberg, G.E. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiol. Clin. 2015, 45, 335–355. [Google Scholar] [CrossRef] [PubMed]
- Gama, G.L.; Trigueiro, L.C.L.; Simao, C.R.; Simão, C.R.; de Sousa, A.V.C.; Silva, E.M.G.S.; Galvão, E.R.V.P.; Lindquist, A.R.R. Effects of treadmill inclination on hemiparetic gait: Controlled and randomized clinical trial. Am. J. Phys. Med. Rehab. 2015, 94, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Lewek, M.D.; Cruz, T.H.; Moore, J.L.; Roth, H.R.; Dhaher, Y.Y.; Hornby, T.G. Allowing intralimb kinematic variability during locomotor training poststroke improves kinematic consistency: A subgroup analysis from a randomized clinical trial. Phys. Ther. 2009, 89, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Paoloni, M.; Mangone, M.; Scettri, P.; Procaccianti, R.; Cometa, A.; Santilli, V. Segmental muscle vibration improves walking in chronic stroke patients with foot drop: A randomized controlled trial. Neurorehabil. Neural Repair. 2010, 24, 254–262. [Google Scholar] [CrossRef]
- Dunsky, A.; Dickstein, R.; Marcovitz, E.; Levy, S.; Deutsch, J. Home-based motor imagery training for gait rehabilitation of people with chronic post stroke hemiparesis. Arch. Phys. Med. Rehabil. 2008, 89, 1580–1588. [Google Scholar] [CrossRef]
- Sousa, C.O.; Barela, J.A.; Prado-Medeiros, C.L.; Salvini, T.F.; Barela, A.M. Gait training with partial body weight support during overground walking for individuals with chronic stroke: A pilot study. J. Neuroeng. Rehabil. 2011, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Vanin, A.A.; Verhagen, E.; Barboza, S.D.; Costa, L.O.P.; Leal-Junior, E.C.P. Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: A systematic review and meta-analysis. Lasers Med. Sci. 2018, 33, 181–214. [Google Scholar] [CrossRef]
- Dos Reis, M.C.; de Andrade, E.A.; Borges, A.C.; de Souza, D.Q.; Lima, F.P.; Nicolau, R.A.; Andrade, A.O.; Lima, M.O. Immediate effects of low-intensity laser (808 nm) on fatigue and strength of spastic muscle. Lasers Med. Sci. 2015, 30, 1089–1096. [Google Scholar] [CrossRef]
- Das Neves, M.F.; Dos Reis, M.C.; de Andrade, E.A.; Lima, F.P.; Nicolau, R.A.; Arisawa, E.Â.; Andrade, A.O.; Lima, M.O. Effects of low-level laser therapy (LLLT 808 nm) on lower limb spastic muscle activity in chronic stroke patients. Lasers Med. Sci. 2016, 31, 1293–1300. [Google Scholar] [CrossRef]
- Tyson, S.F.; Sadeghi-Demneh, E.; Nester, C.J. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clin. Rehabil. 2013, 27, 879–891. [Google Scholar] [CrossRef]
- De Paiva, P.R.V.; Casalechi, H.L.; Tomazoni, S.S.; Machado, C.D.S.M.; Miranda, E.F.; Ribeiro, N.F.; Pereira, A.L.; da Costa, A.S.; Dias, L.B.; Souza, B.C.G.; et al. Effects of photobiomodulation therapy in aerobic endurance training and detraining in humans: Protocol for a randomized placebo-controlled trial. Medicine 2019, 98, e15317. [Google Scholar] [CrossRef]
Parameters | Treatment with 10 J, 30 J and 50 J |
---|---|
Number of Lasers | 4 Super-Pulsed Infrared |
Wavelength (nm) | 905 (±1) |
Frequency (Hz) | 250 |
Peak power (W)-each | 12.5 |
Average mean optical output (mW)-each | 0.3125 |
Power density (mW/cm2)-each | 0.71 |
Dose/Energy density (J/cm2)-each | 0.054, 0.162, 0.271 |
Energy (J)-each | 0.02375, 0.07125 or 0.11906 |
Spot size of laser (cm2)-each | 0.44 |
Number of red LEDs | 4 Red |
Wavelength of red LEDs (nm) | 640 (±10) |
Frequency (Hz) | 2 |
Average optical output (mW)-each | 15 |
Power density (mW/cm2)-each | 16.67 |
Dose/Energy density (J/cm2)-each | 1.27, 3.8 and 6.35 |
Energy (J)-each | 1.14, 3.42 or 5.72 |
Spot size of red LED (cm2)-each | 0.9 |
Number of infrared LEDs | 4 Infrared |
Wavelength of infrared LEDs (nm) | 875 (±10) |
Frequency (Hz) | 16 |
Average optical output (mW)-each | 17.5 |
Power density (mW/cm2)-each | 19.44 |
Dose/Energy density (J/cm2)-each | 1.48, 4.43 or 7.41 |
Energy (J)-each | 1.33, 3.99 or 6.67 |
Spot size of LED (cm2)-each | 0.9 |
Number of magnets | 1 |
Shape | Ring |
Area (cm2) | 20 |
Width (cm) | 0.5 |
Thick (cm) | 2 |
Magnetic field (mT) | 35 |
Irradiation time per site (sec) | 76, 228, or 381 |
Total energy per site (J) | 10, 30 or 50 |
Total energy applied per lower limb (J) | 170, 510 or 850 |
Aperture of device (cm2) | 20 |
Application mode | Cluster probe held stationary in skin contact with a 90-degree angle and slight pressure |
Individuals (n) | 10 |
---|---|
Age (years) | 58.5 (±10.04) |
Body mass (kg) | 72.3(±13.8) |
Height (m) | 1.69 (±0.10) |
BMI (kg/m2) | 27.3(±6.8) |
Time since stroke (months) | 42.2 (±19.4) |
Male/Female | 6/4 |
Type of stroke (ischemic/hemorrhagic) | 5/5 |
Main stroke lesion (cortical/subcortical) | 6/4 |
Affected side (right/left) | 4/6 |
Gait-assistance device (cane/braces) | 6/1 |
. | DOSE | ||||||
---|---|---|---|---|---|---|---|
BASELINE n= 10 | SHAM n = 10 | 10 J n = 10 | 30 J n = 10 | 50 J n = 10 | |||
EVALUATION | VELOCITY (m/s) | 0.406 (0.143) | 0.418 (0.127) | 0.41 (0.092) | 0.497 (0.135) | 0.393 (0.089) | |
STEP WIDTH (m) | 0.342 (0.277) | 0.221 (0.041) | 0.219 (0.039) | 0.227 (0.044) | 0.230 (0.047) | ||
NON-PARETIC | STANCE PHASE (%GC) | 67.148 (5.239) | 72.734 (4.058) | 71.426 (5.941) | 73.793 (5.783) | 72.976 (4.586) | |
DOUBLE SUPPORT (%GC) | 15.091 (4.543) | 18.667 (4.040) | 22.386 (9.628) | 21.797 (8.569) | 17.822 (4.073) | ||
STEP LENGTH (m) | 0.355 (0.079) | 0.342 (0.096) | 0.324 (0.096) | 0.332 (0.114) | 0.341 (0.103) | ||
PARETIC | STANCE PHASE (%GC) | 61.010 (6.334) | 65.347 (4.530) | 65.6 (4.179) | 63.050 (4.981) | 63.652 (4.408) | |
DOUBLE SUPPORT (%GC) | 13.076 (1.745) | 19.69 (5.489) | 15.692 (3.364) | 15.941 (3.429) | 18.510 (4.351) | ||
STEP LENGTH (m) | 0.380 (0.093) | 0.323 (0.123) | 0.304 (0.110) | 0.317 (0.137) | 0.299 (0.112) |
NON-PARETIC | PARETIC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EVALUATION | BASELINE | SHAM | 10 J | 30 J | 50 J | BASELINE | SHAM | 10 J | 30 J | 50 J | |
PELVIS | PT–IC | 11.603(6.522) | 12.662 (6.49) | 9.716 (5.231) | 9.343 (5.52) | 11.141 (5.99) | 8.11 (6.350) | 9.983 (6.065) | 7.79 (5.682) | 6.645 (5.87) | 8.26 (4.882) |
PT–MAX | 14.425 (6.78) | 16.11 (6.58) | 12.951 (6.665) | 12.193 (5.77) | 13.88 (6.290) | 14.843 (6.661) | 16.01 (6.751) | 12.985 (6.801) | 12.063 (5.97) | 14.33 (6.12) | |
PT–MIN | 6.283 (5.911) | 8.033 (5.800) | 5.321 (4.89) | 4.59 (4.61) | 6.31 (3.551) | 6.073 (5.57) | 8.255 (6.13) | 6.29 (5.02) | 4.45 (4.571) | 6.18 (3.72) | |
PT–ROM | 8.333 (3.474) | 8.055 (4.99) | 7.63 (3.770) | 7.913 (5.051) | 7.381 (4.90) | 8.513 (4.317) | 7.751 (5.195) | 7.70 (3.624) | 8.013 (4.935) | 8.03 (5.202) | |
PO–MAX | 3.173 (5.40) | 8.70 (9.10) | 10.863 (8.071) | 12.51 (10.314) | 11.60 (8.815) | 5.04 (4.145) | 5.174 (5.195) | 2.093 (8.90) | 3.233 (8.290) | 2.18 (9.304) | |
PO–MIN | −5.133 (3.68) | −6.39 (9.773) | −3.211 (7.133) | −2.76 (6.88) | −2.80 (9.354) | −3.13 (6.467) | −7.603 (7.80) | −11. 585 (8.64) | −11.47 (10.226) | −11.83 (8.585) | |
PO–ROM | 8.413 (4.142) | 15.60 (8.064) | 14.35 (6.604) | 13.233 (6.393) | 14.4 (7.093) | 8.20 (4.88) | 13.77 (4.694) | 14.613 (6.820) | 13.571 (5.904) | 13.805 (6.902) | |
PR–MAX | 9.42 (9.303) | 12.514 (6.713) | 12.545 (7.375) | 11.66 (7.571) | 12.995 (7.111) | 3.303 (10.83) | 14.57 (6.804) | 11.53 (6.28) | 10.91 (5.862) | 13.85 (6.131) | |
PR–MIN | −3.445 (11.24) | 0.74 (8.363) | 0.213 (12.722) | −0.27 (12.442) | −0.418 (10.90) | −9.27 (10.905) | 3.482 (9.89) | −0.60 (6.574) | −0.363 (8.05) | 2.643 (8.23) | |
PR–ROM | 12.763 (7.560) | 11.992 (7.84) | 12.415 (9.15) | 12.231 (9.58) | 13.028 (10.51) | 12.48 (5.79) | 11.744 (6.343) | 11.783 (5.09) | 11.27 (5.76) | 11.205 (6.433) | |
HIP | HIC | 29.067 (15.60) | 11.338 (27.45) | 15.863 (23.864) | 14.915 (23.94) | 12.84 (25.563) | 28.055 (18.38) | 21.43 (26.81) | 11.983 (21.45) | 10.64 (20.79) | 11.205 (22.70) |
HMST–MAX | 39.45 (10.65) | 25.77 (21.86) | 11.69 (19.85) * | 13.99 (19.69) * | 12.99 (20.49) * | 36.39 (7.856) | 31.34 (13.45) | 23.57 (13.1) | 10.57 (14.11) *, # | 11.78 (17.37) # | |
HMST–MIN | 7.174 (9.645) | −0.4053 (13.52) | −9.31 (5.533) * | −7.924 (4.163) * | −7.668 (7.494) * | 15.77 (10.95) | 10.47 (10.66) | −7. 41 (9.29) *, # | −6.971 (8.81) *, # | −7.924 (8.22) *, # | |
HMST–ROM | 29.85 (8.79) | 25.011 (18.461) | 25.13 (18.262) | 22.42 (18.074) | 21.62(15.902) | 19.291 (9.252) | 18.214 (9.90) | 19.25 (11.79) | 18.57 (11.56) | 20.52 (14.744) | |
HAA–MAX | 7.15 (10.363) | 12.462 (14.714) | 8.355 (15.323) | 10.10 (16.620) | 7,25 (11.901) | 4.30 (7.85) | 8.07 (9.852) | 12.17 (13.421) | 12.833 (15.950) | 8.34 (11.400) | |
HAA–MIN | −0.65 (13.365) | −4.203 (10.052) | −2.543 (16.60) | −1.91 (12.10) | −2.623 (11.424) | −4.013 (5.675) | −3.59 (11.47) | 1.843 (13.201) | 2.66 (15.051) | −0.155 (10.122) | |
HAA–ROM | 9.00 (3.96) | 13.95 (6.330) | 11.415 (4.29) | 10.88 (5.89) | 9.8 (5.970) | 8.42 (5.675) | 9.38 (5.313) | 11.38 (7.893) | 10.183 (3.09) | 9.65 (3.39) | |
HROT–IC | 8.883 (29.09) | 17.07 (20.940) | 12.043 (17.79) | 15.97 (16.98) | 19.925 (13.78) | 17.81 (27.062) | 13.65 (29.17) | 12.805 (18.0) | 8.601 (23.955) | 14.36 (20.01) | |
HROT–MEAN | 12.771 (27.30) | 8.671 (25.573) | 5.784 (15.001) | 10.59 (16.98) | 14.333 (12.45) | 21.118 (30.285) | 12.303 (30.19) | 9.84 (14.450) | 5.860 (21.39) | 9.76 (16.110) | |
KNEE | KIC | 16.21 (13.99) | 9.54 (13.91) | 11.69 (16.012) | 17.91 (13.84) | 12.525 (11.493) | 16.21 (13.999) | 16.16 (16.585) | 14.375 (15.354) | 15.74 (13.681) | 14.985 (11.53) |
KMSW | 30.86 (13.51) | 27.19 (23.353) | 30.31 (22.89) | 32.453 (21.481) | 31.695 (21.632) | 30.863 (13.505) | 33.06 (13.993) | 31.64 (16.07) | 31.053 (12.305) | 31.88 (12.28) | |
KMST | 13.40 (11.62) | 5.881 (10.415) | 6.43 (8.484) | 5.453 (8.181) | 4.641 (7.65) | 12.40 (11.63) | 8.65 (11.192) | 6.352 (6.80) | 5.79 (8.814) | 8.155 (8.64) | |
K–ROM | 15.28 (11.88) | 30.744 (20.392) | 30.31 (22.892) | 27.81 (20.121) | 26.631 (19.022) | 15.28 (11.885) | 21.233 (15.56) | 22.031 (14.623) | 19.89 (14.223) | 24.34 (15.944) | |
ANKLE AND FOOT | AIC | −1.97 (6.13) | 4.99 (13.404) | 1.463 (5.313) | 2.59 (9.23) | 0.76 (9.182) | −3.96 (8.66) | −0.629 (7.64) | −0.185 (5.332) | −1.76 (6.04) | −0.401 (6.921) |
AMST–MAX | 12.29 (9.29) | 19.3 (11.61) | 16.975 (3.98) | 16.68 (6.355) | 15.331 (5.17) | 9.11 (13.93) | 13.714 (9.88) | 13.325 (8.733) | 12.93 (9.54) | 13.001 (8.38) | |
AMST–MIN | −5.15 (7.45) | −0.833 (14.017) | −1.185 (6.225) | −2.341 (8.75) | −4.882 (8.541) | −3.87 (10.51) | −0.6 (8.29) | −0.54 (5.40) | −2.45 (7.071) | −1.24 (6.404) | |
AMSW | 7.31 (9.69) | 13.77 (13.17) | 11.743 (8.531) | 12.943 (9.018) | 9.44 (9.37) | 3.79 (12.43) | 6.30 (7.88) | 6.23 (6.22) | 4.28 (6.572) | 5.11 (7.235) | |
A–ROMST | 17.78 (9.54) | 20.055 (8.72) | 18.12 (7.115) | 19.501 (9.404) | 20.403 (7.565) | 12.963 (6.79) | 14.825 (7.551) | 13.693 (6.49) | 15.135 (6.41) | 14.17 (6.57) | |
FP IC | −12.50 (19.08) | −16.174 (4.155) | −16.58 (3.520) | −17.45 (4.540) | −16.24 (5.625) | −4.57 (25.66) | −15.59 (5.915) | −17.62 (8.255) | −18.723 (7.430) | −18.655 (9.502) | |
FP MEAN | −12.03 (19.45) | −16.534 (6.033) | −16.90 (4.172) | −17.932 (7.82) | −14.810 (6.020) | −8.522 (24.49) | −18. 216 (7.140) | −18.16 (6.825) | −20.601 (7.591) | −21.562 (9.790) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumont, A.J.L.; Casalechi, H.L.; Tomazoni, S.S.; Grecco, L.C.; Galli, M.; Oliveira, C.S.; Leal-Junior, E.C.P. Photobiomodulation Therapy Combined with Static Magnetic Field (PBMT–SMF) on Spatiotemporal and Kinematics Gait Parameters in Post-Stroke: A Pilot Study. Life 2022, 12, 186. https://doi.org/10.3390/life12020186
Dumont AJL, Casalechi HL, Tomazoni SS, Grecco LC, Galli M, Oliveira CS, Leal-Junior ECP. Photobiomodulation Therapy Combined with Static Magnetic Field (PBMT–SMF) on Spatiotemporal and Kinematics Gait Parameters in Post-Stroke: A Pilot Study. Life. 2022; 12(2):186. https://doi.org/10.3390/life12020186
Chicago/Turabian StyleDumont, Arislander Jonathan Lopes, Heliodora Leão Casalechi, Shaiane Silva Tomazoni, Luanda Collange Grecco, Manuela Galli, Claudia Santos Oliveira, and Ernesto Cesar Pinto Leal-Junior. 2022. "Photobiomodulation Therapy Combined with Static Magnetic Field (PBMT–SMF) on Spatiotemporal and Kinematics Gait Parameters in Post-Stroke: A Pilot Study" Life 12, no. 2: 186. https://doi.org/10.3390/life12020186
APA StyleDumont, A. J. L., Casalechi, H. L., Tomazoni, S. S., Grecco, L. C., Galli, M., Oliveira, C. S., & Leal-Junior, E. C. P. (2022). Photobiomodulation Therapy Combined with Static Magnetic Field (PBMT–SMF) on Spatiotemporal and Kinematics Gait Parameters in Post-Stroke: A Pilot Study. Life, 12(2), 186. https://doi.org/10.3390/life12020186