Preliminary In Vitro Cytotoxicity, Mutagenicity and Antitumoral Activity Evaluation of Graphene Flake and Aqueous Graphene Paste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Graphene Samples
2.3. Methods
2.3.1. In Vitro Cytotoxicity and Antitumoral Activity Evaluation
2.3.2. Cell Line for Cytotoxicity Evaluation
2.3.3. Cell Lines for Antitumor Activity Evaluation
2.3.4. Cell Cultures and Evaluation of Cell Viability
2.3.5. Cell Morphology Determination
2.3.6. Mutagenicity Assay: Ames Test
2.3.7. Statistical Analysis
3. Results
3.1. In Vitro Cytotoxicity: Cell Viability, Proliferation, and Morphology
3.1.1. Cell Viability and Proliferation
3.1.2. NIH3T3 Morphology
3.2. Antitumor Activity
3.3. Mutagenicity Assay: Ames Test
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Jiang, D.; Schedin, F.; Booth, T.J.; Khotkevic, V.V.; Morozov, S.V.; Geim, A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 451–453. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Paek, K.; Kim, B.J. Efficient temperature sensing platform based on fluorescent block copolymer-functionalized graphene oxide. Nanoscale 2013, 5, 5720–5724. [Google Scholar] [CrossRef]
- Pinto, A.M.; Gonçalves, I.C.; Magalhães, F.D. Graphene-based materials biocompatibility: A review. Colloids Surf. B Biointerfaces 2013, 111, 188–202. [Google Scholar] [CrossRef]
- Albero, J.; Mateo, D.; García, H. Graphene-Based Materials as Efficient Photocatalysts for Water Splitting. Molecules 2019, 24, 906. [Google Scholar] [CrossRef] [Green Version]
- Bellucci, L.; Tozzini, V. Engineering 3D Graphene-Based Materials: State of the Art and Perspectives. Molecules 2020, 25, 339. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; Xing, F. Review of Polarization Optical Devices Based on Graphene Materials. Int. J. Mol. Sci. 2020, 21, 1608. [Google Scholar] [CrossRef] [Green Version]
- Kairi, M.I.; Dayou, S.; Kairi, N.I.; Bakar, S.U.; Vigolo, B.; Mohamed, A.R. Toward high production of graphene flakes—A review on recent developments in their synthesis methods and scalability. J. Mater. Chem. A 2018, 6, 15010–15026. [Google Scholar] [CrossRef] [Green Version]
- Ayán-Varela, M.; Paredes, J.I.; Guardia, L.; Villar-Rodil, S.; Munuera, J.M.; Díaz-González, M.; Fernández-Sánchez, C.; Martínez-Alonso, A.; Tascón, J.M.D. Achieving Extremely Concentrated Aqueous Dispersions of Graphene Flakes and Catalytically Efficient Graphene-Metal Nanoparticle Hybrids with Flavin Mononucleotide as a High-Performance Stabilizer. ACS Appl. Mater. Interfaces 2015, 7, 10293–10307. [Google Scholar] [CrossRef]
- Banerjee, A.N. Graphene and its derivatives as biomedical materials: Future prospects and challenges. Interface Focus 2018, 8, 1–22. [Google Scholar] [CrossRef]
- Reina, G.; Gonzalez-Dominguez, J.M.; Criado, A.; Vazquez, E.; Bianco, A.; Prato, M. Promises, acts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 2017, 46, 4400–4416. [Google Scholar] [CrossRef] [Green Version]
- Conroy, J.; Verma, N.K.; Smith, R.J.; Rezvani, E.; Duesberg, G.S.; Coleman, J.N.; Volkov, Y. Biocompatibility of Pristine Graphene Monolayers, Nanosheets and Thin Films. arXiv 2014, arXiv:1406.2497. [Google Scholar]
- Sangiliyandi, G.; Han, J.W.; Eppakayala, V.; Dayem, A.A.; Kwon, D.N.; Kim, J.H. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells. Nanoscale Res. Lett. 2013, 8, 393. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of Graphene Oxide. Nanoscale Res. Lett. 2011, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Bianco, A. Graphene: Safe or Toxic? The two Faces of the Medal. Angew. Chem. Int. Ed. 2013, 52, 4986–4997. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, M.K.; Nayak, M.K.; Kumari, S.; Shrivastava, S.; Gracio, J.J.A.; Dash, D. Thrombus Inducing Property of Atomically Thin Graphene Oxide Sheets. ACS Nano 2011, 5, 4987–4996. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, M.K.; Kulkarni, P.P.; Sonkar, V.K.; Gracio, J.J.A.; Dash, D. Amine-Modified Graphene: Thrombo-Protective Safer Alternative to Graphene Oxide for Biomedical Applications. ACS Nano 2012, 6, 2731–2740. [Google Scholar] [CrossRef]
- Shadjou, N.; Hasanzadeh, M. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. J. Mater. Res. 2017, 32, 2860–2882. [Google Scholar] [CrossRef]
- ISO 10993-1; Biological Evaluation of Medical Devices. Part 1: Evaluation and Testing Within a Risk Management Process. ISO: Geneva, Switzerland, 2018.
- ISO 10993-5; Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- Lamponi, S.; Baratto, M.C.; Miraldi, E.; Baini, G.; Biagi, M. Chemical Profile, Antioxidant, Anti-Proliferative, Anticoagulant and Mutagenic Effects of a Hydroalcoholic Extract of Tuscan Rosmarinus officinalis. Plants 2021, 10, 97. [Google Scholar] [CrossRef]
- Dunn, G.A.; Health, J.P. A new hypothesis of contact guidance in tissue cells. Exp. Cell Res. 1976, 101, 1–14. [Google Scholar] [CrossRef]
- ISO 10993-3; Tests for Genotoxicity, Carcinogenicity and Reproductive Toxicity. ISO: Geneva, Switzerland, 2014.
- Kauffmann, K.; Werner, F.; Deitert, A.; Finklenburg, J.; Brendt, J.; Schiwy, A.; Hollert, H.; Büchs, J. Optimization of the Ames RAMOS test allows for a reproducible high-throughput mutagenicity test. Sci. Total Environ. 2020, 717, 137168. [Google Scholar] [CrossRef] [PubMed]
- Lammel, T.; Boisseaux, P.; Fernández-Cruz, M.L.; Navas, J.M. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part Fibre Toxicol. 2013, 10, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, B.R.; Knight, T.; Gies, V.; Jakubek, Z.J.; Zou, S. Manipulation and Quantification of Graphene Oxide Flake Size: Photoluminescence and Cytotoxicity. ACS Appl. Mater. Interfaces 2017, 9, 28911–28921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gies, V.; Lopinski, G.; Augustine, J.; Cheung, T.; Kodrac, O.; Zou, S. The impact of processing on the cytotoxicity of graphene oxide. Nanoscale Adv. 2019, 1, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Braileanu, G.; Gorgojo, P.; Valles, C.; Dickinson, A.; Vijayaraghavan, A.; Wang, T. On the biocompatibility of graphene oxide towards vascular smooth muscle cells. Nanotechnology 2021, 32, 055101. [Google Scholar] [CrossRef]
- Wychowaniec, J.K.; Litowczenko, J.; Tadyszak, K. Fabricating versatile cell supports from nano- and micro-sized graphene oxide flakes. J. Mech. Behav. Biomed. Mater. 2020, 103, 103594. [Google Scholar] [CrossRef]
- Jackson, P.; Kling, K.; Jensen, K.A.; Clausen, P.A.; Madsen, A.M.; Wallin, H.; Vogel, U. Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line. Environ. Mol. Mutagen. 2015, 56, 183–203. [Google Scholar] [CrossRef]
- Nasirzadeh, N.; Azari, M.R.; Rasoulzadeh, Y.; Mohammadian, Y. An assessment of the cytotoxic effects of graphene nanoparticles on the epithelial cells of the human lung. Toxicol. Ind. Health 2019, 35, 79–87. [Google Scholar] [CrossRef]
- Liao, C.; Li, Y.; Tjong, S.C. Graphene Nanomaterials: Synthesis, Biocompatibility, and Cytotoxicity. Int. J. Mol. Sci. 2018, 19, 3564. [Google Scholar] [CrossRef] [Green Version]
- Samiei, M.; Asgary, S.; Farajzadeh, M.; Bargahi, N.; Abdolrahimi, M.; Kananizadeh, U.; Dastmalchi, S. Investigating the mutagenic effects of three commonly used pulpotomy agents using the Ames test. Adv. Pharm. Bull. 2015, 5, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Ema, M.; Gamo, M.; Honda, K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul. Toxicol. Pharmacol. 2017, 85, 7–24. [Google Scholar] [CrossRef] [PubMed]
Products | Purity (%) | Carbon Content (%) | Oxygen Content (%) |
---|---|---|---|
GF | 99.8 | 99.7 | <0.25 |
AGP (graphene content 55–60%) | 99.8 | 99.6 | - |
(a) | ||||||
GF | ||||||
24 h | 48 h | 72 h | ||||
Concentration (µg/mL) | Elongation (Mean ± SD) | Circularity (Mean ± SD) | Elongation (Mean ± SD) | Circularity (Mean ± SD) | Elongation (Mean ± SD) | Circularity (Mean ± SD) |
Control | 1.43 ± 0.08 | 0.369 ± 0.115 | 1.42 ± 0.06 | 0.371 ± 0.113 | 1.43 ± 0.05 | 0.367 ± 0.119 |
0.1 | 1.39 ± 0.07 | 0.373 ± 0.106 | 1.41 ± 0.08 | 0.355 ± 0.132 | 1.42 ± 0.05 | 0.358 ± 0.122 |
0.2 | 1.40 ± 0.07 | 0.357 ± 0.105 | 1.38 ± 0.06 | 0.362 ± 0.126 | 1.39 ± 0.07 | 0.363 ± 0.116 |
0.5 | 1.41 ± 0.05 | 0.367 ± 0.129 | 1.40 ± 0.09 | 0.358 ± 0.115 | 1.39 ± 0.05 | 0.368 ± 0.111 |
0.8 | 1.39 ± 0.06 | 0.362 ± 0.116 | 1.42 ± 0.08 | 0.361 ± 0.113 | 1.41 ± 0.07 | 0.359 ± 0.117 |
1.0 | 1.41 ± 0.07 | 0.359 ± 0.119 | 1.38 ± 0.05 | 0.356 ± 0.115 | 1.37 ± 0.07 | 0.359 ± 0.114 |
1.5 | 1.43 ± 0.05 | 0.361 ± 0.115 | 1.38 ± 0.07 | 0.357 ± 0.118 | 1.39 ± 0.05 | 0.356 ± 0.121 |
10 | 1.42 ± 0.05 | 0.362 ± 0.103 | 1.38 ± 0.08 | 0.359 ± 0.110 | 1.40 ± 0.04 | 0.357 ± 0.110 |
15 | 1.40 ± 0.07 | 0.360 ± 0.111 | 1.39 ± 0.04 | 0.357 ± 0.119 | 1.39 ± 0.08 | 0.357 ± 0.117 |
20 | 1.41 ± 0.07 | 0.358 ± 0.109 | 1.37 ± 0.06 | 0.354 ± 0.122 | 1.38 ± 0.07 | 0.355 ± 0.119 |
(b) | ||||||
AGP | ||||||
24 h | 48 h | 72 h | ||||
Concentration (µg/mL) | Elongation (Mean ± SD) | Circularity (Mean ± SD) | Elongation (Mean ± SD) | Circularity (Mean ± SD) | Elongation (Mean ± SD) | Circularity (Mean ± SD) |
Control | 1.43 ± 0.08 | 0.369 ± 0.115 | 1.42 ± 0.06 | 0.371 ± 0.118 | 1.43 ± 0.05 | 0.367 ± 0.119 |
0.1 | 1.41 ± 0.07 | 0.367 ± 0.123 | 1.42 ± 0.05 | 0.366 ± 0.115 | 1.44 ± 0.07 | 0.361 ± 0.121 |
0.2 | 1.44 ± 0.06 | 0.369 ± 0.131 | 1.44 ± 0.08 | 0.366 ± 0.118 | 1.42 ± 0.09 | 0.355 ± 0.123 |
0.5 | 1.43 ± 0.06 | 0.368 ± 0.122 | 1.45 ± 0.04 | 0.363 ± 0.112 | 1.38 ± 0.04 | 0.359 ± 0.114 |
0.8 | 1.38 ± 0.05 | 0.364 ± 0.118 | 1.39 ± 0.07 | 0.359 ± 0.115 | 1.41 ± 0.06 | 0.363 ± 0.111 |
1.0 | 1.39 ± 0.07 | 0.364 ± 0.115 | 1.38 ± 0.06 | 0.360 ± 0.114 | 1.41 ± 0.08 | 0.361 ± 0.117 |
1.5 | 1.42 ± 0.06 | 0.360 ± 0.113 | 1.41 ± 0.07 | 0.363 ± 0.108 | 1.39 ± 0.05 | 0.355 ± 0.116 |
10 | 1.40 ± 0.08 | 0.362 ± 0.109 | 1.39 ± 0.05 | 0.361 ± 0.112 | 1.40 ± 0.07 | 0.360 ± 0.119 |
15 | 1.42 ± 0.04 | 0.361 ± 0.116 | 1.42 ± 0.06 | 0.364 ± 0.119 | 1.41 ± 0.07 | 0.362 ± 0.117 |
20 | 1.40 ± 0.08 | 0.363 ± 0.119 | 1.44 ± 0.05 | 0.366 ± 0.121 | 1.43 ± 0.09 | 0.362 ± 0.120 |
GF 10 µg /mL | AGP 20 µg /mL | ||
---|---|---|---|
Aggregate size (µm2) | Percentage | Aggregate size (µm2) | Percentage |
(10 × 4.5) | 66% | (5.0 × 4.5) | 4% |
(4.5 × 3.2) | 23% | (4.5 × 3.6) | 5% |
(3.2 × 1.8) | 4% | (2.7 × 1.8) | 7% |
(3.2 × 0.5) | 6% | (1.4 × 0.9) | 63% |
(1.8 × 0.5) | 1% | (0.5 × 0.2) | 21% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamponi, S. Preliminary In Vitro Cytotoxicity, Mutagenicity and Antitumoral Activity Evaluation of Graphene Flake and Aqueous Graphene Paste. Life 2022, 12, 242. https://doi.org/10.3390/life12020242
Lamponi S. Preliminary In Vitro Cytotoxicity, Mutagenicity and Antitumoral Activity Evaluation of Graphene Flake and Aqueous Graphene Paste. Life. 2022; 12(2):242. https://doi.org/10.3390/life12020242
Chicago/Turabian StyleLamponi, Stefania. 2022. "Preliminary In Vitro Cytotoxicity, Mutagenicity and Antitumoral Activity Evaluation of Graphene Flake and Aqueous Graphene Paste" Life 12, no. 2: 242. https://doi.org/10.3390/life12020242
APA StyleLamponi, S. (2022). Preliminary In Vitro Cytotoxicity, Mutagenicity and Antitumoral Activity Evaluation of Graphene Flake and Aqueous Graphene Paste. Life, 12(2), 242. https://doi.org/10.3390/life12020242