Quantifying Temperature and Osmotic Stress Impact on Seed Germination Rate and Seedling Growth of Eruca sativa Mill. via Hydrothermal Time Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Sowing and Stress Implementations
2.2. Data Analysis
2.3. Thermal Time (TT)
2.4. Hydrotime (HT)
2.5. Hydrothermal Time Model (HTT)
2.6. Germination Parameters
2.6.1. Germination Energy (GE)
2.6.2. Mean Germination Time (MGT)
2.6.3. Mean Germination Rate (MGR)
2.6.4. Coefficient of Variation of Germination Time (CVt)
2.6.5. Coefficient of Velocity of Germination (CVG)
2.6.6. Germination Index (GI)
2.6.7. Germination Rate Index (GRI)
2.6.8. Seed Vigor Index-1 (SVI-1)
2.6.9. Seed Vigor Index-2 (SVI-2)
2.6.10. Time to 50% Germination (T50%)
2.6.11. Root-Shoot Ratio (RSR)
2.6.12. Germination Percentage (GP)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bhandari, S.R.; Jo, J.S.; Lee, J.G. Comparison of Glucosinolate Profiles in Different Tissues of Nine Brassica Crops. Molecules 2015, 20, 15827–15841. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.S.; Kaur, G.; Jabbar, Z.; Javed, K.; Athar, M. Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. Food Chem. Toxicol. 2007, 45, 910–920. [Google Scholar] [CrossRef]
- Khoobchandani, M.; Ganesh, N.; Gabbanini, S.; Valgimigli, L.; Srivastava, M. Phytochemical potential of Eruca sativa for inhibition of melanoma tumor growth. Fitoterapia 2011, 82, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Alarcón, M.; Fuentes, M.; Carrasco, G.; Palomo, I. A novel role of Eruca sativa Mill. (rocket) extract: Antiplatelet (NF-κB inhibition) and antithrombotic activities. Nutrients 2014, 6, 5839–5852. [Google Scholar] [CrossRef] [Green Version]
- Gugliandolo, A.; Giacoppo, S.; Ficicchia, M.; Aliquï, A.; Bramanti, P.; Mazzon, E. Eruca sativa seed extract: A novel natural product able to counteract neuroinflammation. Mol. Med. Rep. 2018, 17, 6235–6244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walayat, N.; Wang, X.; Nawaz, A.; Zhang, Z.; Abdullah, A.; Khalifa, I.; Saleem, M.H.; Mushtaq, B.S.; Pateiro, M.; Lorenzo, J.M.; et al. Ovalbumin and Kappa-Carrageenan Mixture Suppresses the Oxidative and Structural Changes in the Myofibrillar Proteins of Grass Carp (Ctenopharyngodon idella) during Frozen Storage. Antioxidants 2021, 10, 1186. [Google Scholar] [CrossRef] [PubMed]
- Pignone, D.; Gomez-Campo, C. Eruca. In Wild Crop Relatives: Genomic and Breeding Resources, Oilseeds; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Saleem, M.H.; Fahad, S.; Khan, S.U.; Din, M.; Ullah, A.; El Sabagh, A.; Hossain, A.; Llanes, A.; Liu, L. Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ. Sci. Pollut. Res. 2019, 27, 5211–5221. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.H.; Ali, S.; Rehman, M.; Rana, M.S.; Rizwan, M.; Kamran, M.; Imran, M.; Riaz, M.; Soliman, M.H.; Elkelish, A.; et al. Influence of phosphorus on copper phytoextraction via modulating cellular organelles in two jute (Corchorus capsularis L.) varieties grown in a copper mining soil of Hubei Province, China. Chemosphere 2020, 248, 126032. [Google Scholar] [CrossRef]
- Ali, B.; Wang, X.; Saleem, M.H.; Hafeez, A.; Afridi, M.S.; Khan, S.; Ullah, I.; Amaral Júnior, A.T.D.; Alatawi, A.; Ali, S. PGPR-Mediated Salt Tolerance in Maize by Modulating Plant Physiology, Antioxidant Defense, Compatible Solutes Accumulation and Bio-Surfactant Producing Genes. Plants 2022, 11, 345. [Google Scholar] [CrossRef]
- Zaheer, I.E.; Ali, S.; Saleem, M.H.; Yousaf, H.S.; Malik, A.; Abbas, Z.; Rizwan, M.; Abualreesh, M.H.; Alatawi, A.; Wang, X. Combined application of zinc and iron-lysine and its effects on morpho-physiological traits, antioxidant capacity and chromium uptake in rapeseed (Brassica napus L.). PLoS ONE 2022, 17, e0262140. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Gholamhossieni, M. Quantification of soybean seed germination response to seed deterioration under PEG-induced water stress using hydrotime concept. Acta Physiol. Plant. 2018, 40, 126. [Google Scholar] [CrossRef]
- Shah, S.; Khan, S.; Sulaiman, S.; Muhammad, M.; Badsha, L.; Bussmann, R.W.; Hussain, W. Quantitative study on medicinal plants traded in selected herbal markets of Khyber Pakhtunkhwa, Pakistan. Ethnobot. Res. Appl. 2020, 20, 1–36. [Google Scholar] [CrossRef]
- Luo, X.; Dai, Y.; Zheng, C.; Yang, Y.; Chen, W.; Wang, Q.; Chandrasekaran, U.; Du, J.; Liu, W.; Shu, K. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytol. 2021, 229, 950–962. [Google Scholar] [CrossRef]
- Ullah, A.; Sadaf, S.; Ullah, S.; Alshaya, H.; Okla, M.K.; Alwasel, Y.A.; Tariq, A. Using Halothermal Time Model to Describe Barley (Hordeumvulgare L.) Seed Germination Response to Water Potential and Temperature. Life 2022, 12, 209. [Google Scholar] [CrossRef]
- Saberali, S.; Shirmohamadi-Aliakbarkhani, Z. Quantifying seed germination response of melon (Cucumis melo L.) to temperature and water potential: Thermal time, hydrotime and hydrothermal time models. S. Afr. J. Bot. 2020, 130, 240–249. [Google Scholar] [CrossRef]
- Esmaeil, B.; Hemmatollah, P.; Fatemeh, V.; Mobina, G. Quantification of the effect of environmental factors on seed germination and seedling growth of Eruca (Eruca sativa) using mathematical models. J. Plant Growth Regul. 2020, 39, 190–204. [Google Scholar]
- Shah, S.; Ullah, S.; Ali, S.; Khan, A.; Ali, M.; Hassan, S. Using mathematical models to evaluate germination rate and seedlings length of chickpea seed (Cicer arietinum L.) to osmotic stress at cardinal temperatures. PLoS ONE 2021, 16, e0260990. [Google Scholar] [CrossRef]
- Soltani, E.; Soltani, A.; Oveisi, M. Modeling seed aging effect on wheat seedling emergence in drought stress: Optimizing germin program to predict emergence pattern. J. Crops Improv. 2013, 15, 147–160. [Google Scholar]
- Bidgoly, R.O.; Balouchi, H.; Soltani, E.; Moradi, A. Effect of temperature and water potential on Carthamus tinctorius L. seed germination: Quantification of the cardinal temperatures and modeling using hydrothermal time. Ind. Crop. Prod. 2018, 113, 121–127. [Google Scholar] [CrossRef]
- Mahmood, A.; Awan, M.I.; Sadaf, S.; Mukhtar, A.; Wang, X.; Fiaz, S.; Khan, S.A.; Ali, H.; Muhammad, F.; Hayat, Z.; et al. Bio-diesel production of sunflower through sulphur management in a semi-arid subtropical environment. Environ. Sci. Pollut. Res. 2021, 29, 13268–13278. [Google Scholar] [CrossRef]
- Saleem, M.H.; Ali, S.; Seleiman, M.F.; Rizwan, M.; Rehman, M.; Akram, N.A.; Liu, L.; Alotaibi, M.; Al-Ashkar, I.; Mubushar, M. Assessing the Correlations between Different Traits in Copper-Sensitive and Copper-Resistant Varieties of Jute (Corchorus capsularis L.). Plants 2019, 8, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bewley, J.D.; Black, M. Seeds: Physiology of Development and Germination; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Abdellaoui, R.; Boughalleb, F.; Zayoud, D.; Neffati, M.; Bakhshandeh, E. Quantification of Retama raetam seed germination response to temperature and water potential using hydrothermal time concept. Environ. Exp. Bot. 2019, 157, 211–216. [Google Scholar] [CrossRef]
- Patanè, C.; Saita, A.; Tubeileh, A.; Cosentino, S.L.; Cavallaro, V. Modeling seed germination of unprimed and primed seeds of sweet sorghum under PEG-induced water stress through the hydrotime analysis. Acta Physiol. Plant. 2016, 38, 115. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Atashi, S.; Hafez-Nia, M.; Pirdashti, H. Quantification of the response of germination rate to temperature in sesame (Sesamum indicum). Seed Sci. Technol. 2013, 41, 469–473. [Google Scholar] [CrossRef]
- Parmoon, G.; Moosavi, S.A.; Siadat, S.A. How salinity stress influences the thermal time requirements of seed germination in Silybum marianum and Calendula officinalis. Acta Physiol. Plant. 2018, 40, 175. [Google Scholar] [CrossRef]
- Fakhfakh, L.M.; Anjum, N.A.; Chaieb, M. Effects of temperature and water limitation on the germination of Stipagrostis ciliata seeds collected from Sidi Bouzid Governorate in Central Tunisia. J. Arid Land 2018, 10, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Gummerson, R.J. The Effect of Constant Temperatures and Osmotic Potentials on the Germination of Sugar Beet. J. Exp. Bot. 1986, 37, 729–741. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Atashi, S.; Hafeznia, M.; Pirdashti, H.; Da Silva, J.A.T. Hydrothermal time analysis of watermelon (Citrullus vulgaris cv. ‘Crimson sweet’) seed germination. Acta Physiol. Plant. 2014, 37, 1738. [Google Scholar] [CrossRef]
- Tabrizi, L.; Nasiri, M.M.; Kouchaki, A.R. Investigations on the cardinal temperatures for germination of plantago ovata and plantago psyllium. Iran. J. Field Crops Res. 2005, 2, 143–150. [Google Scholar]
- Alahmadi, J.M.; Tomaj, A.N.; Zangui, M. Determination of cardinal temperatures of seed germination (Lathyrus sativus max L.). J. Seed Ecophysiol. 2015, 1, 43–56. [Google Scholar]
- Michel, B.E.; Kaufmann, M.R. The Osmotic Potential of Polyethylene Glycol. Plant Physiol. 1973, 51, 914–916. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Jamali, M.; Afshoon, E.; Gholamhossieni, M. Using hydrothermal time concept to describe sesame (Sesamum indicum L.) seed germination response to temperature and water potential. Acta Physiol. Plant. 2017, 39, 250. [Google Scholar] [CrossRef]
- Onofri, A.; Benincasa, P.; Mesgaran, M.B.; Ritz, C. Hydrothermal-time-to-event models for seed germination. Eur. J. Agron. 2018, 101, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Moltchanova, E.; Sharifiamina, S.; Moot, D.J.; Shayanfar, A.; Bloomberg, M. Comparison of three different statistical approaches (non-linear least-squares regression, survival analysis and Bayesian inference) in their usefulness for estimating hydrothermal time models of seed germination. Seed Sci. Res. 2020, 30, 64–72. [Google Scholar] [CrossRef]
- Maguire, J.D. Speed of Germination—Aid in Selection and Evaluation for Seedling Emergence and Vigor. Crop. Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Orchard, T. Estimating the parameters of plant seedling emergence. Seed Sci. Technol. 1977, 5, 61–69. [Google Scholar]
- Mubeen, M.; Bano, A.; Ali, B.; Islam, Z.U.; Ahmad, A.; Hussain, S.; Fahad, S.; Nasim, W. Effect of plant growth promoting bacteria and drought on spring maize (Zea mays L.). Pak. J. Bot. 2021, 53, 2. [Google Scholar] [CrossRef]
- Ranal, M.A.; De Santana, D.G.; Ferreira, W.R.; Rodrigues, C.M. Calculating germination measurements and organizing spreadsheets. Braz. J. Bot. 2009, 32, 849–855. [Google Scholar] [CrossRef] [Green Version]
- Hafez, M.; Popov, A.I.; Rashad, M. Integrated use of bio-organic fertilizers for enhancing soil fertility–plant nutrition, germination status and initial growth of corn (Zea mays L.). Environ. Technol. Innov. 2021, 21, 101329. [Google Scholar] [CrossRef]
- Kader, M. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J. Proceeding R. Soc. N. S. W. 2005, 138, 65–75. [Google Scholar]
- Uddin, S.; Ullah, S.; Nafees, M. Effect of seed priming on growth and performance of Vigna radiata L. under induced drought stress. J. Agric. Food Res. 2021, 4, 100140. [Google Scholar] [CrossRef]
- Kumar, B.; Verma, S.K.; Ram, G.; Singh, H.P. Temperature Relations for Seed Germination Potential and Seedling Vigor in Palmarosa (Cymbopogon martinii). J. Crop Improv. 2012, 26, 791–801. [Google Scholar] [CrossRef]
- Salehzade, H.; Izadkhah Shishvan, M.; Chiyasi, M. Effect of seed priming on germination and seedling Growth of Wheat (Triticum aestivum L.). J. Biol. Sci. 2009, 4, 629–631. [Google Scholar]
- Hao, J.-H.; Lv, S.-S.; Bhattacharya, S.; Fu, J.-G. Germination Response of Four Alien Congeneric Amaranthus Species to Environmental Factors. PLoS ONE 2017, 12, e0170297. [Google Scholar] [CrossRef]
- Xiao, H.; Yang, H.; Monaco, T.; Song, Q.; Rong, Y. Modeling the influence of temperature and water potential on seed germination of Allium tenuissimum L. PeerJ 2020, 8, e8866. [Google Scholar] [CrossRef] [PubMed]
- Bakhshandeh, E.; Bradford, K.J.; Pirdashti, H.; Vahabinia, F.; Abdellaoui, R. A new halothermal time model describes seed germination responses to salinity across both sub- and supra-optimal temperatures. Acta Physiol. Plant. 2020, 42, 137. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, K.; Li, X.; Chen, X.; Liu, W.; Wang, J. Factors affecting seed germination and emergence of Aegilops tauschii. Weed Res. 2020, 60, 171–181. [Google Scholar] [CrossRef]
- Allen, P.S.; Meyer, S.E.; Khan, M.A. Hydrothermal time as a tool in comparative germination studies. In Seed Biology: Advances and Applications; Black, M., Bradford, K.J., Vasquez-Ramos, J., Eds.; CABI Publishing: Wallingford, UK, 2000; pp. 401–410. [Google Scholar]
- Rowse, H.; Finch-Savage, W. Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub-and supra-optimal temperatures. New Phytol. 2003, 158, 101–108. [Google Scholar] [CrossRef]
- Derakhshan, A.; Bakhshandeh, A.; Siadat, S.A.-A.; Moradi-Telavat, M.-R.; Andarzian, S.B. Quantifying the germination response of spring canola (Brassica napus L.) to temperature. Ind. Crop. Prod. 2018, 122, 195–201. [Google Scholar] [CrossRef]
- Windauer, L.B.; Martinez, J.; Rapoport, D.; Wassner, D.; Benech-Arnold, R. Germination responses to temperature and water potential in Jatropha curcas seeds: A hydrotime model explains the difference between dormancy expression and dormancy induction at different incubation temperatures. Ann. Bot. 2011, 109, 265–273. [Google Scholar] [CrossRef]
- Shah, W.; Ullah, S.; Ali, S.; Idrees, M.; Khan, M.N.; Ali, K.; Khan, A.; Ali, M.; Younas, F. Effect of exogenous alpha-tocopherol on physio-biochemical attributes and agronomic performance of lentil (Lens culinaris Medik.) under drought stress. PLoS ONE 2021, 16, e0248200. [Google Scholar] [CrossRef]
- Bradford, K.J. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 2002, 50, 248–260. [Google Scholar] [CrossRef]
- Alam, H.; Khattak, J.Z.K.; Ksiksi, T.S.; Saleem, M.H.; Fahad, S.; Sohail, H.; Ali, Q.; Zamin, M.; El-Esawi, M.A.; Saud, S.; et al. Negative impact of long-term exposure of salinity and drought stress on native Tetraena mandavillei L. Physiol. Plant. 2020, 172, 1336–1351. [Google Scholar] [CrossRef]
- Wijewardana, C.; Alsajri, F.A.; Reddy, K.R. Soybean seed germination response to in vitro osmotic stress. Seed Technol. 2018, 39, 143–154. [Google Scholar]
- Seepaul, D.D.R.; George, S.; Groot, J.; Wright, D. Drought tolerance classification of common oilseed species using seed germination assay. J. Oilseed Brassica 2019, 10, 97–105. [Google Scholar]
- Nazar, Z.; Akram, N.; Saleem, M.; Ashraf, M.; Ahmed, S.; Ali, S.; Alsahli, A.A.; Alyemeni, M. Glycinebetaine-Induced Alteration in Gaseous Exchange Capacity and Osmoprotective Phenomena in Safflower (Carthamus tinctorius L.) under Water Deficit Conditions. Sustainability 2020, 12, 10649. [Google Scholar] [CrossRef]
- Bradford, K. Water relations in seed germination. In Seed Development and Germination; Negbi, M., Galili, G., Kigel, J., Eds.; Marcel Dekker: New York, NY, USA, 1995; pp. 351–396. [Google Scholar]
- Mesgaran, M.; Onofri, A.; Mashhadi, H.R.; Cousens, R.D. Water availability shifts the optimal temperatures for seed germination: A modelling approach. Ecol. Model. 2017, 351, 87–95. [Google Scholar] [CrossRef]
- Baath, G.S.; Kakani, V.G.; Gowda, P.H.; Rocateli, A.C.; Northup, B.K.; Singh, H.; Katta, J.R. Guar responses to temperature: Estimation of cardinal temperatures and photosynthetic parameters. Ind. Crop. Prod. 2020, 145, 111940. [Google Scholar] [CrossRef]
- Kurtar, E.S. Modelling the effect of temperature on seed germination in some cucurbits. Afr. J. Biotechnol. 2010, 9, 1343–1353. [Google Scholar] [CrossRef] [Green Version]
- Demir, I.; Mavi, K. The effect of priming on seedling emergence of differentially matured watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) seeds. Sci. Hortic. 2004, 102, 467–473. [Google Scholar] [CrossRef]
- Maynard, D.; Hochmuth, G. Knott’s Handbook for Vegetable Growers; John Willy & Sons. Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Alvarado, V.; Bradford, K.J. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ. 2002, 25, 1061–1069. [Google Scholar] [CrossRef]
- Atashi, S.; Bakhshandeh, E.; Zeinali, Z.; Yassari, E.; Da Silva, J.A.T. Modeling seed germination in Melisa officinalis L. in response to temperature and water potential. Acta Physiol. Plant. 2013, 36, 605–611. [Google Scholar] [CrossRef]
- Dahal, P.; Bradford, K.J. Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Sci. Res. 1994, 4, 71–80. [Google Scholar] [CrossRef]
- Atashi, S.; Bakhshandeh, E.; Mehdipour, M.; Jamali, M.; Da Silva, J.A.T. Application of a Hydrothermal Time Seed Germination Model Using the Weibull Distribution to Describe Base Water Potential in Zucchini (Cucurbita pepo L.). J. Plant Growth Regul. 2014, 34, 150–157. [Google Scholar] [CrossRef]
- Basit, A.; Khan, S.; Sulaiman, S.S.; Shah, A.A. Morphological features of various selected tree species on the greater university campus Peshawar, Pakistan. Int. J. Bot. Stud. 2019, 4, 92–97. [Google Scholar]
- Gareca, E.E.; Vandelook, F.; Fernández, M.; Hermy, M.; Honnay, O. Seed germination, hydrothermal time models and the effects of global warming on a threatened high Andean tree species. Seed Sci. Res. 2012, 22, 287–298. [Google Scholar] [CrossRef]
- Bradford, K.J.; Still, D.W. Applications of hydrotime analysis in seed testing. Seed Technol. 2004, 26, 75–85. [Google Scholar]
- Nemeskéri, E.; Helyes, L. Physiological Responses of Selected Vegetable Crop Species to Water Stress. Agronomy 2019, 9, 447. [Google Scholar] [CrossRef] [Green Version]
- Ghafar, M.; Akram, N.; Saleem, M.; Wang, J.; Wijaya, L.; Alyemeni, M. Ecotypic Morphological and Physio-Biochemical Responses of Two Differentially Adapted Forage Grasses, Cenchrus ciliaris L. and Cyperus arenarius Retz. to Drought Stress. Sustainability 2021, 13, 8069. [Google Scholar] [CrossRef]
T (°C) | ψ (MPa) | TTsub (θT1) | TTsupra (θT2) | θH (MPa h) | θHTT (MPa h) | Hydro Time GR(g) | Thermal Time GR(g) |
---|---|---|---|---|---|---|---|
5 °C | 0 | 1600 | 2000 | 2.4 | 48 | 0.013 | 0.01 |
−0.01 | 960 | 1200 | 1.44 | 28.8 | 0.021 | 0.02 | |
−0.02 | 832 | 1040 | 1.248 | 24.96 | 0.024 | 0.02 | |
−0.05 | 640 | 800 | 0.96 | 19.2 | 0.031 | 0.03 | |
10 °C | 0 | 1728 | 2160 | 2.592 | 51.84 | 0.012 | 0.01 |
−0.01 | 1920 | 2400 | 2.88 | 57.6 | 0.010 | 0.01 | |
−0.02 | 1664 | 2080 | 2.496 | 49.92 | 0.012 | 0.01 | |
−0.05 | 1152 | 1440 | 1.728 | 34.56 | 0.017 | 0.02 | |
15 °C | 0 | 1472 | 1840 | 2.208 | 44.16 | 0.014 | 0.01 |
−0.01 | 1088 | 1360 | 1.632 | 32.64 | 0.018 | 0.02 | |
−0.02 | 960 | 1200 | 1.44 | 28.8 | 0.021 | 0.02 | |
−0.05 | 896 | 1120 | 1.344 | 26.88 | 0.022 | 0.02 | |
20 °C | 0 | 1728 | 2160 | 2.592 | 51.84 | 0.012 | 0.01 |
−0.01 | 1408 | 1760 | 2.112 | 42.24 | 0.014 | 0.01 | |
−0.02 | 1600 | 2000 | 2.4 | 48 | 0.013 | 0.01 | |
−0.05 | 960 | 1200 | 1.44 | 28.8 | 0.021 | 0.02 | |
30 °C | 0 | 1920 | 2400 | 2.88 | 57.6 | 0.010 | 0.01 |
−0.01 | 1280 | 1600 | 1.92 | 38.4 | 0.016 | 0.02 | |
−0.02 | 1472 | 1840 | 2.208 | 44.16 | 0.014 | 0.01 | |
−0.05 | 1088 | 1360 | 1.632 | 32.64 | 0.018 | 0.02 |
Temperature | ψb(50) (MPa) | σψb (MPa) | R2 | R | SE | F | Sig. |
---|---|---|---|---|---|---|---|
5 °C | −0.13 | 0.142 | 0.695 | 0.834 | 1.464 | 4.559 | 0.16 |
10 °C | −0.15 | 0.153 | 0.815 | 0.903 | 0.901 | 8.793 | 0.09 |
15 °C | −0.19 | 0.176 | 0.640 | 0.800 | 0.991 | 3.558 | 0.20 |
20 °C | −0.11 | 0.187 | 0.829 | 0.911 | 0.883 | 9.702 | 0.08 |
30 °C | −0.21 | 0.133 | 0.647 | 0.805 | 1.338 | 3.673 | 0.19 |
Variables | Eruca sativa Mill. |
---|---|
Hydrothermal time model parameters | |
Ѱb (50) (MPa) | −0.18 |
σψb (MPa) | −0.13 |
θHTT (MPa °C h−1) | 43.2 |
kT (MPa °C h−1) | 0.104 |
Cardinal temperatures | |
Tb (°C) | 5 |
To (°C) | 30 |
Tc (°C) | 30 |
R2 | 0.829 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Ullah, A.; Ullah, S.; Saleem, M.H.; Okla, M.K.; Al-Hashimi, A.; Chen, Y.; Ali, S. Quantifying Temperature and Osmotic Stress Impact on Seed Germination Rate and Seedling Growth of Eruca sativa Mill. via Hydrothermal Time Model. Life 2022, 12, 400. https://doi.org/10.3390/life12030400
Khan S, Ullah A, Ullah S, Saleem MH, Okla MK, Al-Hashimi A, Chen Y, Ali S. Quantifying Temperature and Osmotic Stress Impact on Seed Germination Rate and Seedling Growth of Eruca sativa Mill. via Hydrothermal Time Model. Life. 2022; 12(3):400. https://doi.org/10.3390/life12030400
Chicago/Turabian StyleKhan, Sheharyar, Abd Ullah, Sami Ullah, Muhammad Hamzah Saleem, Mohammad K. Okla, Abdulrahman Al-Hashimi, Yinglong Chen, and Shafaqat Ali. 2022. "Quantifying Temperature and Osmotic Stress Impact on Seed Germination Rate and Seedling Growth of Eruca sativa Mill. via Hydrothermal Time Model" Life 12, no. 3: 400. https://doi.org/10.3390/life12030400
APA StyleKhan, S., Ullah, A., Ullah, S., Saleem, M. H., Okla, M. K., Al-Hashimi, A., Chen, Y., & Ali, S. (2022). Quantifying Temperature and Osmotic Stress Impact on Seed Germination Rate and Seedling Growth of Eruca sativa Mill. via Hydrothermal Time Model. Life, 12(3), 400. https://doi.org/10.3390/life12030400