Overview of (f)MRI Studies of Cognitive Aging for Non-Experts: Looking through the Lens of Neuroimaging
Abstract
:1. Introduction
2. Principles, Concepts, and Findings of Structural and Functional Brain Connectivity
2.1. MRI Techniques for Human Brain Mapping
2.2. The Brain’s Functional Connectivity (FC)
2.3. The Brain’s Structural Connectivity (SC)
2.4. The Relationship between the Brain’s SC and Its FC
3. Cognitive Neuroscience and Aging
3.1. Functional Brain Changes
3.2. Structural Brain Changes
3.3. Brain Connectivity Changes
3.4. Theories of Aging in Cognitive Neuroscience
4. Visuospatial Attention
4.1. Comprehensible Dichotomization
4.2. Behavioral and (f)MRI Studies
4.3. Age-Related Alterations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parks, E.L.; Madden, D.J. Brain connectivity and visual attention. Brain Connect. 2013, 3, 317. [Google Scholar] [CrossRef] [PubMed]
- Raichle, M.E. A brief history of human brain mapping. Trends Neurosci. 2009, 32, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O. Structure and function of complex brain networks. Dialogues Clin. Neurosci. 2013, 15, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Friston, K. Structural and functional brain networks: From connections to cognition. Science 2013, 342, 1238411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef]
- Oldendorf, W.H. The quest for an image of brain: A brief historical and technical review of brain imaging techniques. Neurology 1978, 28, 517–533. [Google Scholar] [CrossRef]
- Phelps, M.E.; Hoffman, E.J.; Mullani, N.A.; Ter-Pogossian, M.M. Application of annihilation coincidence detection to transaxial reconstruction tomography. J. Nucl. Med. 1975, 16, 210–224. [Google Scholar] [PubMed]
- Lauterbur, P.C. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 1973, 242, 190–191. [Google Scholar] [CrossRef]
- Purcell, E.M.; Torrey, H.C.; Pound, R.V. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 1946, 69, 37–38. [Google Scholar] [CrossRef]
- Bloch, F. Nuclear induction. Phys. Rev. 1946, 70, 460–474. [Google Scholar] [CrossRef]
- Grover, V.P.B.; Tognarelli, J.M.; Crossey, M.M.E.; Cox, I.J.; Taylor-Robinson, S.D.; McPhail, M.J.W. Magnetic resonance imaging: Principles and techniques: Lessons for clinicians. J. Clin. Exp. Hepatol. 2015, 5, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, C.S.; Sherrington, C.S. On the regulation of the blood-supply of the brain. J. Physiol. 1890, 11, 85–158. [Google Scholar] [CrossRef] [PubMed]
- Mosso, A. Ueber den Kreislauf des Blutes im Menschlichen Gehirn; De Gruyter: Berlin, Germany, 1881; ISBN 9783112360606. (In German) [Google Scholar]
- Fulton, J.F. Observations upon the vascularity of the human occipital lobe during visual activity. Brain 1928, 51, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Huneau, C.; Benali, H.; Chabriat, H. Investigating human neurovascular coupling using functional neuroimaging: A critical review of dynamic models. Front. Neurosci. 2015, 9, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazzaley, A.H.; D’Esposito, M. BOLD functional MRI and cognitive aging. In Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging; Oxford University Press: Oxford, UK, 2005; ISBN 9780199864171. [Google Scholar]
- Belliveau, J.W.; Kennedy, D.N.; McKinstry, R.C.; Buchbinder, B.R.; Weisskoff, R.M.; Cohen, M.S.; Vevea, J.M.; Brady, T.J.; Rosen, B.R. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 1991, 254, 716–719. [Google Scholar] [CrossRef]
- Kwong, K.K.; Belliveau, J.W.; Chesler, D.A.; Goldberg, I.E.; Weisskoff, R.M.; Poncelet, B.P.; Kennedy, D.N.; Hoppel, B.E.; Cohen, M.S.; Turner, R.; et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 1992, 89, 5675–5679. [Google Scholar] [CrossRef] [Green Version]
- Bandettini, P.A.; Wong, E.C.; Hinks, R.S.; Tikofsky, R.S.; Hyde, J.S. Time course EPI of human brain function during task activation. Magn. Reson. Med. 1992, 25, 390–397. [Google Scholar] [CrossRef]
- Ogawa, S.; Tank, D.W.; Menon, R.; Ellermann, J.M.; Kim, S.G.; Merkle, H.; Ugurbil, K. Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 1992, 89, 5951–5955. [Google Scholar] [CrossRef] [Green Version]
- Lystad, R.P.; Pollard, H. Functional neuroimaging: A brief overview and feasibility for use in chiropractic research. J. Can. Chiropr. Assoc. 2009, 53, 59–72. [Google Scholar]
- Fox, M.D.; Raichle, M.E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 2007, 8, 700–711. [Google Scholar] [CrossRef]
- Biswal, B.B.; Zerrin Yetkin, F.; Haughton, V.M.; Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med. 1995, 34, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Cordes, D.; Haughton, V.M.; Arfanakis, K.; Carew, J.D.; Turski, P.A.; Moritz, C.H.; Quigley, M.A.; Meyerand, M.E. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-stat” data. Am. J. Neuroradiol. 2001, 22, 1326–1333. [Google Scholar] [PubMed]
- Kawagoe, T.; Onoda, K.; Yamaguchi, S. Different pre-scanning instructions induce distinct psychological and resting brain states during functional magnetic resonance imaging. Eur. J. Neurosci. 2018, 47, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, T.; Onoda, K.; Yamaguchi, S. The neural correlates of “mind blanking”: When the mind goes away. Hum. Brain Mapp. 2019, 40, hbm.24748. [Google Scholar] [CrossRef] [Green Version]
- Lowe, M.J.; Mock, B.J.; Sorenson, J.A. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 1998, 7, 119–132. [Google Scholar] [CrossRef]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A default mode of brain function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Andrews-Hanna, J.R.; Smallwood, J.; Spreng, R.N. The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 2014, 1316, 29–52. [Google Scholar] [CrossRef]
- Beckmann, C.F.; DeLuca, M.; Devlin, J.T.; Smith, S.M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 1001–1013. [Google Scholar] [CrossRef] [Green Version]
- Vossel, S.; Geng, J.J.; Fink, G.R. Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist 2014, 20, 150–159. [Google Scholar] [CrossRef]
- Gratton, C.; Sun, H.; Petersen, S.E. Control networks and hubs. Psychophysiology 2018, 55, e13032. [Google Scholar] [CrossRef] [Green Version]
- Wig, G.S. Segregated systems of human brain networks. Trends Cogn. Sci. 2017, 21, 981–996. [Google Scholar] [CrossRef] [Green Version]
- Wig, G.S.; Schlaggar, B.L.; Petersen, S.E. Concepts and principles in the analysis of brain networks. Ann. N. Y. Acad. Sci. 2011, 1224, 126–146. [Google Scholar] [CrossRef]
- Wilf, M.; Strappini, F.; Golan, T.; Hahamy, A.; Harel, M.; Malach, R. Spontaneously emerging patterns in human visual cortex reflect responses to naturalistic sensory stimuli. Cereb. Cortex 2017, 27, 750–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.M.; Fox, P.T.; Miller, K.L.; Glahn, D.C.; Fox, P.M.; Mackay, C.E.; Filippini, N.; Watkins, K.E.; Toro, R.; Laird, A.R.; et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 2009, 106, 13040–13045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, M.Y.; Park, D.C.; Savalia, N.K.; Petersen, S.E.; Wig, G.S. Decreased segregation of brain systems across the healthy adult lifespan. Proc. Natl. Acad. Sci. USA 2014, 111, E4997–E5006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E. Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 2007, 56, 171–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, S.; Wang, D.; Fox, M.D.; Yeo, B.T.T.; Sepulcre, J.; Sabuncu, M.R.; Shafee, R.; Lu, J.; Liu, H. Individual variability in functional connectivity architecture of the human brain. Neuron 2013, 77, 586–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeley, W.W.; Menon, V.; Schatzberg, A.F.; Keller, J.; Glover, G.H.; Kenna, H.; Reiss, A.L.; Greicius, M.D. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 2007, 27, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Behrens, T.E.J.; Sporns, O. Human connectomics. Curr. Opin. Neurobiol. 2012, 22, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Friston, K.J.; Harrison, L.; Penny, W. Dynamic causal modelling. Neuroimage 2003, 19, 1273–1302. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Zhu, W.; He, Y.; Kochan, N.A.; Reppermund, S.; Slavin, M.J.; Brodaty, H.; Crawford, J.; Xia, A.; Sachdev, P. Discrete neuroanatomical networks are associated with specific cognitive abilities in old age. J. Neurosci. 2011, 31, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Milgram, S. The small world problem. Psychol. Today 1967, 1, 61–67. [Google Scholar]
- Power, J.D.; Mitra, A.; Laumann, T.O.; Snyder, A.Z.; Schlaggar, B.L.; Petersen, S.E. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 2014, 84, 320–341. [Google Scholar] [CrossRef]
- Zalesky, A.; Fornito, A.; Harding, I.H.; Cocchi, L.; Yücel, M.; Pantelis, C.; Bullmore, E.T. Whole-brain anatomical networks: Does the choice of nodes matter? Neuroimage 2010, 50, 970–983. [Google Scholar] [CrossRef] [PubMed]
- Botvinik-Nezer, R.; Holzmeister, F.; Camerer, C.F.; Dreber, A.; Huber, J.; Johannesson, M.; Kirchler, M.; Iwanir, R.; Mumford, J.A.; Adcock, R.A.; et al. Variability in the analysis of a single neuroimaging dataset by many teams. Nature 2020, 582, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Uddin, L.Q.; Yeo, B.T.T.; Spreng, R.N. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 2019, 32, 926–942. [Google Scholar] [CrossRef]
- Power, J.D.; Cohen, A.L.; Nelson, S.M.; Wig, G.S.; Barnes, K.A.; Church, J.A.; Vogel, A.C.; Laumann, T.O.; Miezin, F.M.; Schlaggar, B.L.; et al. Functional network organization of the human brain. Neuron 2011, 72, 665–678. [Google Scholar] [CrossRef] [Green Version]
- Dosenbach, N.U.F.; Visscher, K.M.; Palmer, E.D.; Miezin, F.M.; Wenger, K.K.; Kang, H.C.; Burgund, E.D.; Grimes, A.L.; Schlaggar, B.L.; Petersen, S.E. A core system for the implementation of task sets. Neuron 2006, 50, 799–812. [Google Scholar] [CrossRef] [Green Version]
- Catani, M.; Ffytche, D.H. The rises and falls of disconnection syndromes. Brain 2005, 128, 2224–2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagmann, P.; Kurant, M.; Gigandet, X.; Thiran, P.; Wedeen, V.J.; Meuli, R.; Thiran, J.P. Mapping human whole-brain structural networks with diffusion MRI. PLoS ONE 2007, 2, e597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, J.M.; Marques, P.; Alves, V.; Sousa, N. A hitchhiker’s guide to diffusion tensor imaging. Front. Neurosci. 2013, 7, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, S.; Barker, P.B. Diffusion magnetic resonance imaging: Its principle and applications. Anat. Rec. New Anat. 1999, 257, 102–109. [Google Scholar] [CrossRef]
- Stejskal, E.O.; Tanner, J.E. Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 1965, 42, 288–292. [Google Scholar] [CrossRef] [Green Version]
- Basser, P.J.; Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. Ser. B 1996, 111, 209–219. [Google Scholar] [CrossRef]
- Chenevert, T.L.; Brunberg, J.A.; Pipe, J.G. Anisotropic diffusion in human white matter: Demonstration with MR techniques in vivo. Radiology 1990, 177, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.K.; Knösche, T.R.; Turner, R. White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. Neuroimage 2013, 73, 239–254. [Google Scholar] [CrossRef]
- Scholz, J.; Klein, M.C.; Behrens, T.E.J.; Johansen-Berg, H. Training induces changes in white-matter architecture. Nat. Neurosci. 2009, 12, 1370–1371. [Google Scholar] [CrossRef] [Green Version]
- Engvig, A.; Fjell, A.M.; Westlye, L.T.; Moberget, T.; Sundseth, Ø.; Larsen, V.A.; Walhovd, K.B. Memory training impacts short-term changes in aging white matter: A longitudinal diffusion tensor imaging study. Hum. Brain Mapp. 2012, 33, 2390–2406. [Google Scholar] [CrossRef]
- Draganski, B.; Gaser, C.; Busch, V.; Schuierer, G.; Bogdahn, U.; May, A. Changes in grey matter induced by training. Nature 2004, 427, 311–312. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, M.P.; Stam, C.J.; Kahn, R.S.; Hulshoff Pol, H.E. Efficiency of functional brain networks and intellectual performance. J. Neurosci. 2009, 29, 7619–7624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, Y.; Li, J.; Qin, W.; Li, K.; Yu, C.; Jiang, T. Brain anatomical network and intelligence. PLoS Comput. Biol. 2009, 5, e1000395. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.Y.; Cloutman, L.L.; Binney, R.J.; Lambon Ralph, M.A. The structural connectivity of higher order association cortices reflects human functional brain networks. Cortex 2017, 97, 221–239. [Google Scholar] [CrossRef] [PubMed]
- Damoiseaux, J.S. Effects of aging on functional and structural brain connectivity. Neuroimage 2017, 160, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.A.; Norris, D.G.; Hund-Georgiadis, M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 2002, 16, 241–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Heuvel, M.P.; Mandl, R.; Luigjes, J.; Pol, H.H. Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J. Neurosci. 2008, 28, 10844–10851. [Google Scholar] [CrossRef] [Green Version]
- Bennett, I.J.; Rypma, B. Advances in functional neuroanatomy: A review of combined DTI and fMRI studies in healthy younger and older adults. Neurosci. Biobehav. Rev. 2013, 37, 1201–1210. [Google Scholar] [CrossRef] [Green Version]
- Honey, C.J.; Sporns, O.; Cammoun, L.; Gigandet, X.; Thiran, J.P.; Meuli, R.; Hagmann, P. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA 2009, 106, 2035–2040. [Google Scholar] [CrossRef] [Green Version]
- Saygin, Z.M.; Osher, D.E.; Koldewyn, K.; Reynolds, G.; Gabrieli, J.D.E.; Saxe, R.R. Anatomical connectivity patterns predict face selectivity in the fusiform gyrus. Nat. Neurosci. 2012, 15, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Damoiseaux, J.S.; Greicius, M.D. Greater than the sum of its parts: A review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct. Funct. 2009, 213, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Baum, G.L.; Cui, Z.; Roalf, D.R.; Ciric, R.; Betzel, R.F.; Larsen, B.; Cieslak, M.; Cook, P.A.; Xia, C.H.; Moore, T.M.; et al. Development of structure–function coupling in human brain networks during youth. Proc. Natl. Acad. Sci. USA 2020, 117, 771–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Reilly, J.X.; Croxson, P.L.; Jbabdi, S.; Sallet, J.; Noonan, M.P.; Mars, R.B.; Browning, P.G.F.; Wilson, C.R.E.; Mitchell, A.S.; Miller, K.L.; et al. Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys. Proc. Natl. Acad. Sci. USA 2013, 110, 13982–13987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, L.Q. Complex relationships between structural and functional brain connectivity. Trends Cogn. Sci. 2013, 17, 600–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabeza, R. Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychol. Aging 2002, 17, 85–100. [Google Scholar] [CrossRef]
- Daselaar, S.M.; Cabeza, R. Age-related changes in hemispheric organization. In Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging; Oxford University Press: New York, NY, USA, 2009; pp. 325–353. ISBN 9780199864171. [Google Scholar]
- Davis, S.W.; Dennis, N.A.; Daselaar, S.M.; Fleck, M.S.; Cabeza, R. Qué PASA? The posterior-anterior shift in aging. Cereb. Cortex 2008, 18, 1201–1209. [Google Scholar] [CrossRef]
- Cabeza, R.; Anderson, N.D.; Locantore, J.K.; McIntosh, A.R. Aging gracefully: Compensatory brain activity in high-performing older adults. Neuroimage 2002, 17, 1394–1402. [Google Scholar] [CrossRef]
- Cabeza, R.; Grady, C.L.; Nyberg, L.; McIntosh, A.R.; Tulving, E.; Kapur, S.; Jennings, J.M.; Houle, S.; Craik, F.I.M. Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. J. Neurosci. 1997, 17, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Bakker, A.; Krauss, G.L.; Albert, M.S.; Speck, C.L.; Jones, L.R.; Stark, C.E.; Yassa, M.A.; Bassett, S.S.; Shelton, A.L.; Gallagher, M. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 2012, 74, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Baltes, P.B.; Cornelius, S.W.; Spiro, A.; Nesselroade, J.R.; Willis, S.L. Integration versus differentiation of fluid/crytallized intelligence in old age. Dev. Psychol. 1980, 16, 625–635. [Google Scholar] [CrossRef]
- Koen, J.D.; Rugg, M.D. Neural dedifferentiation in the aging brain. Trends Cogn. Sci. 2019, 23, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Park, D.C.; Polk, T.A.; Park, R.; Minear, M.; Savage, A.; Smith, M.R. Aging reduces neural specialization in ventral visual cortex. Proc. Natl. Acad. Sci. USA 2004, 101, 13091–13095. [Google Scholar] [CrossRef] [Green Version]
- Cabeza, R.; Dennis, N.A. Frontal lobes and aging. In Principles of Frontal Lobe Function; Oxford University Press: Oxford, UK, 2014; pp. 628–652. [Google Scholar]
- Spreng, R.N.; Wojtowicz, M.; Grady, C.L. Reliable differences in brain activity between young and old adults: A quantitative meta-analysis across multiple cognitive domains. Neurosci. Biobehav. Rev. 2010, 34, 1178–1194. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.A.; Cappell, K.A. Neurocognitive aging and the compensation hypothesis. Curr. Dir. Psychol. Sci. 2008, 17, 177–182. [Google Scholar] [CrossRef]
- Park, D.C.; Reuter-Lorenz, P. The adaptive brain: Aging and neurocognitive scaffolding. Annu. Rev. Psychol. 2009, 60, 173–196. [Google Scholar] [CrossRef] [Green Version]
- Stern, Y. What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc. 2002, 8, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar] [CrossRef] [Green Version]
- Bennett, I.J.; Madden, D.J. Disconnected aging: Cerebral white matter integrity and age-related differences in cognition. Neuroscience 2014, 276, 187–205. [Google Scholar] [CrossRef] [Green Version]
- Fjell, A.M.; Westlye, L.T.; Grydeland, H.; Amlien, I.; Espeseth, T.; Reinvang, I.; Raz, N.; Dale, A.M.; Walhovd, K.B. Accelerating cortical thinning: Unique to dementia or universal in aging? Cereb. Cortex 2014, 24, 919–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raz, N.; Lindenberger, U.; Rodrigue, K.M.; Kennedy, K.M.; Head, D.; Williamson, A.; Dahle, C.; Gerstorf, D.; Acker, J.D. Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cereb. Cortex 2005, 15, 1676–1689. [Google Scholar] [CrossRef] [PubMed]
- Pfefferbaum, A.; Rohlfing, T.; Rosenbloom, M.J.; Chu, W.; Colrain, I.M.; Sullivan, E.V. Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85years) measured with atlas-based parcellation of MRI. Neuroimage 2013, 65, 176–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crivello, F.; Tzourio-Mazoyer, N.; Tzourio, C.; Mazoyer, B. Longitudinal assessment of global and regional rate of grey matter atrophy in 1,172 healthy older adults: Modulation by sex and age. PLoS ONE 2014, 9, e114478. [Google Scholar] [CrossRef]
- Raz, N.; Ghisletta, P.; Rodrigue, K.M.; Kennedy, K.M.; Lindenberger, U. Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. Neuroimage 2010, 51, 501–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storsve, A.B.; Fjell, A.M.; Tamnes, C.K.; Westlye, L.T.; Overbye, K.; Aasland, H.W.; Walhovd, K.B. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change. J. Neurosci. 2014, 34, 8488–8498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douaud, G.; Groves, A.R.; Tamnes, C.K.; Westlye, L.T.; Duff, E.P.; Engvig, A.; Walhovd, K.B.; James, A.; Gass, A.; Monsch, A.U.; et al. A common brain network links development, aging, and vulnerability to disease. Proc. Natl. Acad. Sci. USA 2014, 111, 17648–17653. [Google Scholar] [CrossRef] [Green Version]
- Salat, D.H.; Tuch, D.S.; Hevelone, N.D.; Fischl, B.; Corkin, S.; Rosas, H.D.; Dale, A.M. Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann. N. Y. Acad. Sci. 2005, 1064, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Madden, D.J.; Spaniol, J.; Whiting, W.L.; Bucur, B.; Provenzale, J.M.; Cabeza, R.; White, L.E.; Huettel, S.A. Adult age differences in the functional neuroanatomy of visual attention: A combined fMRI and DTI study. Neurobiol. Aging 2007, 28, 459–476. [Google Scholar] [CrossRef] [Green Version]
- Coupé, P.; Catheline, G.; Lanuza, E.; Manjón, J.V. Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis. Hum. Brain Mapp. 2017, 38, 5501–5518. [Google Scholar] [CrossRef] [Green Version]
- Daselaar, S.M.; Iyengar, V.; Davis, S.W.; Eklund, K.; Hayes, S.M.; Cabeza, R.E. Less wiring, more firing: Low-performing older adults compensate for impaired white matter with greater neural activity. Cereb. Cortex 2015, 25, 983–990. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, K.M.; Raz, N. Aging white matter and cognition: Differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia 2009, 47, 916–927. [Google Scholar] [CrossRef] [Green Version]
- Sheline, Y.I.; Raichle, M.E. Resting state functional connectivity in preclinical Alzheimer’s disease. Biol. Psychiatry 2013, 74, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Machulda, M.M.; Jones, D.T.; Vemuri, P.; McDade, E.; Avula, R.; Przybelski, S.; Boeve, B.F.; Knopman, D.S.; Petersen, R.C.; Jack, C.R. Effect of APOE ε4 status on intrinsic network connectivity in cognitively normal elderly subjects. Arch. Neurol. 2011, 68, 1131–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawagoe, T.; Onoda, K.; Yamaguchi, S. Subjective memory complaints are associated with altered resting-state functional connectivity but not structural atrophy. NeuroImage Clin. 2019, 21, 101675. [Google Scholar] [CrossRef] [PubMed]
- Beason-Held, L.L.; Goh, J.O.; An, Y.; Kraut, M.A.; O’Brien, R.J.; Ferrucci, L.; Resnick, S.M. Changes in brain function occur years before the onset of cognitive impairment. J. Neurosci. 2013, 33, 18008–18014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onoda, K.; Ishihara, M.; Yamaguchi, S. Decreased functional connectivity by aging is associated with cognitive decline. J. Cogn. Neurosci. 2012, 24, 2186–2198. [Google Scholar] [CrossRef]
- Biswal, B.B.; Mennes, M.; Zuo, X.N.; Gohel, S.; Kelly, C.; Smith, S.M.; Beckmann, C.F.; Adelstein, J.S.; Buckner, R.L.; Colcombe, S.; et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA 2010, 107, 4734–4739. [Google Scholar] [CrossRef] [Green Version]
- Andrews-Hanna, J.R.; Snyder, A.Z.; Vincent, J.L.; Lustig, C.; Head, D.; Raichle, M.E.E.; Buckner, R.L. Disruption of large-scale brain systems in advanced aging. Neuron 2007, 56, 924–935. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, D.; Volkow, N.D. Aging and functional brain networks. Mol. Psychiatry 2012, 17, 549–558. [Google Scholar] [CrossRef]
- Madole, J.W.; Ritchie, S.J.; Cox, S.R.; Buchanan, C.R.; Hernández, M.V.; Maniega, S.M.; Wardlaw, J.M.; Harris, M.A.; Bastin, M.E.; Deary, I.J.; et al. Aging-sensitive networks within the human structural connectome are implicated in late-life cognitive declines. Biol. Psychiatry 2021, 89, 795–806. [Google Scholar] [CrossRef]
- Toga, A.W.; Thompson, P.M.; Sowell, E.R. Mapping brain maturation. Trends Neurosci. 2006, 29, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Seto, E.; Sela, G.; McIlroy, W.E.; Black, S.E.; Staines, W.R.; Bronskill, M.J.; McIntosh, A.R.; Graham, S.J. Quantifying head motion associated with motor tasks used in fMRI. Neuroimage 2001, 14, 284–297. [Google Scholar] [CrossRef] [Green Version]
- Satterthwaite, T.D.; Ciric, R.; Roalf, D.R.; Davatzikos, C.; Bassett, D.S.; Wolf, D.H. Motion artifact in studies of functional connectivity: Characteristics and mitigation strategies. Hum. Brain Mapp. 2019, 40, 2033–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grady, C.; Sarraf, S.; Saverino, C.; Campbell, K. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiol. Aging 2016, 41, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Geerligs, L.; Renken, R.J.; Saliasi, E.; Maurits, N.M.; Lorist, M.M. A brain-wide study of age-related changes in functional connectivity. Cereb. Cortex 2015, 25, 1987–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawagoe, T.; Onoda, K.; Yamaguchi, S. Associations among executive function, cardiorespiratory fitness, and brain network properties in older adults. Sci. Rep. 2017, 7, 40107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fjell, A.M.; Sneve, M.H.; Grydeland, H.; Storsve, A.B.; Amlien, I.K.; Yendiki, A.; Walhovd, K.B. Relationship between structural and functional connectivity change across the adult lifespan: A longitudinal investigation. Hum. Brain Mapp. 2017, 38, 561–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, A.; Lebel, C.A.; Bray, S.L.; Goodyear, B.G.; Hafeez, M.; Sotero, R.C.; McCreary, C.R.; Frayne, R. White matter structural connectivity is not correlated to cortical resting-state functional connectivity over the healthy adult lifespan. Front. Aging Neurosci. 2017, 9, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, S.W.; Kragel, J.E.; Madden, D.J.; Cabeza, R. The architecture of cross-hemispheric communication in the aging brain: Linking behavior to functional and structural connectivity. Cereb. Cortex 2012, 22, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Monge, Z.A.; Greenwood, P.M.; Parasuraman, R.; Strenziok, M. Individual differences in reasoning and visuospatial attention are associated with prefrontal and parietal white matter tracts in healthy older adults. Neuropsychology 2016, 30, 558–567. [Google Scholar] [CrossRef]
- Satz, P. Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory. Neuropsychology 1993, 7, 273–295. [Google Scholar] [CrossRef]
- Valenzuela, M.J.; Breakspear, M.; Sachdev, P. Complex mental activity and the aging brain: Molecular, cellular and cortical network mechanisms. Brain Res. Rev. 2007, 56, 198–213. [Google Scholar] [CrossRef]
- World Health Organization. World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015; ISBN 9789241565042. [Google Scholar]
- Drag, L.L.; Bieliauskas, L.A. Contemporary review 2009: Cognitive aging. J. Geriatr. Psychiatry Neurol. 2010, 23, 75–93. [Google Scholar] [CrossRef]
- Cabeza, R.; Albert, M.; Belleville, S.; Craik, F.I.M.; Duarte, A.; Grady, C.L.; Lindenberger, U.; Nyberg, L.; Park, D.C.; Reuter-Lorenz, P.A.; et al. Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 2018, 19, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Piras, F.; Cherubini, A.; Caltagirone, C.; Spalletta, G. Education mediates microstructural changes in bilateral hippocampus. Hum. Brain Mapp. 2011, 32, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, L.; Lövdén, M.; Riklund, K.; Lindenberger, U.; Bäckman, L. Memory aging and brain maintenance. Trends Cogn. Sci. 2012, 16, 292–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter-Lorenz, P.A.; Park, D.C. Human neuroscience and the aging mind: A new look at old problems. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2010, 65, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Cappell, K.A.; Gmeindl, L.; Reuter-Lorenz, P.A. Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex 2010, 46, 462–473. [Google Scholar] [CrossRef] [Green Version]
- Daselaar, S.M.; Fleck, M.S.; Dobbins, I.G.; Madden, D.J.; Cabeza, R. Effects of healthy aging on hippocampal and rhinal memory functions: An event-related fMRI study. Cereb. Cortex 2006, 16, 1771–1782. [Google Scholar] [CrossRef] [Green Version]
- Stern, Y.; Chételat, G.; Habeck, C.; Arenaza-Urquijo, E.M.; Vemuri, P.; Estanga, A.; Bartrés-Faz, D.; Cantillon, M.; Clouston, S.A.P.; Elman, J.A.; et al. Mechanisms underlying resilience in ageing. Nat. Rev. Neurosci. 2019, 20, 246. [Google Scholar] [CrossRef]
- James, W. Principles of Psychology; Henry Holt and Company: New York, NY, USA, 1890; ISBN 9780674705593. [Google Scholar]
- Hommel, B.; Chapman, C.S.; Cisek, P.; Neyedli, H.F.; Song, J.H.; Welsh, T.N. No one knows what attention is. Atten. Percept. Psychophys. 2019, 81, 2288–2303. [Google Scholar] [CrossRef] [Green Version]
- Wager, T.D.; Jonides, J.; Reading, S. Neuroimaging studies of shifting attention: A meta-analysis. Neuroimage 2004, 22, 1679–1693. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef]
- Erel, H.; Levy, D.A. Orienting of visual attention in aging. Neurosci. Biobehav. Rev. 2016, 69, 357–380. [Google Scholar] [CrossRef] [PubMed]
- Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 1980, 32, 3–25. [Google Scholar] [CrossRef]
- Posner, M.I.; Snyder, C.R.; Davidson, B.J. Attention and the detection of signals. J. Exp. Psychol. 1980, 109, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Marois, R.; Ivanoff, J. Capacity limits of information processing in the brain. Trends Cogn. Sci. 2005, 9, 296–305. [Google Scholar] [CrossRef]
- Treisman, A.M.; Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 1980, 12, 97–136. [Google Scholar] [CrossRef]
- Cave, K.R.; Wolfe, J.M. Modeling the role of parallel processing in visual search. Cogn. Psychol. 1990, 22, 225–271. [Google Scholar] [CrossRef]
- Duncan, J.; Humphreys, G.W. Visual search and stimulus similarity. Psychol. Rev. 1989, 96, 433–458. [Google Scholar] [CrossRef]
- Chica, A.B.; Bartolomeo, P.; Lupiáñez, J. Two cognitive and neural systems for endogenous and exogenous spatial attention. Behav. Brain Res. 2013, 237, 107–123. [Google Scholar] [CrossRef]
- Yantis, S.; Jonides, J. Abrupt visual onsets and selective attention: Voluntary versus automatic allocation. J. Exp. Psychol. Hum. Percept. Perform. 1990, 16, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, M.; Yeshurun, Y. The contribution of covert attention to the set-size and eccentricity effects in visual search. J. Exp. Psychol. Hum. Percept. Perform. 1998, 24, 673–692. [Google Scholar] [CrossRef] [PubMed]
- Gruber, N.; Müri, R.M.; Mosimann, U.P.; Bieri, R.; Aeschimann, A.; Zito, G.A.; Urwyler, P.; Nyffeler, T.; Nef, T. Effects of age and eccentricity on visual target detection. Front. Aging Neurosci. 2014, 6, 101. [Google Scholar] [CrossRef]
- Wolfe, J.M.; Butcher, S.J.; Lee, C.; Hyle, M. Changing your mind: On the contributions of top-down and bottom-up guidance in visual search for feature singletons. J. Exp. Psychol. Hum. Percept. Perform. 2003, 29, 483–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, C.J.; Egeth, H.E. Attentional guidance in singleton search: An examination of top-down, bottom-up, and intertrial factors. Vis. Cogn. 2008, 16, 1078–1091. [Google Scholar] [CrossRef]
- Maljkovic, V.; Nakayama, K. Priming of pop-out: I. Role of features. Mem. Cognit. 1994, 22, 657–672. [Google Scholar] [CrossRef]
- Proulx, M.J. Bottom-up guidance in visual search for conjunctions. J. Exp. Psychol. Hum. Percept. Perform. 2007, 33, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Madden, D.J.; Parks, E.L.; Tallman, C.W.; Boylan, M.A.; Hoagey, D.A.; Cocjin, S.B.; Johnson, M.A.; Chou, Y.H.; Potter, G.G.; Chen, N.K.; et al. Frontoparietal activation during visual conjunction search: Effects of bottom-up guidance and adult age. Hum. Brain Mapp. 2017, 38, 2128–2149. [Google Scholar] [CrossRef] [Green Version]
- Burnham, B.R.; Rozell, C.A.; Kasper, A.; Bianco, N.E.; Delliturri, A. The visual hemifield asymmetry in the spatial blink during singleton search and feature search. Brain Cogn. 2011, 75, 261–272. [Google Scholar] [CrossRef]
- Rezaul Karim, A.K.M.; Kojima, H. The what and why of perceptual asymmetries in the visual domain. Adv. Cogn. Psychol. 2010, 6, 103–115. [Google Scholar] [CrossRef]
- Mesulam, M.-M. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 1990, 28, 597–613. [Google Scholar] [CrossRef] [PubMed]
- Bushnell, M.C.; Goldberg, M.E.; Robinson, D.L. Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J. Neurophysiol. 1981, 46, 755–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, D.L.; Bowman, E.M.; Kertzman, C. Covert orienting of attention in macaques. II. Contributions of parietal cortex. J. Neurophysiol. 1995, 74, 698–712. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Shulman, G.L. Human cortical mechanisms of visual attention during orienting and search. Philos. Trans. R. Soc. B Biol. Sci. 1998, 353, 1353–1362. [Google Scholar] [CrossRef] [Green Version]
- Giesbrecht, B.; Woldorff, M.G.; Song, A.W.; Mangun, G.R. Neural mechanisms of top-down control during spatial and feature attention. Neuroimage 2003, 19, 496–512. [Google Scholar] [CrossRef]
- Ruff, C.C.; Blankenburg, F.; Bjoertomt, O.; Bestmann, S.; Weiskopf, N.; Driver, J. Hemispheric differences in frontal and parietal influences on human occipital cortex: Direct confirmation with concurrent TMS-fMRI. J. Cogn. Neurosci. 2009, 21, 1146–1161. [Google Scholar] [CrossRef] [Green Version]
- Hahn, B.; Ross, T.J.; Stein, E.A. Neuroanatomical dissociation between bottom-up and top-down processes of visuospatial selective attention. Neuroimage 2006, 32, 842–853. [Google Scholar] [CrossRef] [Green Version]
- Kastner, S.; Pinsk, M.A.; De Weerd, P.; Desimone, R.; Ungerleider, L.G. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 1999, 22, 751–761. [Google Scholar] [CrossRef] [Green Version]
- Brass, M.; Von Cramon, D.Y. The role of the frontal cortex in task preparation. Cereb. Cortex 2002, 12, 908–914. [Google Scholar] [CrossRef] [Green Version]
- Hopfinger, J.B.; Buonocore, M.H.; Mangun, G.R. The neural mechanisms of top-down attentional control. Nat. Neurosci. 2000, 3, 284–291. [Google Scholar] [CrossRef]
- Labar, K.S.; Gitelman, D.R.; Parrish, T.B.; Mesulam, M.M. Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. Neuroimage 1999, 10, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Sadaghiani, S.; D’Esposito, M. Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cereb. Cortex 2015, 25, 2763–2773. [Google Scholar] [CrossRef] [Green Version]
- Coste, C.P.; Kleinschmidt, A. Cingulo-opercular network activity maintains alertness. Neuroimage 2016, 128, 264–272. [Google Scholar] [CrossRef]
- Dosenbach, N.U.F.; Fair, D.A.; Cohen, A.L.; Schlaggar, B.L.; Petersen, S.E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 2008, 12, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, S.E.; Posner, M.I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Corbetta, M.; Patel, G.; Shulman, G.L. The reorienting system of the human brain: From environment to theory of mind. Neuron 2008, 58, 306–324. [Google Scholar] [CrossRef] [Green Version]
- Serences, J.T.; Shomstein, S.; Leber, A.B.; Golay, X.; Egeth, H.E.; Yantis, S. Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol. Sci. 2005, 16, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.J.; Mangun, G.R. Right temporoparietal junction activation by a salient contextual cue facilitates target discrimination. Neuroimage 2011, 54, 594–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kincade, J.M.; Abrams, R.A.; Astafiev, S.V.; Shulman, G.L.; Corbetta, M. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J. Neurosci. 2005, 25, 4593–4604. [Google Scholar] [CrossRef]
- Doricchi, F.; MacCi, E.; Silvetti, M.; MacAluso, E. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the posner task. Cereb. Cortex 2010, 20, 1574–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Schotten, M.T.; Dell’Acqua, F.; Forkel, S.J.; Simmons, A.; Vergani, F.; Murphy, D.G.M.; Catani, M. A lateralized brain network for visuospatial attention. Nat. Neurosci. 2011, 14, 1245–1246. [Google Scholar] [CrossRef] [PubMed]
- Shulman, G.L.; Astafiev, S.V.; McAvoy, M.P.; D’Avossa, G.; Corbetta, M. Right TPJ deactivation during visual search: Functional significance and support for a filter hypothesis. Cereb. Cortex 2007, 17, 2625–2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, X.; Yao, L.; Liu, Y.; Ding, M. Causal interactions in attention networks predict behavioral performance. J. Neurosci. 2012, 32, 1284–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todd, J.J.; Fougnie, D.; Marois, R. Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness. Psychol. Sci. 2005, 16, 965–972. [Google Scholar] [CrossRef]
- Nobre, A.C.; Gitelman, D.R.; Dias, E.C.; Mesulam, M.M. Covert visual spatial orienting and saccades: Overlapping neural systems. Neuroimage 2000, 11, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbetta, M.; Kincade, J.M.; Ollinger, J.M.; McAvoy, M.P.; Shulman, G.L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 2000, 3, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, C.M.; Jack, A.I.; Corbetta, M.; Shulman, G.L. Anticipatory suppression of nonattended locations in visual cortex marks target location and predicts perception. J. Neurosci. 2008, 28, 6549–6556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ester, E.F.; Sprague, T.C.; Serences, J.T. Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron 2015, 87, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Long, N.M.; Kuhl, B.A. Bottom-up and top-down factors differentially influence stimulus representations across large-scale attentional networks. J. Neurosci. 2018, 38, 2495–2504. [Google Scholar] [CrossRef] [Green Version]
- Dixon, M.L.; De La Vega, A.; Mills, C.; Andrews-Hanna, J.; Spreng, R.N.; Cole, M.W.; Christoff, K. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc. Natl. Acad. Sci. USA 2018, 115, E1598–E1607. [Google Scholar] [CrossRef] [Green Version]
- Shackman, A.J.; Salomons, T.V.; Slagter, H.A.; Fox, A.S.; Winter, J.J.; Davidson, R.J. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 2011, 12, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Paus, T. Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nat. Rev. Neurosci. 2001, 2, 417–424. [Google Scholar] [CrossRef]
- Marek, S.; Hwang, K.; Foran, W.; Hallquist, M.N.; Luna, B. The contribution of network organization and integration to the development of cognitive control. PLoS Biol. 2015, 13, e1002328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadaghiani, S.; Scheeringa, R.; Lehongre, K.; Morillon, B.; Giraud, A.L.; Kleinschmidt, A. Intrinsic connectivity networks, alpha oscillations, and tonic alertness: A simultaneous electroencephalography/functional magnetic resonance imaging study. J. Neurosci. 2010, 30, 10243–10250. [Google Scholar] [CrossRef] [PubMed]
- Newbold, D.J.; Gordon, E.M.; Laumann, T.O.; Seider, N.A.; Montez, D.F.; Gross, S.J.; Zheng, A.; Nielsen, A.N.; Hoyt, C.R.; Hampton, J.M.; et al. Cingulo-opercular control network and disused motor circuits joined in standby mode. Proc. Natl. Acad. Sci. USA 2021, 118, e2019128118. [Google Scholar] [CrossRef]
- Sridharan, D.; Levitin, D.J.; Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. USA 2008, 105, 12569–12574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menon, V.; Uddin, L.Q. Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct. 2010, 214, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Pratt, J.; Bellomo, C.N. Attentional capture in younger and older adults. Aging Neuropsychol. Cogn. 1999, 6, 19–31. [Google Scholar] [CrossRef]
- Kramer, A.F.; Hahn, S.; Irwin, D.E.; Theeuwes, J. Age differences in the control of looking behavior: Do you know where your eyes have been? Psychol. Sci. 2000, 11, 210–217. [Google Scholar] [CrossRef]
- Langley, L.K.; Friesen, C.K.; Saville, A.L.; Ciernia, A.T. Timing of reflexive visuospatial orienting in young, young-old, and old-old adults. Atten. Percept. Psychophys. 2011, 73, 1546–1561. [Google Scholar] [CrossRef] [Green Version]
- Eenshuistra, R.M.; Ridderinkhof, K.R.; Molen, M.W.V. Der Age-related changes in antisaccade task performance: Inhibitory control or working-memory engagement? Brain Cogn. 2004, 56, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Plude, D.J.; Doussard-Roosevelt, J.A. Aging, selective attention, and feature integration. Psychol. Aging 1989, 4, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Hasher, L.; Zacks, R.T. Working memory, comprehension, and aging: A review and a new view. Psychol. Learn. Motiv. Adv. Res. Theory 1988, 22, 193–225. [Google Scholar] [CrossRef]
- Dempster, F.N. The rise and fall of the inhibitory mechanism: Toward a unified theory of cognitive development and aging. Dev. Rev. 1992, 12, 45–75. [Google Scholar] [CrossRef]
- West, R.L. An application of prefrontal cortex function theory to cognitive aging. Psychol. Bull. 1996, 120, 272–292. [Google Scholar] [CrossRef]
- Rey-Mermet, A.; Gade, M.; Oberauer, K. Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability. J. Exp. Psychol. Learn. Mem. Cogn. 2018, 44, 501–526. [Google Scholar] [CrossRef]
- Rey-Mermet, A.; Gade, M. Inhibition in aging: What is preserved? What declines? A meta-analysis. Psychon. Bull. Rev. 2018, 25, 1695–1716. [Google Scholar] [CrossRef] [Green Version]
- Heckner, M.K.; Cieslik, E.C.; Eickhoff, S.B.; Camilleri, J.A.; Hoffstaedter, F.; Langner, R. The aging brain and executive functions revisited: Implications from meta-analytic and functional-connectivity evidence. J. Cogn. Neurosci. 2021, 33, 1716–1752. [Google Scholar] [CrossRef]
- DeCarli, C.; Massaro, J.; Harvey, D.; Hald, J.; Tullberg, M.; Au, R.; Beiser, A.; D’Agostino, R.; Wolf, P.A. Measures of brain morphology and infarction in the framingham heart study: Establishing what is normal. Neurobiol. Aging 2005, 26, 491–510. [Google Scholar] [CrossRef]
- Chen, N.K.; Chou, Y.H.; Song, A.W.; Madden, D.J. Measurement of spontaneous signal fluctuations in fMRI: Adult age differences in intrinsic functional connectivity. Brain Struct. Funct. 2009, 213, 571–585. [Google Scholar] [CrossRef] [Green Version]
- Colcombe, A.M.; Kramer, A.F.; Irwin, D.E.; Peterson, M.S.; Colcombe, S.; Hahn, S. Age-related effects of attentional and oculomotor capture by onsets and color singletons as a function of experience. Acta Psychol. 2003, 113, 205–225. [Google Scholar] [CrossRef]
- Madden, D.J.; Whiting, W.L.; Cabeza, R.; Huettel, S.A. Age-related preservation of top-down attentional guidance during visual search. Psychol. Aging 2004, 19, 304–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramzaoui, H.; Faure, S.; Spotorno, S. Top-down and bottom-up guidance in normal aging during scene search. Psychol. Aging 2021, 36, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Folk, C.L.; Hoyer, W.J. Aging and shifts of visual spatial attention. Psychol. Aging 1992, 7, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Lindenberger, U.; Baltes, P.B. Sensory functioning and intelligence in old age: A strong connection. Psychol. Aging 1994, 9, 339–355. [Google Scholar] [CrossRef] [PubMed]
- Lindenberger, U.; Scherer, H.; Baltes, P.B. The strong connection between sensory and cognitive performance in old age: Not due to sensory acuity reductions operating during cognitive assessment. Psychol. Aging 2001, 16, 196–205. [Google Scholar] [CrossRef]
- Salthouse, T.A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 1996, 103, 403–428. [Google Scholar] [CrossRef] [Green Version]
- Humes, L.E.; Busey, T.A.; Craig, J.; Kewley-Port, D. Are age-related changes in cognitive function driven by age-related changes in sensory processing? Atten. Percept. Psychophys. 2013, 75, 508–524. [Google Scholar] [CrossRef] [Green Version]
- Ansado, J.; Monchi, O.; Ennabil, N.; Faure, S.; Joanette, Y. Load-dependent posterior-anterior shift in aging in complex visual selective attention situations. Brain Res. 2012, 1454, 14–22. [Google Scholar] [CrossRef]
- Verssimo, J.; Verhaeghen, P.; Goldman, N.; Weinstein, M.; Ullman, M.T. Evidence that ageing yields improvements as well as declines across attention and executive functions. Nat. Hum. Behav. 2021, 6, 97–110. [Google Scholar] [CrossRef]
- Madden, D.J.; Gottlob, L.R. Adult age differences in strategic and dynamic components of focusing visual attention. Aging, Neuropsychol. Cogn. 1997, 4, 185–210. [Google Scholar] [CrossRef]
- Fernandez-Duque, D.; Black, S.E. Attentional networks in normal aging and Alzheimer’s disease. Neuropsychology 2006, 20, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawagoe, T. Overview of (f)MRI Studies of Cognitive Aging for Non-Experts: Looking through the Lens of Neuroimaging. Life 2022, 12, 416. https://doi.org/10.3390/life12030416
Kawagoe T. Overview of (f)MRI Studies of Cognitive Aging for Non-Experts: Looking through the Lens of Neuroimaging. Life. 2022; 12(3):416. https://doi.org/10.3390/life12030416
Chicago/Turabian StyleKawagoe, Toshikazu. 2022. "Overview of (f)MRI Studies of Cognitive Aging for Non-Experts: Looking through the Lens of Neuroimaging" Life 12, no. 3: 416. https://doi.org/10.3390/life12030416
APA StyleKawagoe, T. (2022). Overview of (f)MRI Studies of Cognitive Aging for Non-Experts: Looking through the Lens of Neuroimaging. Life, 12(3), 416. https://doi.org/10.3390/life12030416