Changes in mGlu5 Receptor Signaling Are Associated with Associative Learning and Memory Extinction in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.3. Morris Water Maze
2.4. Drugs and Treatment
2.5. Tissue Preparation and ELISA Measurement of InsP Levels
2.6. Immunoblotting
2.7. Statistical Analysis
3. Results
3.1. Experimental Design and Learning Paradigm in the Morris Water Maze
3.2. In Vivo Assessment of mGlu5 Receptor-Mediated PI Hydrolysis
3.3. Immunoblot Analysis of mGlu5 Receptors and Associated Signaling Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buschler, A.; Manahan-Vaughan, D. Metabotropic glutamate receptor, mGlu5, mediates enhancements of hippocampal long-term potentiation after environmental enrichment in young and old mice. Neuropharmacology 2017, 115, 42–50. [Google Scholar] [CrossRef]
- Neves, G.; Cooke, S.F.; Bliss, T.V.P. Synaptic plasticity, memory and the hippocampus: A neural network approach to causality. Nat. Rev. Neurosci. 2008, 9, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Duszkiewicz, A.; Morris, R.G.M. The synaptic plasticity and memory hypothesis: Encoding, storage and persistence. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, S.; Manahan-Vaughan, D. Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning. Neuropharmacology 2012, 66, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S. Inside story of Group I Metabotropic Glutamate Receptors (mGluRs). Int. J. Biochem. Cell Biol. 2016, 77, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Moser, M.-B.; Moser, E.I. Functional differentiation in the hippocampus. Hippocampus 1998, 8, 608–619. [Google Scholar] [CrossRef]
- Fanselow, M.S.; Dong, H.-W. Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? Neuron 2010, 65, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moser, M.B.; Moser, E.I.; Forrest, E.; Andersen, P.; Morris, R.G. Spatial learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad. Sci. USA 1995, 92, 9697–9701. [Google Scholar] [CrossRef] [Green Version]
- Henke, P.G. Hippocampal pathway to the amygdala and stress ulcer development. Brain Res. Bull. 1990, 25, 691–695. [Google Scholar] [CrossRef]
- Bikbaev, A.; Neyman, S.; Ngomba, R.T.; Conn, J.; Nicoletti, F.; Manahan-Vaughan, D. MGluR5 Mediates the Interaction between Late-LTP, Network Activity, and Learning. PLoS ONE 2008, 3, e2155. [Google Scholar] [CrossRef]
- Popkirov, S.; Manahan-Vaughan, D. Involvement of the Metabotropic Glutamate Receptor mGluR5 in NMDA Receptor-Dependent, Learning-Facilitated Long-Term Depression in CA1 Synapses. Cereb. Cortex 2010, 21, 501–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balschun, D.; Wetzel, W. Inhibition of mGluR5 blocks hippocampal LTP in vivo and spatial learning in rats. Pharmacol. Biochem. Behav. 2002, 73, 375–380. [Google Scholar] [CrossRef]
- Naie, K.; Manahan-Vaughan, D. Regulation by Metabotropic Glutamate Receptor 5 of LTP in the Dentate Gyrus of Freely Moving Rats: Relevance for Learning and Memory Formation. Cereb. Cortex 2004, 14, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Balschun, D.; Zuschratter, W.; Wetzel, W. Allosteric enhancement of metabotropic glutamate receptor 5 function promotes spatial memory. Neuroscience 2006, 142, 691–702. [Google Scholar] [CrossRef]
- Lu, Y.-M.; Jia, Z.; Janus, C.; Henderson, J.T.; Gerlai, R.; Wojtowicz, J.M.; Roder, J.C. Mice Lacking Metabotropic Glutamate Receptor 5 Show Impaired Learning and Reduced CA1 Long-Term Potentiation (LTP) But Normal CA3 LTP. J. Neurosci. 1997, 17, 5196–5205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.Z.K.; Ganella, D.E.; Dick, A.L.W.; Duncan, J.R.; Ong-Palsson, E.; Bathgate, R.A.D.; Kim, J.H.; Lawrence, A.J. Spatial Learning Requires mGlu5 Signalling in the Dorsal Hippocampus. Neurochem. Res. 2015, 40, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Ayala, J.E.; Chen, Y.; Banko, J.L.; Sheffler, D.J.; Williams, R.; Telk, A.N.; Watson, N.L.; Xiang, Z.; Zhang, Y.; Jones, P.J.; et al. mGluR5 Positive Allosteric Modulators Facilitate both Hippocampal LTP and LTD and Enhance Spatial Learning. Neuropsychopharmacology 2009, 34, 2057–2071. [Google Scholar] [CrossRef] [Green Version]
- Fowler, S.; Walker, J.; Klakotskaia, D.; Will, M.; Serfozo, P.; Simonyi, A.; Schachtman, T. Effects of a metabotropic glutamate receptor 5 positive allosteric modulator, CDPPB, on spatial learning task performance in rodents. Neurobiol. Learn. Mem. 2013, 99, 25–31. [Google Scholar] [CrossRef]
- Homayoun, H.; Moghaddam, B. Group 5 metabotropic glutamate receptors: Role in modulating cortical activity and relevance to cognition. Eur. J. Pharmacol. 2010, 639, 33–39. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Y.; Contractor, A.; Heinemann, S.F. mGluR5 Has a Critical Role in Inhibitory Learning. J. Neurosci. 2009, 29, 3676–3684. [Google Scholar] [CrossRef]
- Fontanez-Nuin, D.E.; Santini, E.; Quirk, G.J.; Porter, J.T. Memory for Fear Extinction Requires mGluR5-Mediated Activation of Infralimbic Neurons. Cereb. Cortex 2011, 21, 727–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethna, F.; Wang, H. Acute inhibition of mGluR5 disrupts behavioral flexibility. Neurobiol. Learn. Mem. 2016, 130, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhu, Y.; Kraniotis, S.; He, Q.; Marshall, J.J.; Nomura, T.; Stauffer, S.R.; Lindsley, C.W.; Conn, P.J.; Contractor, A. Potentiating mGluR5 function with a positive allosteric modulator enhances adaptive learning. Learn. Mem. 2013, 20, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Mostofsky, S.H.; Simmonds, D.J. Response Inhibition and Response Selection: Two Sides of the Same Coin. J. Cogn. Neurosci. 2008, 20, 751–761. [Google Scholar] [CrossRef]
- Lebois, L.A.; Seligowski, A.V.; Wolff, J.D.; Hill, S.B.; Ressler, K.J. Augmentation of Extinction and Inhibitory Learning in Anxiety and Trauma-Related Disorders. Annu. Rev. Clin. Psychol. 2019, 15, 257–284. [Google Scholar] [CrossRef]
- Maren, S.; Phan, K.L.; Liberzon, I. The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 2013, 14, 417–428. [Google Scholar] [CrossRef]
- Uniyal, A.; Singh, R.; Akhtar, A.; Dhaliwal, J.; Kuhad, A.; Sah, S.P. Pharmacological rewriting of fear memories: A beacon for post-traumatic stress disorder. Eur. J. Pharmacol. 2019, 870, 172824. [Google Scholar] [CrossRef]
- Riedel, G.; Casabona, G.; Platt, B.; Macphail, E.M.; Nicoletti, F. Fear conditioning-induced time- and subregion-specific increase in expression of mGlu5 receptor protein in rat hippocampus. Neuropharmacology 2000, 39, 1943–1951. [Google Scholar] [CrossRef]
- Manahan-Vaughan, D.; Ngomba, R.; Storto, M.; Kulla, A.; Catania, M.; Chiechio, S.; Rampello, L.; Passarelli, F.; Capece, A.; Reymann, K.; et al. An increased expression of the mGlu5 receptor protein following LTP induction at the perforant path–dentate gyrus synapse in freely moving rats. Neuropharmacology 2003, 44, 17–25. [Google Scholar] [CrossRef]
- Nicoletti, F.; Bockaert, J.; Collingridge, G.; Conn, P.; Ferraguti, F.; Schoepp, D.; Wroblewski, J.; Pin, J.-P. Metabotropic glutamate receptors: From the workbench to the bedside. Neuropharmacology 2011, 60, 1017–1041. [Google Scholar] [CrossRef] [Green Version]
- Zuena, A.R.; Iacovelli, L.; Orlando, R.; Di Menna, L.; Casolini, P.; Alemà, G.S.; Di Cicco, G.; Battaglia, G.; Nicoletti, F. In Vivo Non-radioactive Assessment of mGlu5 Receptor-Activated Polyphosphoinositide Hydrolysis in Response to Systemic Administration of a Positive Allosteric Modulator. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Ojha, P.; Pal, S.; Bhattacharyya, S. Regulation of Metabotropic Glutamate Receptor Internalization and Synaptic AMPA Receptor Endocytosis by the Postsynaptic Protein Norbin. J. Neurosci. 2021, 42, 731–748. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Westin, L.; Nong, Y.; Birnbaum, S.; Bendor, J.; Brismar, H.; Nestler, E.; Aperia, A.; Flajolet, M.; Greengard, P. Norbin Is an Endogenous Regulator of Metabotropic Glutamate Receptor 5 Signaling. Science 2009, 326, 1554–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berridge, M.J.; Downes, C.P.; Hanley, M.R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 1982, 206, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yim, Y.S.; Han, W.; Seo, J.; Kim, C.H.; Kim, D.G. Differential mGluR5 expression in response to the same stress causes individually adapted hippocampal network activity. Biochem. Biophys. Res. Commun. 2018, 495, 1305–1311. [Google Scholar] [CrossRef]
- Arnsten, A.F.; Raskind, M.A.; Taylor, F.B.; Connor, D.F. The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiol. Stress 2015, 1, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Zangrandi, L.; Schmuckermair, C.; Ghareh, H.; Castaldi, F.; Heilbronn, R.; Zernig, G.; Ferraguti, F.; Ramos-Prats, A. Loss of mGluR5 in D1 Receptor-Expressing Neurons Improves Stress Coping. Int. J. Mol. Sci. 2021, 22, 7826. [Google Scholar] [CrossRef]
- Nicoletti, F.; Valerio, C.; Pellegrino, C.; Drago, F.; Scapagnini, U.; Canonico, P.L. Spatial Learning Potentiates the Stimulation of Phosphoinositide Hydrolysis by Excitatory Amino Acids in Rat Hippocampal Slices. J. Neurochem. 1988, 51, 725–729. [Google Scholar] [CrossRef]
- Bräuner-Osborne, H.; Nielsen, B.; Krogsgaard-Larsen, P. Molecular pharmacology of homologues of ibotenic acid at cloned metabotropic glutamic acid receptors. Eur. J. Pharmacol. 1998, 350, 311–316. [Google Scholar] [CrossRef]
- Jørgensen, C.G.; Clausen, R.P.; Hansen, K.B.; Bräuner-Osborne, H.; Nielsen, B.; Metzler, B.M.B.; Kehler, J.; Krogsgaard-Larsen, P.; Madsen, U. Synthesis and pharmacology of glutamate receptor ligands: New isothiazole analogues of ibotenic acid. Org. Biomol. Chem. 2007, 5, 463–471. [Google Scholar] [CrossRef]
- Di Menna, L.; Joffe, M.E.; Iacovelli, L.; Orlando, R.; Lindsley, C.W.; Mairesse, J.; Gressèns, P.; Cannella, M.; Caraci, F.; Copani, A.; et al. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology 2018, 128, 301–313. [Google Scholar] [CrossRef]
- Zhong, X.; Li, H.; Chang, Q. MeCP2 Phosphorylation Is Required for Modulating Synaptic Scaling through mGluR5. J. Neurosci. 2012, 32, 12841–12847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heavner, W.E.; Lautz, J.D.; Speed, H.E.; Gniffke, E.P.; Immendorf, K.B.; Welsh, J.P.; Baertsch, N.A.; Smith, S.E.P. Remodeling of the Homer-Shank interactome mediates homeostatic plasticity. Sci. Signal. 2021, 14. [Google Scholar] [CrossRef] [PubMed]
- Lattal, K.M.; Mullen, M.T.; Abel, T. Extinction, renewal, and spontaneous recovery of a spatial preference in the water maze. Behav. Neurosci. 2003, 117, 1017–1028. [Google Scholar] [CrossRef]
- Quirk, G.J.; Mueller, D. Neural Mechanisms of Extinction Learning and Retrieval. Neuropsychopharmacology 2007, 33, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Lattal, K.M.; Abel, T. Different Requirements for Protein Synthesis in Acquisition and Extinction of Spatial Preferences and Context-Evoked Fear. J. Neurosci. 2001, 21, 5773–5780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethna, F.; Wang, H. Pharmacological enhancement of mGluR5 facilitates contextual fear memory extinction. Learn. Mem. 2014, 21, 647–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teleuca, A.E.; Alemà, G.S.; Casolini, P.; Barberis, I.; Ciabattoni, F.; Orlando, R.; Di Menna, L.; Iacovelli, L.; Scioli, M.R.; Nicoletti, F.; et al. Changes in mGlu5 Receptor Signaling Are Associated with Associative Learning and Memory Extinction in Mice. Life 2022, 12, 463. https://doi.org/10.3390/life12030463
Teleuca AE, Alemà GS, Casolini P, Barberis I, Ciabattoni F, Orlando R, Di Menna L, Iacovelli L, Scioli MR, Nicoletti F, et al. Changes in mGlu5 Receptor Signaling Are Associated with Associative Learning and Memory Extinction in Mice. Life. 2022; 12(3):463. https://doi.org/10.3390/life12030463
Chicago/Turabian StyleTeleuca, Ana Elena, Giovanni Sebastiano Alemà, Paola Casolini, Ilaria Barberis, Francesco Ciabattoni, Rosamaria Orlando, Luisa Di Menna, Luisa Iacovelli, Maria Rosaria Scioli, Ferdinando Nicoletti, and et al. 2022. "Changes in mGlu5 Receptor Signaling Are Associated with Associative Learning and Memory Extinction in Mice" Life 12, no. 3: 463. https://doi.org/10.3390/life12030463
APA StyleTeleuca, A. E., Alemà, G. S., Casolini, P., Barberis, I., Ciabattoni, F., Orlando, R., Di Menna, L., Iacovelli, L., Scioli, M. R., Nicoletti, F., & Zuena, A. R. (2022). Changes in mGlu5 Receptor Signaling Are Associated with Associative Learning and Memory Extinction in Mice. Life, 12(3), 463. https://doi.org/10.3390/life12030463