Production and Characterization of a Bioemulsifier Derived from Microorganisms with Potential Application in the Food Industry
Abstract
:1. Introduction
2. Bioemulsifiers
3. Bioemulsifiers Derived from Microorganisms
4. Physicochemical Properties of Bioemulsifiers
5. Characterization of Bioemulsifiers by Various Chromatographic and Spectroscopic Techniques
6. Applications of Bioemulsifiers in Food Industry
Incorporation of Bioemulsifiers in Food Formulations
- Salad dressing formulation was prepared using sunflower oil, vinegar, water, egg powder, sugar, salt, starch, etc. with Candida-derived bioemulsifier (C. utilis 0.2–0.8% (w/v) combined with guar gum/carboxymethyl cellulose. The consistency and texture was improved using 0.7% of bioemulsifier [107].
- Muffins were prepared using Galactan Exopolysaccharide (EPS) 1% (w/v) along with vanillin and cardamom flavors. It showed a better texture, sensorial property, springiness, color and flavor stability than control [108].
- Cookie dough formulation incorporated bioemulsifier from S. cerevisiae URM 6770, partially (2% (w/v)) or completely (4% (w/v)) substituting egg yolk in the existing formulation, and it showed similar physicochemical properties along with increasing the energy value of the cookies by providing fatty acids in the end product [3]. Table 5 summarizes some of the most interesting findings.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaman, M.; Hamid, B. Biosurfactants Production and Applications in Food. In Microbial Surfactants: Volume 2: Applications in Food and Agriculture; CRC Press: Boca Raton, FL, USA, 2022; pp. 133–149. [Google Scholar]
- Mujumdar, S.; Joshi, P.; Karve, N. Production, characterization, and applications of bioemulsifiers (BE) and biosurfactants (BS) produced by Acinetobacter spp.: A review. J. Basic Microbiol. 2019, 59, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, B.G.; Guerra, J.M.C.; Sarubbo, L.A. Potential food application of a biosurfactant produced by Saccharomyces cerevisiae URM 6670. Front. Bioeng. Biotechnol. 2020, 8, 434. [Google Scholar] [CrossRef] [PubMed]
- Marcelino, P.R.F.; Gonçalves, F.; Jimenez, I.M.; Carneiro, B.C.; Santos, B.B.; da Silva, S.S. Sustainable production of biosurfactants and their applications. In Lignocellulosic Biorefining Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 159–183. [Google Scholar]
- Banat, I.M.; Thavasi, R. (Eds.) Microbial Biosurfactants and Their Environmental and Industrial Applications; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-tamimi, W.H.; Lazim, S.A.; Abd Al-sahib, M.A.; Hameed, Z.M.; Al-amara, S.S.M.; Burghal, A.A.; Al-maqtoofi, M.Y. Improved oil recovery by using biosurfactants produced from bacilli bacteria isolated from oil reservoirs in Iraq. Poll. Res. 2019, 38, 551–556. [Google Scholar]
- Piroozian, A.; Hemmati, M.; Safari, M.; Rahimi, A.; Rahmani, O.; Aminpour, S.M.; Pour, A.B. A mechanistic understanding of the water-in-heavy oil emulsion viscosity variation: Effect of asphaltene and wax migration. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125604. [Google Scholar] [CrossRef]
- Markande, A.R.; Patel, D.; Varjani, S. A review on biosurfactants: Properties, applications and current developments. Biores. Technol. 2021, 330, 124963. [Google Scholar] [CrossRef]
- Bagheri, H.; Mohebbi, A.; Amani, F.S.; Naderi, M. Application of low molecular weight and high molecular weight biosurfactant in medicine/biomedical/pharmaceutical industries. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Academic Press: Cambridge, MA, USA, 2022; pp. 1–61. [Google Scholar]
- Alizadeh-Sani, M.; Hamishehkar, H.; Khezerlou, A.; Azizi-Lalabadi, M.; Azadi, Y.; Nattagh-Eshtivani, E.; Ehsani, A. Bioemulsifiers derived from microorganisms: Applications in the drug and food industry. Adv. Pharm. Bull. 2018, 8, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenibo, E.O.; Ijoma, G.N.; Selvarajan, R.; Chikere, C.B. Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms 2019, 7, 581. [Google Scholar] [CrossRef] [Green Version]
- Amaral, P.F.F.; Da Silva, J.M.; Lehocky, B.M.; Barros-Timmons, A.M.V.; Coelho, M.A.Z.; Marrucho, I.M.; Coutinho, J.A.P. Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochem. 2006, 41, 1894–1898. [Google Scholar] [CrossRef]
- Ribeiro, B.G.; Guerra, J.M.; Sarubbo, L.A. Biosurfactants: Production and application prospects in the food industry. Biotechnol. Progr. 2020, 36, e3030. [Google Scholar] [CrossRef]
- Rosenberg, E.; Ron, E.Z. High-and low-molecular-mass microbial surfactants. Appl. Microbiol. Biotechnol. 1999, 52, 154–162. [Google Scholar] [CrossRef]
- Alvarez, V.M.; Jurelevicius, D.; Serrato, R.V. Chemical characterization and potential application of exopolysaccharides produced by Ensifer adhaerens JHT2 as a bioemulsifier of edible oils. Int. J. Biol. Macromol. 2018, 114, 18–25. [Google Scholar] [CrossRef]
- Uzoigwe, C.; Burgess, J.G.; Ennis, C.J. Bioemulsifiers are not biosurfactants and require different screening approaches. Front. Microbiol. 2015, 6, 245. [Google Scholar] [CrossRef] [Green Version]
- Pessoa, M.G.; Vespermann, K.A.C.; Paulino, B.N. Newly isolated microorganisms with potential application in biotechnology. Biotechnol. Adv. 2019, 37, 319–339. [Google Scholar] [CrossRef]
- Mercaldi, M.P.; Dams-Kozlowska, H.; Panilaitis, B.; Joyce, A.P.; Kaplan, D.L. Discovery of the dual polysaccharide composition of emulsan and the isolation of the emulsion stabilizing component. Biomacromolecules 2008, 9, 1988–1996. [Google Scholar] [CrossRef] [PubMed]
- Castro, G.R.; Kamdar, R.R.; Panilaitis, B.; Kaplan, D.L. Triggered release of proteins from emulsan–alginate beads. J. Control. Release 2005, 109, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Castro, G.R.; Panilaitis, B.; Kaplan, D.L. Emulsan, a tailorable biopolymer for controlled release. Biores. Technol. 2008, 99, 4566–4571. [Google Scholar] [CrossRef] [PubMed]
- Navon-Venezia, S.; Zosim, Z.; Gottlieb, A.; Legmann, R.; Carmeli, S.; Ron, E.Z.; Rosenberg, E. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol. 1995, 61, 3240–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toren, A.; Navon-Venezia, S.; Ron, E.Z.; Rosenberg, E. Emulsifying activities of purified alasan proteins from Acinetobacter radioresistens KA53. Appl. Environ. Microbiol. 2001, 67, 1102–1106. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.C.; Figueiredo-Lima, D.F.; Faria Filho, D.E.; Marques, R.H.; Moraes, V.M.B.D. Effect of mannanoligosaccharides and/or enzymes on antibody titers against infectious bursal and Newcastle disease viruses. Arq. Bras. Med. Vet. Zootec. 2009, 61, 6–11. [Google Scholar] [CrossRef]
- Snyman, C.; Mekoue Nguela, J.; Sieczkowski, N.; Marangon, M.; Divol, B. Optimised extraction and preliminary characterisation of mannoproteins from non-saccharomyces wine yeasts. Foods 2021, 10, 924. [Google Scholar] [CrossRef]
- Oguntoyinbo, F.A. Monitoring of marine Bacillus diversity among the bacteria community of sea water. Afr. J. Biotechnol. 2007, 6, 163–166. [Google Scholar]
- Sass, A.; McKew, B.; Sass, H.; Fichtel, J.; Timmis, K.; McGenity, T. Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments. Saline Syst. 2008, 4, 8. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ren, B.; Chen, M.; Wang, H.; Kokare, C.R.; Zhou, X.; Zhang, L. Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3. Appl. Microbiol. Biotechnol. 2010, 87, 1881–1893. [Google Scholar] [CrossRef] [PubMed]
- Banat, I.M.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, M.G.; Fracchia, L.; Marchant, R. Microorganism in environmental management: Microbes and environment. Appl. Microbiol. Biotechnol. 2010, 87, 427–444. [Google Scholar] [CrossRef]
- Cooper, D.G.; Paddock, D.A. Torulopsis petrophilum and surface activity. Appl. Environ. Microbiol. 1983, 46, 1426–1429. [Google Scholar] [CrossRef] [Green Version]
- Ben Belgacem, Z.; Bijttebier, S.; Verreth, C.; Voorspoels, S.; Van de Voorde, I.; Aerts, G.; Willems, K.A.; Jacquemyn, H.; Ruyters, S.; Lievens, B. Biosurfactant production by Pseudomonas strains isolated from floral nectar. J. Appl. Microbiol. 2015, 118, 1370–1384. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, M.; Kalme, S.; Tamboli, D.; Govindwar, S. Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of Brown 3REL. J. Basic Microbiol. 2011, 51, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Rau, U.; Hammen, S.; Heckmann, R.; Wray, V.; Lang, S. Sophorolipids: A source for novel compounds. Ind. Crop. Prod. 2001, 13, 85–92. [Google Scholar] [CrossRef]
- Feng, H.F.; Du, Q.J.; Luan, J.; Sun, Y.M. Biosurfactant production by ochrobactrum sp. with alkane as carbon source. J. Ind. Microbiol. 2015, 3, 11. [Google Scholar]
- Morita, T.; Konishi, M.; Fukuoka, T.; Imura, T.; Kitamoto, D. Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Appl. Microbiol. Biotechnol. 2006, 73, 305–313. [Google Scholar] [CrossRef]
- Mozaffarieh, M.; Sacu, S.; Wedrich, A. The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. Nutr. J. 2003, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Rau, U.; Nguyen, L.A.; Schulz, S.; Wray, V.; Nimtz, M.; Roeper, H.; Lang, S. Formation and analysis of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl. Microbiol. Biotechnol. 2005, 66, 551–559. [Google Scholar] [CrossRef]
- Amézcua-Vega, C.; Poggi-Varaldo, H.M.; Esparza-García, F.; Ríos-Leal, E.; Rodríguez-Vázquez, R. Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Biores. Technol. 2007, 98, 237–240. [Google Scholar] [CrossRef]
- Abriouel, H.; Franz, C.M.; Omar, N.B.; Gálvez, A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol. Rev. 2011, 35, 201–232. [Google Scholar] [CrossRef] [Green Version]
- Konishi, M.; Morita, T.; Fukuoka, T.; Imura, T.; Kakugawa, K.; Kitamoto, D. Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Appl. Microbiol. Biotechnol. 2007, 75, 521–531. [Google Scholar] [CrossRef]
- Rufino, R.D.; Sarubbo, L.A.; Campos-Takaki, G.M. Enhancement of stability of biosurfactant produced by Candida lipolytica using industrial residue as substrate. World J. Microbiol. Biotechnol. 2007, 23, 729–734. [Google Scholar] [CrossRef]
- Yakimov, M.M.; Golyshin, P.N. ComA-Dependent Transcriptional Activation of Lichenysin A Synthetase Promoter in Bacillus subtilis cells. Biotechnol. Progr. 1997, 13, 757–761. [Google Scholar] [CrossRef]
- Kakugawa, K.; Tamai, M.; Imamura, K.; Miyamoto, K.; Miyoshi, S.; Morinaga, Y.; Miyakawa, T. Isolation of yeast Kurtzmanomyces sp. I-11, novel producer of mannosylerythritol lipid. Biosci. Biotechnol. Biochem. 2002, 66, 188–191. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; Porto, A.L.F.; Campos-Takaki, G.M. The use of babassu oil as substrate to produce bioemulsifiers by Candida lipolytica. Can. J. Microbiol. 1999, 45, 423–426. [Google Scholar] [CrossRef]
- Begley, M.; Cotter, P.D.; Hill, C.; Ross, R.P. Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl. Environ. Microbiol. 2009, 75, 5451–5460. [Google Scholar] [CrossRef] [Green Version]
- Amaral, P.F.; Coelho, M.A.Z.; Marrucho, I.M.; Coutinho, J.A. Biosurfactants from yeasts: Characteristics, production and application. Biosurfactants 2010, 672, 236–249. [Google Scholar]
- Cavalero, D.A.; Cooper, D.G. The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214. J. Biotechnol. 2003, 103, 31–41. [Google Scholar] [CrossRef]
- Banat, I.M.; Makkar, R.S.; Cameotra, S.S. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 2000, 53, 495–508. [Google Scholar] [CrossRef]
- Cameron, D.R.; Cooper, D.G.; Neufeld, R.J. The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl. Environ. Microbiol. 1998, 54, 1420–1425. [Google Scholar] [CrossRef] [Green Version]
- Hommel, R.K.; Weber, L.; Weiss, A.; Himmelreich, U.; Rilke, O.K.H.P.; Kleber, H.P. Production of sophorose lipid by Candida (Torulopsis) apicola grown on glucose. J. Biotechnol. 1994, 33, 147–155. [Google Scholar] [CrossRef]
- Banat, I.M. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: A review. Biores. Technol. 1995, 51, 1–12. [Google Scholar] [CrossRef]
- Lukondeh, T.; Ashbolt, N.J.; Rogers, P.L. Evaluation of Kluyveromyces marxianus FII 510700 grown on a lactose-based medium as a source of a natural bioemulsifier. J. Ind. Microbiol. Biotechnol. 2003, 30, 715–720. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, B.; Gao, B.; Sun, G. Application of fishmeal wastewater as a potential low-cost medium for lipid production by Lipomyces starkeyi HL. Environ. Technol. 2011, 32, 1975–1981. [Google Scholar] [CrossRef]
- Calvo, C.; Manzanera, M.; Silva-Castro, G.A.; Uad, I.; González-López, J. Application of bioemulsifiers in soil oil bioremediation processes. Future prospects. Sci. Total Environ. 2009, 407, 3634–3640. [Google Scholar] [CrossRef]
- Monteiro, A.D.S.; Bonfim, M.R.Q.; Domingues, V.S.; Correa, A., Jr.; Siqueira, E.P.; Zani, C.L.; Santos, V.L.D. Identification and characterization of bioemulsifier-producing yeasts isolated from effluents of a dairy industry. Biores. Technol. 2010, 101, 5186–5193. [Google Scholar] [CrossRef] [PubMed]
- Willumsen, P.A.; Karlson, U. Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 1996, 7, 415–423. [Google Scholar] [CrossRef]
- Markande, A.R.; Acharya, S.R.; Nerurkar, A.S. Physicochemical characterization of a thermostable glycoprotein bioemulsifier from Solibacillus silvestris AM1. Process Biochem. 2013, 48, 1800–1808. [Google Scholar] [CrossRef]
- Walzer, G.; Rosenberg, E.; Ron, E.Z. The Acinetobacter outer membrane protein A (OmpA) is a secreted emulsifier. Environ. Microbiol. 2006, 8, 1026–1032. [Google Scholar] [CrossRef]
- Jain, R.M.; Mody, K.; Joshi, N.; Mishra, A.; Jha, B. Production and structural characterization of biosurfactant produced by an alkaliphilic bacterium, Klebsiella sp.: Evaluation of different carbon sources. Colloids Surf. B Biointerfaces 2013, 108, 199–204. [Google Scholar] [CrossRef]
- Marin, M.; Pedregosa, A.; Laborda, F. Emulsifier production and microscopical study of emulsions and biofilms formed by the hydrocarbon-utilizing bacteria Acinetobacter calcoaceticus MM5. Appl. Microbiol. Biotechnol. 1996, 44, 660–667. [Google Scholar] [CrossRef]
- Ortega-de la Rosa, N.D.; Vázquez-Vázquez, J.L.; Huerta-Ochoa, S.; Gimeno, M.; Gutiérrez-Rojas, M. Stable bioemulsifiers are produced by Acinetobacter bouvetii UAM25 growing in different carbon sources. Bioprocess Biosyst. Eng. 2018, 41, 859–869. [Google Scholar] [CrossRef]
- Hyder, N.H. Production, characterization and antimicrobial activity of a bioemulsifier produced by Acinetobacter baumanii AC5 utilizing edible oils. Iraqi J. Biotechnol. 2015, 14, 55–70. [Google Scholar]
- Kim, S.H.; Lee, J.D.; Kim, B.C.; Lee, T.H. Purification and characterization of bioemulsifier produced by Acinetobacter sp. BE-254. J. Microbiol. Biotechnol. 1996, 6, 184–188. [Google Scholar]
- Adetunji, A.I.; Olaniran, A.O. Production and characterization of bioemulsifiers from Acinetobacter strains isolated from lipid-rich wastewater. 3 Biotech 2019, 9, 151. [Google Scholar] [CrossRef]
- Markande, A.R.; Vemuluri, V.R.; Shouche, Y.S.; Nerurkar, A.S. Characterization of Solibacillus silvestris strain AM1 that produces amyloid bioemulsifier. J. Basic Microbiol. 2018, 58, 523–531. [Google Scholar] [CrossRef]
- Ellaiah, P.; Prabhakar, T.; Sreekanth, M.; Taleb, A.T.; Raju, P.B.; Saisha, V. Production of glycolipids containing biosurfactant by Pseudomonas species. Indian J. Exp. Biol. 2002, 40, 1083–1086. [Google Scholar]
- Ambaye, T.G.; Vaccari, M.; Prasad, S.; Rtimi, S. Preparation, characterization and application of biosurfactant in various industries: A critical review on progress, challenges and perspectives. Environ. Technol. Innov. 2021, 24, 102090. [Google Scholar] [CrossRef]
- Jemil, N.; Hmidet, N.; Ayed, H.B.; Nasri, M. Physicochemical characterization of Enterobacter cloacae C3 lipopeptides and their applications in enhancing diesel oil biodegradation. Process. Saf. Environ. Prot. 2018, 117, 399–407. [Google Scholar] [CrossRef]
- Hewald, S.; Linne, U.; Scherer, M.; Marahiel, M.A.; Kämer, J.; Bölker, M. Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl. Environ. Microbiol. 2006, 72, 5469–5477. [Google Scholar] [CrossRef] [Green Version]
- Tabatabaee, A.; Assadi, M.M.; Noohi, A.A.; Sajadian, V.A. Isolation of biosurfactant producing bacteria from oil reservoirs. J. Environ. Health Sci. Eng. 2005, 2, 6–12. [Google Scholar]
- Vater, J.; Kablitz, B.; Wilde, C.; Franke, P.; Mehta, N.; Cameotra, S.S. Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl. Environ. Microbiol. 2002, 68, 6210–6219. [Google Scholar] [CrossRef] [Green Version]
- Peng, F.; Liu, Z.; Wang, L.; Shao, Z. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J. Appl. Microbiol. 2007, 102, 1603–1611. [Google Scholar] [CrossRef]
- Sarubbo, L.A.; Maria da Gloria, C.S.; Durval, I.J.B.; Bezerra, K.G.O.; Ribeiro, B.G.; Silva, I.A.; Banat, I.M. Biosurfactants: Production, Properties, Applications, Trends, and General Perspectives. Biochem. Eng. J. 2022, 181, 108377. [Google Scholar] [CrossRef]
- Zhao, Y.; Si, H.; Zhao, X.; Li, H.; Ren, J.; Li, S.; Zhang, J. Fabrication of an allyl-β-cyclodextrin based monolithic column with triallyl isocyanurate as co-crosslinker and its application in separation of lipopeptide antibiotics by HPLC. Microchem. J. 2021, 168, 106462. [Google Scholar] [CrossRef]
- Kumar, D. An Analysis of Advance Electron Paramagnetic Resonance Imaging Modulation. Int. J. Innov. Res. Eng. Sci. Manag. 2021, 8, 9–14. [Google Scholar]
- Lete, M.G.; Franconetti, A.; Delgado, S.; Jiménez-Barbero, J.; Ardá, A. Oligosaccharide Presentation Modulates the Molecular Recognition of Glycolipids by Galectins on Membrane Surfaces. Pharmaceuticals 2022, 15, 145. [Google Scholar] [CrossRef]
- Antoniou, E.; Fodelianakis, S.; Korkakaki, E.; Kalogerakis, N. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source. Front. Microbiol. 2015, 6, 274. [Google Scholar] [CrossRef] [Green Version]
- Elazzazy, A.M.; Abdelmoneim, T.S.; Almaghrabi, O.A. Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J. Biol. Sci. 2015, 22, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Smyth, T.; Perfumo, A.; Marchant, R.; Banat, I. Isolation and Analysis of Low Molecular Weight Microbial Glycolipids. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3705–3723. [Google Scholar]
- Gudiña, E.J.; Pereira, J.F.; Costa, R.; Evtuguin, D.V.; Coutinho, J.A.; Teixeira, J.A.; Rodrigues, L.R. Novel bioemulsifier produced by a Paenibacillus strain isolated from crude oil. Microb. Cell Factories 2015, 14, 14. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.J.; Chen, L.Y.; LI, D.; Pang, H.Y.; Wu, S.; Liu, J.B.; Huang, L. Characterization of a Biosurfactant-producing Strain Rhodococcus sp. HL-6. Rom. Biotechnol. Lett. 2016, 21, 11651. [Google Scholar]
- Almeida, D.G.; Soares da Silva RD, C.F.; Meira, H.M.; Brasileiro PP, F.; Silva, E.J.; Luna, J.M.; Sarubbo, L.A. Production, Characterization and Commercial Formulation of a Biosurfactant from Candida tropicalis UCP0996 and Its Application in Decontamination of Petroleum Pollutants. Processes 2021, 9, 885. [Google Scholar] [CrossRef]
- Satpute, S.K.; Banat, I.M.; Dhakephalkar, P.K.; Banpurkar, A.G.; Chopade, B.A. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol. Adv. 2010, 28, 436–450. [Google Scholar] [CrossRef]
- Banerjee, S.; Mazumdar, S. Electrospray ionization mass spectrometry: A technique to access the information beyond the molecular weight of the analyte. Int. J. Anal. Chem. 2012, 2012, 282574. [Google Scholar] [CrossRef] [Green Version]
- Kalaimurugan, D.; Balamuralikrishnan, B.; Govindarajan, R.K.; Al-Dhabi, N.A.; Valan Arasu, M.; Vadivalagan, C.; Venkatesan, S.; Kamyab, H.; Chelliapan, S.; Khanongnuch, C. Production and Characterization of a Novel Biosurfactant Molecule from Bacillus safensis YKS2 and Assessment of Its Efficiencies in Wastewater Treatment by a Directed Metagenomic Approach. Sustainability 2022, 14, 2142. [Google Scholar] [CrossRef]
- Dinkgreve, M.; Velikov, K.P.; Bonn, D. Stability of LAPONITE®-stabilized high internal phase Pickering emulsions under shear. Phys. Chem. Chem. Phys. 2016, 18, 22973–22977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Fang, Q.; Li, P.; Zhang, C.; Yuan, Y.; Zhuang, H. Effects of Emulsifier Type and Post-Treatment on Stability, Curcumin Protection, and Sterilization Ability of Nanoemulsions. Foods 2021, 10, 149. [Google Scholar] [CrossRef] [PubMed]
- Haba, E.; Espuny, M.J.; Busquets, M.; Manresa, A. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J. Appl. Microbiol. 2000, 88, 379–387. [Google Scholar] [CrossRef]
- Bonilla, M.; Olivaro, C.; Corona, M.; Vazquez, A.; Soubes, M. Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J. Appl. Microbiol. 2005, 98, 456–463. [Google Scholar] [CrossRef]
- Tuleva, B.K.; Ivanov, G.R.; Christova, N.E. Biosurfactant production by a new Pseudomonas putida strain. Z. Für Nat. C 2002, 57, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Yun, U.J.; Park, H.D. Overproduction of an extracellular polysaccharide possessing high lipid emulsion stabilizing effects by Bacillus sp. Biotechnol. Lett. 2000, 22, 647–650. [Google Scholar] [CrossRef]
- Yakimov, M.M.; Timmis, K.N.; Wray, V.; Fredrickson, H.L. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl. Environ. Microbiol. 1995, 61, 1706–1713. [Google Scholar] [CrossRef] [Green Version]
- Hommel, R.K.; Stegner, S.; Kleber, H.P.; Weber, L. Effect of ammonium ions on glycolipid production byCandida (Torulopsis) apicola. Appl. Microbiol. Biotechnol. 1994, 42, 192–197. [Google Scholar] [CrossRef]
- Emulsifiers Market Future on Recent Innovation 2026 Key Players|Corbion, BASF SE, Lonza., Stepan Company, Akzo Nobel N.V.; Estelle Chemicals Pvt. Ltd. 2020. Available online: https://www.openpr.com/news/2063526/emulsifiers-market-future-on-recent-innovation-2026-key-players (accessed on 14 March 2022).
- Emulsifiers Market Analysis. Available online: https://www.coherentmarketinsights.com/market-insight/emulsifiers-market-3850 (accessed on 16 March 2022).
- Data Bridge Market Research. Available online: https://www.databridgemarketresearch.com/reports/global-food-emulsifiers-market (accessed on 8 April 2022).
- Zijarde, S.S.; Pant, A. Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. J. Basic Microbiol. 2002, 42, 67–73. [Google Scholar] [CrossRef]
- Satpute, S.K.; Kulkarni, G.R.; Banpurkar, A.G.; Banat, I.M.; Mone, N.S.; Patil, R.H.; Cameotra, S.S. Biosurfactant/s from Lactobacilli species: Properties, challenges and potential biomedical applications. J. Basic Microbiol. 2016, 56, 1140–1158. [Google Scholar] [CrossRef]
- Zambry, N.S.; Ayoib, A.; Md Noh, N.A.; Yahya, A.R.M. Production and partial characterization of biosurfactant produced by Streptomyces sp. R1. Bioprocess Biosyst. Eng. 2017, 40, 1007–1016. [Google Scholar] [CrossRef]
- Adamczak, M. Influence of medium composition and aeration on the synthesis of biosurfactants produced by Candida antarctica. Biotechnol. Lett. 2000, 22, 313–316. [Google Scholar] [CrossRef]
- Kralova, I.; Sjöblom, J. Surfactants used in food industry: A review. J. Dispers. Sci. Technol. 2009, 30, 1363–1383. [Google Scholar] [CrossRef]
- Berton-Carabin, C.C.; Ropers, M.H.; Genot, C. Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer. Compr. Rev. Food Sci. Food Saf. 2014, 13, 945–977. [Google Scholar] [CrossRef]
- Hamzah, A.F.; Al Tamimi, W.H. Enhanced oil recovery by sand packed column supplemented with biosurfactants produced by local oil fields bacteria. Marsh Bull. 2021, 16, 135–143. [Google Scholar]
- Moreira, T.C.P.; da Silva, V.M.; Gombert, A.K.; da Cunha, R.L. Stabilization mechanisms of oil-in-water emulsions by Saccharomyces cerevisiae. Colloids Surf. B Biointerfaces 2016, 143, 399–405. [Google Scholar] [CrossRef]
- Kiran, G.S.; Priyadharsini, S.; Sajayan, A.; Priyadharsini, G.B.; Poulose, N.; Selvin, J. Production of lipopeptide biosurfactant by a marine Nesterenkonia sp. and its application in food industry. Front. Microbiol. 2017, 8, 1138. [Google Scholar] [CrossRef]
- Kavitake, D.; Kalahasti, K.K.; Devi, P.B.; Ravi, R.; Shetty, P.H. Galactan exopolysaccharide based flavour emulsions and their application in improving the texture and sensorial properties of muffin. Bioact. Carbohydr. Diet. Fibre 2020, 24, 100248. [Google Scholar] [CrossRef]
- Campos, J.M.; Stamford, T.L.M.; Sarubbo, L.A. Characterization and application of a biosurfactant isolated from Candida utilis in salad dressings. Biodegradation 2019, 30, 313–324. [Google Scholar] [CrossRef]
- Ravindran, A.; Kiran, G.S.; Selvin, J. Revealing the effect of lipopeptide on improving the probiotics characteristics: Flavor and texture enhancer in the formulated yogurt. Food Chem. 2022, 375, 131718. [Google Scholar] [CrossRef]
- Karlapudi, A.P.; Venkateswarulu, T.C.; Srirama, K.; Kota, R.K.; Mikkili, I.; Kodali, V.P. Evaluation of anti-cancer, anti-microbial and anti-biofilm potential of biosurfactant extracted from an Acinetobacter M6 strain. J. King Saud Univ. Sci. 2020, 32, 223–227. [Google Scholar] [CrossRef]
- Bhaumik, M.; Dhanarajan, G.; Chopra, J.; Kumar, R.; Hazra, C.; Sen, R. Production, partial purification and characterization of a proteoglycan bioemulsifier from an oleaginous yeast. Bioprocess Biosyst. Eng. 2020, 43, 1747–1759. [Google Scholar] [CrossRef]
- Sran, K.S.; Sundharam, S.S.; Krishnamurthi, S.; Choudhury, A.R. Production, characterization and bio-emulsifying activity of a novel thermostable exopolysaccharide produced by a marine strain of Rhodobacter johrii CDR-SL 7Cii. Int. J. Biol. Macromol. 2019, 127, 240–249. [Google Scholar] [CrossRef]
- Kavitake, D.; Marchawala, F.Z.; Delattre, C.; Shetty, P.H.; Pathak, H.; Andhare, P. Biotechnological potential of exopolysaccharide as a bioemulsifier produced by Rhizobium radiobacter CAS isolated from curd. Bioact. Carbohydr. Diet. Fibre 2019, 20, 100202. [Google Scholar] [CrossRef]
- Vidhyalakshmi, R.; Nachiyar, C.V.; Kumar, G.N.; Sunkar, S.; Badsha, I. Production, characterization and emulsifying property of exopolysaccharide produced by marine isolate of Pseudomonas fluorescens. Biocatal. Agric. Biotechnol. 2018, 16, 320–325. [Google Scholar] [CrossRef]
- Radchenkova, N.; Boyadzhieva, I.; Atanasova, N.; Poli, A.; Finore, I.; Di Donato, P.; Nicolaus, B.; Panchev, I.; Kuncheva, M.; Kambourova, M. Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28. Appl. Microbiol. Biotechnol. 2018, 102, 4937–4949. [Google Scholar] [CrossRef] [PubMed]
- Bakhshi, N.; Sheikh-Zeinoddin, M.; Soleimanian-Zad, S. Production and Partial Characterization of a Glycoprotein Bioemulsifier Produced by Lactobacillus plantarum subsp. plantarum PTCC 1896. J. Agric. Sci. Technol. 2018, 20, 37–49. [Google Scholar]
- Wu, S.; Liu, G.; Jin, W.; Xiu, P.; Sun, C. Antibiofilm and Anti-Infection of a Marine Bacterial Exopolysaccharide Against Pseudomonas aeruginosa. Front. Microbiol. 2016, 7, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salo, O.V.; Ries, M.; Medema, M.H.; Lankhorst, P.P.; Vreeken, R.J.; Bovenberg, R.A.; Driessen, A.J. Genomic mutational analysis of the impact of the classical strain improvement program on β–lactam producing Penicillium chrysogenum. BMC Genom. 2015, 16, 937. [Google Scholar] [CrossRef] [Green Version]
Bacteria Sources | Yeast Sources | Fungi Sources | ||||||
---|---|---|---|---|---|---|---|---|
Bacteria | Bioemulsifiers | References | Yeast | Bioemulsifiers | References | Fungi | Bioemulsifiers | References |
Pseudomonas fluorescens | Viscosin | [29] | Torulopsis petrophilum | Sophorolipids | [30] | Candida sphaerica UCP0995 | Sophorolipids | [31] |
Pseudomonas aeruginosa | Rhamnolipids | [32] | Torulopsis apicola | Sophorolipids | [33] | Candida lipolytica Y-917 | Sophorous lipid | [32] |
Pseudomonas fluorescens | Carbohydrate-lipid complex | [32] | Pseudozyma rugulosa | Mannosylerythritol lipids | [34] | Candida utilis | NDA | [35] |
Bacillus amyloliquefaciens | Surfactin/Iturin | [36] | Pseudozyma aphidis | Mannosylerythritol lipids | [37] | Candida ingens | Fatty acids | [38] |
Bacillus subtilis | Subtilisin | [39] | Kurtzmanomyces sp. | Mannosylerythritol lipids | [40] | Candida lipolytica | Carbohydrate-protein-lipid | [41] |
Bacillus subtilis | Lichenysin | [42] | Kurtzmanomyces sp. I-11 | Mannosylerythritol lipids | [43] | Candida tropicalis | Liposan | [44] |
Bacillus licheniformis K51 | Peptide lipids | [45] | Debaryomyces polymorphus | Carbohydrate protein-lipid | [46] | Candida bombicola | Sophorolipids | [47] |
Bacillus pumilus A1 | Rhamnolipids | [48] | Saccharomyces cerevisiae | Mannoprotein | [49] | Candida (torulopsis) | Sophorolipids | [50] |
Bacillus spp. | Hydrocarbon-lipid-protein | [51] | Kluyveromyces marxianus | Mannoprotein | [52] | Candida lipolytica | Carbohydrate-protein | [53] |
Bioemulsifiers Class | Microbial Origin | Physicochemical Properties | References |
---|---|---|---|
Glycoprotein | Solibacillus silvestris AM1 | Pseudoplastic non-Newtonian rheological property | [57] |
Alasan | Acientobacter radioresistens KA53 | Emulsification and solubilization activity | [58] |
Uronic acid bioemulsifiers | Halomonaseurihalina Klebsiella sp. | Emulsification properties | [59] |
Proteoglycan | Acinetobacter calcoaceticus MM5 | Emulsifies heating oils | [60] |
Lipo-heteropolysaccharides | Acinetobacter bouvetii UAM25 | Emulsifying polycyclic aromatic hydrocarbon | [61] |
Lipoglycan | Acinetobacter baumanii | Emulsification of edible oils | [62] |
Glycolipid | Acinetobacter sp. | Surface active agent | [63] |
Glycolipid | Acinetobacter spp. | Stable emulsions only in the presence of edible oils | [64] |
Amyloid | Solibacillus silvestris AM1 | Strengthening cell surface interactions such as aggregation, biofilm formation and adhesion | [65] |
Bioemulsifiers Type | Organism | Solvent System | Functional Groups | Reference |
---|---|---|---|---|
Glycolipid | Pseudomonas sp. | Chloroform; methanol; water 65:25:5 | Glycolipid | [66] |
Lipopeptide | Bacillus subtilis | Butanol; acetic acid; water 4:1:1 methanol; 6 N HCl; water; pyridine 60:3:19:5:15 | Amino acids | [67] |
Lipopeptides | Enterobacter cloacae C3 | Chloroform/methanol/water (65:25:4). | lipopeptides | [68] |
Glycolipids Ustilagic acid | Ustilago maydis | Chloroform; methanol; water 65:25:4 | Sugar | [69] |
Glycolipid | Bacillus sp. | Chloroform; methanol; acetic acid; water 25:15:4:2 | Carbohydrate Lipid | [70] |
Lipopeptide | Bacillus subtilis | Butanol; acetic acid; water 4:1:1 Methanol; 6 N HCl; water; pyridine 60:3:19:5:15 | Amino acids | [71] |
Microorganism | Bioemulsifiers Type | HPLC | FT-IR | GC-MS | NMR | Reference |
---|---|---|---|---|---|---|
Pseudomonas aeruginosa | Rhamnolipid | + | − | − | − | Haba et al. [88] |
Pseudomonas putida | Bioemulsifier | + | − | − | + | Bonilla et al. [89] |
Pseudomonas putida 21 BN | Rhamnolipid | − | + | − | − | Tuleva et al. [90] |
Bacillus sp. | Exopolysaacharide | − | − | − | − | Yun and Park [91] |
Bacillus licheniformis | Lipopeptide | + | − | + | + | Yakimov et al. [92] |
Candid picola | Glycolipid | − | − | + | − | Hommel et al. [93] |
Yarrowia lipolytica | Yansan | − | + | + | − | Amaral et al. [13] |
Bioemulsifiers | Microorganisms | Activity | Application | Reference |
---|---|---|---|---|
Lipopeptide | Bacillus licheniformis MS48 | Improving textural and sensorial properties | Yogurt | [109] |
Glycolipoprotein | Acinetobacter indicus M6 | Antibacterial | Food control | [110] |
Proteoglycan | Meyerozyma caribbica | Emulsifiers | Food industry | [111] |
Exopolysaccharides (EPS) | Rhodobacter johrii CDR-SL 7 Cii | Emulsifier Emulsion Stabilizer | Food industry | [112] |
Carbohydrate–lipid–protein complex | Candida utilis | Emulsifiers | Corn oil and Sunflower oil | [108] |
Succinoglycan exopolysaccharide | Rhizobium radiobacter CAS | emulsion stabilization | Soybean oil | [113] |
EPS | Pseudomonas fluorescens | Emulsifier | Food industry | [114] |
EPS | Chromohalobacter canadensis 28 | Emulsifier Emulsion Stabilizer Foamer | Food industry | [108] |
Glycoprotein | Lactobacillus plantarum subsp. | Emulsifiers | Food industry | [115] |
Lipopeptide | Nesterenkonia sp. MSA31 | Antioxidant, Emulsifier, Emulsion Stabilizer | Food industry | [106] |
emulsan-alginate | Pseudomonas stutzeri 273 | Removing protein-based toxins from food products | Food-processing contamination | [116] |
Polyketide derivative | Penicillium chrysogenum | Emulsifiers | Oil | [117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thraeib, J.Z.; Altemimi, A.B.; Jabbar Abd Al-Manhel, A.; Abedelmaksoud, T.G.; El-Maksoud, A.A.A.; Madankar, C.S.; Cacciola, F. Production and Characterization of a Bioemulsifier Derived from Microorganisms with Potential Application in the Food Industry. Life 2022, 12, 924. https://doi.org/10.3390/life12060924
Thraeib JZ, Altemimi AB, Jabbar Abd Al-Manhel A, Abedelmaksoud TG, El-Maksoud AAA, Madankar CS, Cacciola F. Production and Characterization of a Bioemulsifier Derived from Microorganisms with Potential Application in the Food Industry. Life. 2022; 12(6):924. https://doi.org/10.3390/life12060924
Chicago/Turabian StyleThraeib, Jaffar Z., Ammar B. Altemimi, Alaa Jabbar Abd Al-Manhel, Tarek Gamal Abedelmaksoud, Ahmed Ali Abd El-Maksoud, Chandu S. Madankar, and Francesco Cacciola. 2022. "Production and Characterization of a Bioemulsifier Derived from Microorganisms with Potential Application in the Food Industry" Life 12, no. 6: 924. https://doi.org/10.3390/life12060924
APA StyleThraeib, J. Z., Altemimi, A. B., Jabbar Abd Al-Manhel, A., Abedelmaksoud, T. G., El-Maksoud, A. A. A., Madankar, C. S., & Cacciola, F. (2022). Production and Characterization of a Bioemulsifier Derived from Microorganisms with Potential Application in the Food Industry. Life, 12(6), 924. https://doi.org/10.3390/life12060924