Dietary and Antioxidant Vitamins Limit the DNA Damage Mediated by Oxidative Stress in the Mother–Newborn Binomial
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Frequency of Food Consumed
2.3. Blood Samples
2.4. 8-OHdG Quantification
2.5. Clinical and Nutrient Profiles Based on 8-OHdG Tertiles
2.6. Statistical Analyses
3. Results
3.1. Subject Characteristics
3.2. Correlation of 8-OHdG Levels between Mothers and Newborns
3.3. Nutritional Differences among Mother Tertiles in the Mothers 8-OHdG Group
3.4. Nutritional Differences among the Mother Tertiles in the Newborns 8-OHdG Group
3.5. Correlation of Mother Vitamins and Newborns 8-OHdG Levels
3.6. 8-OHdG Variation by BMI and Vitamin A Consumption
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alkerwi, A.A.; Vernier, C.; Sauvageot, N.; Crichton, G.E.; Elias, M.F. Demographic and socioeconomic disparity in nutrition: Application of a novel Correlated Component Regression approach. BMJ Open 2015, 5, e006814. [Google Scholar] [CrossRef] [PubMed]
- Koenig, M.D. Nutrient Intake During Pregnancy. J. Obstet. Gynecol. Neonatal Nurs. 2017, 46, 120–122. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Desai, M.; Jellyman, J.K.; Ross, M.G. Epigenomics, gestational programming and risk of metabolic syndrome. Int. J. Obes. 2015, 39, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Ruchat, S.-M.; Houde, A.-A.; Voisin, G.; St-Pierre, J.; Perron, P.; Baillargeon, J.-P.; Gaudet, D.; Hivert, M.-F.; Brisson, D.; Bouchard, L. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases. Epigenetics 2013, 8, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Gagné-Ouellet, V.; Houde, A.A.; Guay, S.P. Placental lipoprotein lipase DNA methylation alterations are associated with gestational diabetes and body composition at 5 years of age. Epigenetics 2017, 12, 616–625. [Google Scholar] [CrossRef]
- Miyake, K.; Miyashita, C.; Ikeda-Araki, A.; Miura, R.; Itoh, S.; Yamazaki, K.; Kobayashi, S.; Masuda, H.; Ooka, T.; Yamagata, Z.; et al. DNA methylation of GFI1 as a mediator of the association between prenatal smoking exposure and ADHD symptoms at 6 years: The Hokkaido Study on Environment and Children’s Health. Clin. Epigenet. 2021, 13, 74. [Google Scholar] [CrossRef]
- Küpers, L.K.; Xu, X.; Jankipersadsing, S.A.; Vaez, A.; la Bastide-van Gemert, S.; Scholtens, S.; Nolte, I.M.; Richmond, R.C.; Relton, C.L.; Felix, J.F.; et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int. J. Epidemiol. 2015, 44, 1224–1237. [Google Scholar] [CrossRef]
- Sarkar, D.K.; Gangisetty, O.; Wozniak, J.R.; Eckerle, J.K.; Georgieff, M.K.; Foroud, T.M.; Wetherill, L. Persistent Changes in Stress-Regulatory Genes in Pregnant Women or Children Exposed Prenatally to Alcohol. Alcohol. Clin. Exp. Res. 2019, 43, 1887–1897. [Google Scholar] [CrossRef]
- Breton-Larrivée, M.; Elder, E.; McGraw, S. DNA methylation, environmental exposures and early embryo development. Anim. Reprod. 2019, 16, 465–474. [Google Scholar] [CrossRef]
- Urbaniak, S.K.; Boguszewska, K. 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine (8-oxodG) and 8-Hydroxy-2′-Deoxyguanosine (8-OHdG) as a Potential Biomarker for Gestational Diabetes Mellitus (GDM) Development. Molecules 2020, 25, 202. [Google Scholar] [CrossRef]
- García-Sánchez, A.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 2082145. [Google Scholar] [CrossRef] [PubMed]
- Jat, D.; Nahar, M. Oxidative stress and antioxidants: An overview. IJARR 2017, 2, 110–119. [Google Scholar]
- Venereo Gutiérrez, J.R. Daño oxidativo, radicales libres y antioxidantes. Rev. Cuba. Med. Mil. 2002, 31, 126–133. [Google Scholar]
- Savini, I.; Gasperi, V.; Catani, M.V. Oxidative Stress and Obesity. In Obesity: A Practical Guide; Ahmad, S.I., Imam, S.K., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 65–86. [Google Scholar]
- Domej, W.; Oettl, K.; Renner, W. Oxidative stress and free radicals in COPD—Implications and relevance for treatment. Int. J. Chronic Obstr. Pulm. Dis. 2014, 2014, 1207–1224. [Google Scholar] [CrossRef] [PubMed]
- Dennery, P.A. Effects of oxidative stress on embryonic development. Birth Defects Res. Part C Embryo Today Rev. 2007, 81, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.C.; Fraser, W.D.; Julien, P.; Deal, C.L.; Audibert, F.; Smith, G.N.; Xiong, X.; Walker, M. Tracing the origins of “fetal origins” of adult diseases: Programming by oxidative stress? Med. Hypotheses 2006, 66, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Cadet, J.; Wagner, J.R.; Shafirovich, V.; Geacintov, N.E. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA. Int. J. Radiat. Biol. 2014, 90, 423–432. [Google Scholar] [CrossRef]
- Asami, S.; Manabe, H.; Miyake, J.; Tsurudome, Y.; Hirano, T.; Yamaguchi, R.; Itoh, H.; Kasai, H. Cigarette smoking induces an increase in oxidative DNA damage, 8-hydroxydeoxyguanosine, in a central site of the human lung. Carcinogenesis 1997, 18, 1763–1766. [Google Scholar] [CrossRef]
- Thomas, M.C.; Woodward, M.; Li, Q.; Pickering, R.; Tikellis, C.; Poulter, N.; Cooper, M.E.; Marre, M.; Zoungas, S.; Chalmers, J. Relationship Between Plasma 8-OH-Deoxyguanosine and Cardiovascular Disease and Survival in Type 2 Diabetes Mellitus: Results from the ADVANCE Trial. J. Am. Heart Assoc. 2018, 7, e008226. [Google Scholar] [CrossRef]
- Leinonen, J.; Lehtimäki, T.; Toyokuni, S.; Okada, K.; Tanaka, T.; Hiai, H.; Ochi, H.; Laippala, P.; Rantalaiho, V.; Wirta, O.; et al. New biomarker evidence of oxidative DNA damage in patients with non-insulin-dependent diabetes mellitus. FEBS Lett. 1997, 417, 150–152. [Google Scholar] [CrossRef]
- Chuma, M.; Hige, S.; Nakanishi, M.; Ogawa, K.; Natsuizaka, M.; Yamamoto, Y.; Asaka, M. 8-Hydroxy-2′-deoxy-guanosine is a risk factor for development of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J. Gastroenterol. Hepatol. 2008, 23, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Erhola, M.; Toyokuni, S.; Okada, K.; Tanaka, T.; Hiai, H.; Ochi, H.; Uchida, K.; Osawa, T.; Nieminen, M.M.; Alho, H.; et al. Biomarker evidence of DNA oxidation in lung cancer patients: Association of urinary 8-hydroxy-2′-deoxyguanosine excretion with radiotherapy, chemotherapy, and response to treatment. FEBS Lett. 1997, 409, 287–291. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, Y.; He, J. High serum levels of 8-OHdG are an independent predictor of post-stroke depression in Chinese stroke survivors. Neuropsychiatr. Dis. Treat. 2018, 14, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Chen, C.-M.; Liu, J.-L.; Chen, S.-T.; Cheng, M.-L.; Chiu, D.T.-Y. Oxidative markers in spontaneous intracerebral hemorrhage: Leukocyte 8-hydroxy-2′-deoxyguanosine as an independent predictor of the 30-day outcome. J. Neurosurg. 2011, 115, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Iida, T.; Inoue, K.; Ito, Y.; Ishikawa, H.; Kagiono, M.; Teradaira, R.; Chikamura, C.; Harada, T.; Ezoe, S.; Yatsuya, H. Comparison of urinary levels of 8-hydroxy-2′-deoxyguanosine between young females with and without depressive symptoms during different menstrual phases. Acta Med. Okayama 2015, 69, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Martinet, W.; Knaapen, M.W.; De Meyer, G.R.; Herman, A.G.; Kockx, M.M. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 2002, 106, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, M.; Kotani, K.; Ishibashi, S.; Taniguchi, N. The relationship between urinary 8-hydroxydeoxyguanosine and metabolic risk factors in asymptomatic subjects. Med. Princ. Pract. Int. J. Kuwait Univ. Health Sci. Cent. 2011, 20, 187–190. [Google Scholar] [CrossRef]
- Satoh, M.; Ishikawa, Y.; Takahashi, Y.; Itoh, T.; Minami, Y.; Nakamura, M. Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis 2008, 198, 347–353. [Google Scholar] [CrossRef]
- Min, J.; Park, B.; Kim, Y.J.; Lee, H.; Ha, E.; Park, H. Effect of oxidative stress on birth sizes: Consideration of window from mid pregnancy to delivery. Placenta 2009, 30, 418–423. [Google Scholar] [CrossRef]
- Murata, T.; Kyozuka, H.; Fukuda, T.; Endo, Y.; Kanno, A.; Yasuda, S.; Yamaguchi, A.; Sato, A.; Ogata, Y.; Shinoki, K.; et al. Urinary 8-hydroxy-2′-deoxyguanosine levels and small-for-gestational age infants: A prospective cohort study from the Japan Environment and Children’s Study. BMJ Open 2021, 11, e054156. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, L.; Jin, L.; Liu, J.; Li, Z.; Wang, L.; Ren, A. Markers of macromolecular oxidative damage in maternal serum and risk of neural tube defects in offspring. Free Radic. Biol. Med. 2015, 80, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Hozyasz, K.K.; Chełchowska, M.; Ambroszkiewicz, J.; Gajewska, J.; Dudkiewicz, Z.; Laskowska-Klita, T. Oxidative DNA damage in mothers of children with isolated orofacial clefts. Prz. Lek. 2004, 61, 1310–1313. [Google Scholar]
- Qiu, C.; Hevner, K.; Abetew, D.; Enquobahrie, D.A.; Williams, M.A. Oxidative DNA damage in early pregnancy and risk of gestational diabetes mellitus: A pilot study. Clin. Biochem. 2011, 44, 804–808. [Google Scholar] [CrossRef] [PubMed]
- Gelaleti, R.B.; Damasceno, D.C.; Lima, P.H.O.; Salvadori, D.M.F.; Calderon, I.d.M.P.; Peraçoli, J.C.; Rudge, M.V.C. Oxidative DNA damage in diabetic and mild gestational hyperglycemic pregnant women. Diabetol. Metab. Syndr. 2015, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Fernandez, J.; Ochoa, J.J. COVID-19 during Gestation: Maternal Implications of Evoked Oxidative Stress and Iron Metabolism Impairment. Antioxidants 2022, 11, 184. [Google Scholar] [CrossRef]
- Olorunnisola, O.; Ajayi, A.; Okeleji, L.; Abimbola, O.; Emorioloye, J. Vitamins as Antioxidants. J. Food Sci. Nutr. Res. 2019, 2, 214–235. [Google Scholar] [CrossRef]
- Lee, B.M.; Lee, S.K.; Kim, H.S. Inhibition of oxidative DNA damage, 8-OHdG, and carbonyl contents in smokers treated with antioxidants (vitamin E, vitamin C, β-carotene and red ginseng). Cancer Lett. 1998, 132, 219–227. [Google Scholar] [CrossRef]
- Lopez-Yañez Blanco, A.; Díaz-López, K.M.; Vilchis-Gil, J.; Diaz-Garcia, H.; Gomez-Lopez, J.; Medina-Bravo, P.; Granados-Riveron, J.T.; Gallardo, J.M.; Klünder-Klünder, M.; Sánchez-Urbina, R. Diet and Maternal Obesity Are Associated with Increased Oxidative Stress in Newborns: A Cross-Sectional Study. Nutrients 2022, 14, 746. [Google Scholar] [CrossRef]
- Bandiera, F.C.; Pérez-Stable, E.J.; Atem, F.; Caetano, R.; Vidot, D.C.; Gellman, M.D.; Navas-Nacher, E.L.; Cai, J.; Talavera, G.; Schneiderman, N.; et al. At risk alcohol consumption with smoking by national background: Results from the Hispanic community health study/study of Latinos. Addict. Behav. 2019, 99, 106087. [Google Scholar] [CrossRef]
- Castilla-Peon, M.F.; Bravo, P.G.M.; Sánchez-Urbina, R.; Gallardo-Montoya, J.M.; Soriano-López, L.C.; Cruz, F.M.C. Diabetes and obesity during pregnancy are associated with oxidative stress genotoxicity in newborns. J. Perinat. Med. 2019, 47, 347–353. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline; National Academy of Sciences: Washington, DC, USA, 1998.
- Toescu, V.; Nuttall, S.L.; Martin, U.; Kendall, M.J.; Dunne, F. Oxidative stress and normal pregnancy. Clin. Endocrinol. 2002, 57, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Toboła-Wróbel, K.; Pietryga, M.; Dydowicz, P.; Napierała, M.; Brązert, J.; Florek, E. Association of Oxidative Stress on Pregnancy. Oxid. Med. Cell. Longev. 2020, 2020, 6398520. [Google Scholar] [CrossRef] [PubMed]
- Mistry, H.D.; Williams, P.J. The importance of antioxidant micronutrients in pregnancy. Oxid. Med. Cell. Longev. 2011, 2011, 841749. [Google Scholar] [CrossRef] [PubMed]
- Ebina, S.; Chiba, T.; Ozaki, T.; Kashiwakura, I. Relationship between 8-hydroxydeoxyguanosine levels in placental/umbilical cord blood and maternal/neonatal obstetric factors. Exp. Ther. Med. 2012, 4, 387–390. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stadem, P.S.; Hilgers, M.V.; Bengo, D.; Cusick, S.E.; Ndidde, S.; Slusher, T.M.; Lund, T.C. Markers of oxidative stress in umbilical cord blood from G6PD deficient African newborns. PLoS ONE 2017, 12, e0172980. [Google Scholar] [CrossRef] [PubMed]
- Seven, A.; Güzel, S.; Aslan, M.; Hamuryudan, V. Lipid, protein, DNA oxidation and antioxidant status in rheumatoid arthritis. Clin. Biochem. 2008, 41, 538–543. [Google Scholar] [CrossRef]
- Gallardo, J.M.; Gómez-López, J.; Medina-Bravo, P.; Juárez-Sánchez, F.; Contreras-Ramos, A.; Galicia-Esquivel, M.; Sánchez-Urbina, R.; Klünder-Klünder, M. Maternal obesity increases oxidative stress in the newborn. Obesity 2015, 23, 1650–1654. [Google Scholar] [CrossRef]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003, 17, 1195–1214. [Google Scholar] [CrossRef]
- Al-Aubaidy, H.A.; Jelinek, H.F. Oxidative DNA damage and obesity in type 2 diabetes mellitus. Eur. J. Endocrinol. 2011, 164, 899–904. [Google Scholar] [CrossRef]
- Schulpis, K.H.; Lazaropoulou, C.; Vlachos, G.D.; Partsinevelos, G.A.; Michalakakou, K.; Gavrili, S.; Gounaris, A.; Antsaklis, A.; Papassotiriou, I. Maternal-neonatal 8-hydroxy-deoxyguanosine serum concentrations as an index of DNA oxidation in association with the mode of labour and delivery. Acta Obstet. Gynecol. Scand. 2007, 86, 320–326. [Google Scholar] [CrossRef]
- Fukushima, K.; Murata, M.; Tsukimori, K.; Eisuke, K.; Wake, N. 8-Hydroxy-2-deoxyguanosine staining in placenta is associated with maternal serum uric acid levels and gestational age at diagnosis in pre-eclampsia. Am. J. Hypertens. 2011, 24, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Maccani, J.Z.; Maccani, M.A. Altered placental DNA methylation patterns associated with maternal smoking: Current perspectives. Adv. Genom. Genet. 2015, 2015, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Rossner, P., Jr.; Milcova, A.; Libalova, H.; Novakova, Z.; Topinka, J.; Balascak, I.; Sram, R.J. Biomarkers of exposure to tobacco smoke and environmental pollutants in mothers and their transplacental transfer to the foetus. Part II. Oxidative damage. Mutat. Res. 2009, 669, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Al-Gubory, K.H. Maternal Nutrition, Oxidative Stress and Prenatal Devlopmental Outcomes. In Studies on Women’s Health; Agarwal, A., Aziz, N., Rizk, B., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 1–31. [Google Scholar]
- Boden, G.; Homko, C.; Barrero, C.A.; Stein, T.P.; Chen, X.; Cheung, P.; Fecchio, C.; Koller, S.; Merali, S. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Sci. Transl. Med. 2015, 7, 304re7. [Google Scholar] [CrossRef]
- Fischer-Nielsen, A.; Jeding, I.B.; Loft, S. Radiation-induced formation of 8-hydroxy-2′-deoxyguanosine and its prevention by scavengers. Carcinogenesis 1994, 15, 1609–1612. [Google Scholar] [CrossRef]
- Abu-Shakra, A.; Zeiger, E. Formation of 8-hydroxy-2′-deoxyguanosine following treatment of 2′-deoxyguanosine or DNA by hydrogen peroxide or glutathione. Mutat. Res. 1997, 390, 45–50. [Google Scholar] [CrossRef]
- Block, G.; Wakimoto, P.; Jensen, C.; Mandel, S.; Green, R.R. Validation of a food frequency questionnaire for Hispanics. Prev. Chronic Dis. 2006, 3, A77. [Google Scholar]
- Terminel-Zaragoza, R.; Vega-López, S.; Ulloa-Mercado, G.; Serna-Gutiérrez, A.; Gortáres-Moroyoqui, P.; Díaz, L.; Rentería-Mexía, A. Reproducibility and validity of a food frequency questionnaire to assess cardiovascular health-related food intake among Mexican adolescents. J. Nutr. Sci. 2022, 11, e3. [Google Scholar] [CrossRef]
- Tamae, K.; Kawai, K.; Yamasaki, S.; Kawanami, K.; Ikeda, M.; Takahashi, K.; Miyamoto, T.; Kato, N.; Kasai, H. Effect of age, smoking and other lifestyle factors on urinary 7-methylguanine and 8-hydroxydeoxyguanosine. Cancer Sci. 2009, 100, 715–721. [Google Scholar] [CrossRef]
- Guo, X.; Cui, H.; Zhang, H.; Guan, X.; Zhang, Z.; Jia, C.; Wu, J.; Yang, H.; Qiu, W.; Zhang, C.; et al. Protective Effect of Folic Acid on Oxidative DNA Damage: A Randomized, Double-Blind, and Placebo Controlled Clinical Trial. Medicine 2015, 94, e1872. [Google Scholar] [CrossRef]
- Daube, H.; Scherer, G.; Riedel, K.; Ruppert, T.; Tricker, A.R.; Rosenbaum, P.; Adlkofer, F. DNA adducts in human placenta in relation to tobacco smoke exposure and plasma antioxidant status. J. Cancer Res. Clin. Oncol. 1997, 123, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Politis, C.; Jacobs, R. Salivary 8-hydroxy-2-deoxyguanosine, malondialdehyde, vitamin C, and vitamin E in oral pre-cancer and cancer: Diagnostic value and free radical mechanism of action. Clin. Oral Investig. 2016, 20, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.Y.; Helzlsouer, K.J.; Appel, L.J. The effects of vitamin C and vitamin E on oxidative DNA damage: Results from a randomized controlled trial. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2000, 9, 647–652. [Google Scholar]
- Tarng, D.-C.; Liu, T.-Y.; Huang, T.-P. Protective effect of vitamin C on 8-hydroxy-2′-deoxyguanosine level in peripheral blood lymphocytes of chronic hemodialysis patients. Kidney Int. 2004, 66, 820–831. [Google Scholar] [CrossRef]
- Murata, M.; Kawanishi, S. Oxidative DNA Damage by Vitamin A and Its Derivative via Superoxide Generation. J. Biol. Chem. 2000, 275, 2003–2008. [Google Scholar] [CrossRef]
- Balmer, J.E.; Blomhoff, R. Gene expression regulation by retinoic acid. J. Lipid Res. 2002, 43, 1773–1808. [Google Scholar] [CrossRef]
- Olsen, T.; Blomhoff, R. Retinol, Retinoic Acid, and Retinol-Binding Protein 4 are Differentially Associated with Cardiovascular Disease, Type 2 Diabetes, and Obesity: An Overview of Human Studies. Adv. Nutr. 2020, 11, 644–666. [Google Scholar] [CrossRef]
- Graham, T.E.; Yang, Q.; Blüher, M.; Hammarstedt, A.; Ciaraldi, T.P.; Henry, R.R.; Wason, C.J.; Oberbach, A.; Jansson, P.-A.; Smith, U.; et al. Retinol-Binding Protein 4 and Insulin Resistance in Lean, Obese, and Diabetic Subjects. N. Engl. J. Med. 2006, 354, 2552–2563. [Google Scholar] [CrossRef]
- Padayatty, S.J.; Levine, M. Antioxidant supplements and cardiovascular disease in men. JAMA 2009, 301, 1336. [Google Scholar] [CrossRef]
- Coulter, I.D.; Hardy, M.L.; Morton, S.C.; Hilton, L.G.; Tu, W.; Valentine, D.; Shekelle, P.G. Antioxidants Vitamin C and Vitamin E for the Prevention and Treatment of Cancer. J. Gen. Intern. Med. 2006, 21, 735–744. [Google Scholar] [CrossRef]
- Deicher, R.; Hörl, W.H. Vitamin C in chronic kidney disease and hemodialysis patients. Kidney Blood Press. Res. 2003, 26, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, Y.; Khademvatani, K.; Rahimi, B.; Khoshfetrat, M.; Arjmand, N.; Seyyed-Mohammadzad, M.-H. Short-Term High-Dose Vitamin E to Prevent Contrast Medium-Induced Acute Kidney Injury in Patients with Chronic Kidney Disease Undergoing Elective Coronary Angiography: A Randomized Placebo-Controlled Trial. J. Am. Heart Assoc. 2016, 5, e002919. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Diaz, D.F.; Lopez-Legarrea, P.; Quintero, P.; Martinez, J.A. Vitamin C in the treatment and/or prevention of obesity. J. Nutr. Sci. Vitaminol. 2014, 60, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Hendarto, A.; Alhadar, A.K.; Sjarif, D.R. The Effect of Vitamin E Supplementation on Lipid Profiles and Adiponectin Levels in Obese Adolescents: A Randomized Controlled Trial. Acta Med. Indones. 2019, 51, 110–116. [Google Scholar]
- Garcia-Bailo, B.; El-Sohemy, A.; Haddad, P.S.; Arora, P.; Benzaied, F.; Karmali, M.; Badawi, A. Vitamins D, C, and E in the prevention of type 2 diabetes mellitus: Modulation of inflammation and oxidative stress. Biol. Targets Ther. 2011, 5, 7–19. [Google Scholar] [CrossRef]
- Ismail, N.M.; Harun, A.; Yusof, A.A.; Zaiton, Z.; Marzuki, A. Role of vitamin e on oxidative stress in smokers. Malays. J. Med. Sci. 2002, 9, 34–42. [Google Scholar]
- Kaźmierczak-Barańska, J.; Boguszewska, K.; Adamus-Grabicka, A.; Karwowski, B.T. Two Faces of Vitamin C-Antioxidative and Pro-Oxidative Agent. Nutrients 2020, 12, 1501. [Google Scholar] [CrossRef]
- Podmore, I.D.; Griffiths, H.R.; Herbert, K.E.; Mistry, N.; Mistry, P.; Lunec, J. Vitamin C exhibits pro-oxidant properties. Nature 1998, 392, 559. [Google Scholar] [CrossRef]
- Pearson, P.; Lewis, S.A.; Britton, J.; Young, I.S.; Fogarty, A. The pro-oxidant activity of high-dose vitamin E supplements in vivo. BioDrugs Clin. Immunother. Biopharm. Gene Ther. 2006, 20, 271–273. [Google Scholar] [CrossRef]
- Weinberg, R.B.; VanderWerken, B.S.; Anderson, R.A.; Stegner, J.E.; Thomas, M.J. Pro-Oxidant Effect of Vitamin E in Cigarette Smokers Consuming a High Polyunsaturated Fat Diet. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1029–1033. [Google Scholar] [CrossRef]
- Rendón-Ramírez, A.; Maldonado-Vega, M.; Quintanar-Escorza, M.; Hernández, G.; Arévalo, B.; Zentella-Dehesa, A.; Calderón-Salinas, J.-V. Effect of vitamin E and C supplementation on oxidative damage and total antioxidant capacity in lead-exposed workers. Environ. Toxicol. Pharmacol. 2014, 37, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Prajapat, R.; Bhattacharya, I. Effect of Vitamin E and C Supplementation on Oxidative Stress in Diabetic Patients. Adv. Diabetes Metab. 2017, 5, 39–42. [Google Scholar] [CrossRef]
- Brown, K.M.; Morrice, P.C.; Duthie, G.G. Erythrocyte vitamin E and plasma ascorbate concentrations in relation to erythrocyte peroxidation in smokers and nonsmokers: Dose response to vitamin E supplementation. Am. J. Clin. Nutr. 1997, 65, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Bader, N.; Bosy-Westphal, A.; Koch, A.; Mueller, M.J. Influence of vitamin C and E supplementation on oxidative stress induced by hyperbaric oxygen in healthy men. Ann. Nutr. Metab. 2006, 50, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Bader, N.; Bosy-Westphal, A.; Koch, A.; Rimbach, G.; Weimann, A.; Poulsen, H.E.; Müller, M.J. Effect of hyperbaric oxygen and vitamin C and E supplementation on biomarkers of oxidative stress in healthy men. Br. J. Nutr. 2007, 98, 826–833. [Google Scholar] [CrossRef]
- Lutsenko, E.A.; Cárcamo, J.M.; Golde, D.W. Vitamin C prevents DNA mutation induced by oxidative stress. J. Biol. Chem. 2002, 277, 16895–16899. [Google Scholar] [CrossRef]
- Guarnieri, S.; Loft, S.; Riso, P.; Porrini, M.; Risom, L.; Poulsen, H.E.; Dragsted, L.O.; Møller, P. DNA repair phenotype and dietary antioxidant supplementation. Br. J. Nutr. 2008, 99, 1018–1024. [Google Scholar] [CrossRef]
- Bobo, J.K.; Husten, C. Sociocultural influences on smoking and drinking. Alcohol Res. Health J. Natl. Inst. Alcohol Abus. Alcohol. 2000, 24, 225–232. [Google Scholar]
- McEvoy, C.T.; Spindel, E.R. Pulmonary Effects of Maternal Smoking on the Fetus and Child: Effects on Lung Development, Respiratory Morbidities, and Life Long Lung Health. Paediatr. Respir. Rev. 2017, 21, 27–33. [Google Scholar] [CrossRef]
- Corrales-Gutierrez, I.; Baena-Antequera, F.; Gomez-Baya, D.; Leon-Larios, F.; Mendoza, R. Relationship between Eating Habits, Physical Activity and Tobacco and Alcohol Use in Pregnant Women: Sociodemographic Inequalities. Nutrients 2022, 14, 557. [Google Scholar] [CrossRef]
- Vadhanam, M.V.; Thaiparambil, J.; Gairola, C.G.; Gupta, R.C. Oxidative DNA Adducts Detected in Vitro from Redox Activity of Cigarette Smoke Constituents. Chem. Res. Toxicol. 2012, 25, 2499–2504. [Google Scholar] [CrossRef] [PubMed]
- Pryor, W.A. Cigarette smoke radicals and the role of free radicals in chemical carcinogenicity. Environ. Health Perspect. 1997, 105 (Suppl. S4), 875–882. [Google Scholar] [CrossRef] [PubMed]
- Cantin, A.M. Cellular Response to Cigarette Smoke and Oxidants. Proc. Am. Thorac. Soc. 2010, 7, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharm. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Lai, T.; Li, M.; Zhou, H.; Lv, D.; Deng, Z.; Ying, S.; Chen, Z.; Li, W.; Shen, H. Smoking-promoted oxidative DNA damage response is highly correlated to lung carcinogenesis. Oncotarget 2016, 7, 18919–18926. [Google Scholar] [CrossRef] [PubMed]
- Jha, P. Avoidable global cancer deaths and total deaths from smoking. Nat. Rev. Cancer 2009, 9, 655–664. [Google Scholar] [CrossRef]
- Nabet, C.; Ancel, P.-Y.; Burguet, A.; Kaminski, M. Smoking during pregnancy and preterm birth according to obstetric history: French national perinatal surveys. Paediatr. Perinat. Epidemiol. 2005, 19, 88–96. [Google Scholar] [CrossRef]
- Kyrklund-Blomberg, N.B.; Granath, F.; Cnattingius, S. Maternal smoking and causes of very preterm birth. Acta Obstet. Gynecol. Scand. 2005, 84, 572–577. [Google Scholar] [CrossRef]
- Steyn, K.; de Wet, T.; Saloojee, Y.; Nel, H.; Yach, D. The influence of maternal cigarette smoking, snuff use and passive smoking on pregnancy outcomes: The Birth to Ten Study. Paediatr. Perinat. Epidemiol. 2006, 20, 90–99. [Google Scholar] [CrossRef]
- Alverson, C.J.; Strickland, M.J.; Gilboa, S.M.; Correa, A. Maternal smoking and congenital heart defects in the Baltimore-Washington Infant Study. Pediatrics 2011, 127, e647–e653. [Google Scholar] [CrossRef]
- García-Villarino, M.; Fernández-Iglesias, R. Prenatal Exposure to Cigarette Smoke and Anogenital Distance at 4 Years in the INMA-Asturias Cohort. Int. J. Environ. Res. Public Health 2021, 18, 4774. [Google Scholar] [CrossRef] [PubMed]
- Zlotkowska, R.; Zejda, J.E. Fetal and postnatal exposure to tobacco smoke and respiratory health in children. Eur. J. Epidemiol. 2005, 20, 719–727. [Google Scholar] [CrossRef] [PubMed]
- Lannerö, E.; Wickman, M.; Pershagen, G.; Nordvall, L. Maternal smoking during pregnancy increases the risk of recurrent wheezing during the first years of life (BAMSE). Respir. Res. 2006, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Bjerg, A.; Hedman, L.; Perzanowski, M.; Lundbäck, B.; Rönmark, E. A strong synergism of low birth weight and prenatal smoking on asthma in schoolchildren. Pediatrics 2011, 127, e905–e912. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.; Wadsworth, J. Maternal smoking during pregnancy and lower respiratory tract illness in early life. Arch. Dis. Child. 1987, 62, 786–791. [Google Scholar] [CrossRef]
- Ekblad, M.; Lehtonen, L.; Korkeila, J.; Gissler, M. Maternal Smoking During Pregnancy and the Risk of Psychiatric Morbidity in Singleton Sibling Pairs. Nicotine Tob. Res. Off. J. Soc. Res. Nicotine Tob. 2017, 19, 597–604. [Google Scholar] [CrossRef]
- Sourander, A.; Sucksdorff, M.; Chudal, R.; Surcel, H.M.; Hinkka-Yli-Salomäki, S.; Gyllenberg, D.; Cheslack-Postava, K.; Brown, A.S. Prenatal Cotinine Levels and ADHD Among Offspring. Pediatrics 2019, 143, e20183144. [Google Scholar] [CrossRef]
- Kovess, V.; Keyes, K.M.; Hamilton, A.; Pez, O.; Bitfoi, A.; Koç, C.; Goelitz, D.; Kuijpers, R.; Lesinskiene, S.; Mihova, Z.; et al. Maternal smoking and offspring inattention and hyperactivity: Results from a cross-national European survey. Eur. Child Adolesc. Psychiatry 2015, 24, 919–929. [Google Scholar] [CrossRef]
- Brannigan, R.; Tanskanen, A.; Huttunen, M.O.; Cannon, M.; Leacy, F.P.; Clarke, M.C. Maternal smoking during pregnancy and offspring psychiatric disorder: A longitudinal birth cohort study. Soc. Psychiatry Psychiatr. Epidemiol. 2022, 57, 595–600. [Google Scholar] [CrossRef]
- Krall, E.A.; Dawson-Hughes, B. Smoking increases bone loss and decreases intestinal calcium absorption. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 1999, 14, 215–220. [Google Scholar] [CrossRef]
- Linnell, J.C.; Smith, A.D.; Smith, C.L.; Wilson, J.; Matthews, D.M. Effects of smoking on metabolism and excretion of vitamin B12. Br. Med. J. 1968, 2, 215–216. [Google Scholar] [CrossRef] [PubMed]
- Brot, C.; Jorgensen, N.R.; Sorensen, O.H. The influence of smoking on vitamin D status and calcium metabolism. Eur. J. Clin. Nutr. 1999, 53, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Sealey, W.M.; Teague, A.M.; Stratton, S.L.; Mock, D.M. Smoking accelerates biotin catabolism in women. Am. J. Clin. Nutr. 2004, 80, 932–935. [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.S.; Ramakrishnan, R.; Montine, T.J.; Bray, T.M.; Traber, M.G. α-Tocopherol disappearance is faster in cigarette smokers and is inversely related to their ascorbic acid status. Am. J. Clin. Nutr. 2005, 81, 95–103. [Google Scholar] [CrossRef] [PubMed]
Mothers | Mothers 8-OHdG | p-Value | Newborns 8-OHdG | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tertile 1 Mean ± SD | Tertile 2 Mean ± SD | Tertile 3 Mean ± SD | a | b | c | Tertile 1 Mean ± SD | Tertile 2 Mean ± SD | Tertile 3 Mean ± SD | a | b | c | |
Age (years) § | 23.1 ± 6.2 | 24.7 ± 4.9 | 24.6 ± 4.5 | 0.250 | 0.301 | 1 | 23.0 ± 5.6 | 25.4 ± 5.8 | 24.0 ± 4.0 | 0.164 | 0.919 | 1 |
Pregestational weight (kg) § | 61.0 ± 12.1 | 66.1 ± 10.5 | 64.4 ± 10.3 | 0.167 | 0.595 | 1 | 61.5 ± 11.2 | 67.3 ± 10.8 | 62.8 ± 10.7 | 0.085 | 1 | 0.392 |
Pregestational BMI (kg/m2) § | 24.9 ± 4.4 | 27.2 ± 3.9 | 26.1 ± 3.5 | 0.156 | 0.950 | 1 | 25.8 ± 4.4 | 27.1 ± 4.2 | 25.4 ± 3.4 | 0.929 | 1 | 0.432 |
Normal-weight (n, %) §§ | 17 (56.7) | 8 (26.7) | 14 (46.7) | 0.035 | 0.605 | 0.179 | 16 (53.3) | 10 (33.3) | 13 (43.3) | 0.192 | 0.605 | 0.595 |
Overweight (n, %) §§ | 7 (23.3) | 13 (43.3) | 10 (33.3) | 0.170 | 0.567 | 0.595 | 6 (20.0) | 11 (36.7) | 13 (43.3) | 0.251 | 0.094 | 0.792 |
Obese (n, %) §§ | 6 (20.0) | 9 (30.0) | 6 (20.0) | 0.552 | 1 | 0.552 | 8 (26.7) | 9 (30.0) | 4 (13.3) | 1 | 0.333 | 0.209 |
Smoking (n, %) | 6 (20.0) | 3 (10.0) | 0 | - | - | - | 8 (26.7) | 1 (3.3) | 0 | - | - | - |
Multivitamin suppl. (n, %) §§§ | 26 (86.7) | 28 (93.3) | 28 (93.3) | 0.667 | 0.667 | 1 | 27 (90.0) | 28 (93.3) | 27 (90.0) | 1 | 1 | 1 |
Newborns | ||||||||||||
Gestational age (weeks) § | 38.8 ± 1.4 | 38.5 ± 1.3 | 38.8 ± 1.1 | 0.808 | 1 | 1 | 38.8 ± 1.3 | 38.2 ± 1.4 | 39.1 ± 0.9 | 0.450 | 0.709 | 0.026 |
Weight (g) § | 3286 ± 424 | 3189 ± 479 | 3088 ± 389 | 1 | 0.468 | 1 | 3226 ± 448 | 3157 ± 415 | 3180 ± 452 | 1 | 1 | 1 |
Height (cm) § | 49.8 ± 2.4 | 49.3 ± 2.8 | 49.3 ± 1.7 | 1 | 1 | 1 | 49.3 ± 2.9 | 49.4 ± 2.2 | 49.6 ± 1.6 | 1 | 1 | 1 |
Sex (male, n, %) §§ | 18 (60.0) | 9 (30) | 16 (53.3) | 0.036 | 0.794 | 0.115 | 14 (46.7) | 14 (46.7) | 15 (50.0) | 1 | 1 | 1 |
Caesarean delivery (n, %) §§ | 6 (20.0) | 5 (16.7) | 13 (43.3) | 1 | 0.094 | 0.047 | 11 (36.7) | 3 (10.0) | 10 (33.3) | 0.030 | 1 | 0.057 |
Mothers 8-OHdG Tertiles | ||||||
---|---|---|---|---|---|---|
Tertile 1 Median (p25, p75) | Tertile 2 Median (p25, p75) | Tertile 3 Median (p25, p75) | p-Value § | |||
a | b | c | ||||
Calories (kcal/d) | 2396 (1712, 3283) | 1754 (1551, 2345) | 1645 (1429, 1867) | 0.202 | 0.002 | 0.399 |
Carbohydrates (g/d) % kcal/d | 332.4 (252.2, 478.7) | 286.4 (249.7, 366.4) | 266.3 (216.9, 297.0) | 0.633 | 0.021 | 0.447 |
56.9 (53.3, 59.7) | 60.3 (55.9, 63.6) | 61.0 (54.5, 63.9) | 0.053 | 0.086 | 1 | |
Lipids (g/d) % kcal/d | 69.9 (53.9, 102.6) | 48.6 (43.4, 69.5) | 45.1 (39.0, 46.9) | 0.080 | <0.001 | 0.238 |
26.1 (24.4, 27.8) | 24.1 (22.3, 27.4) | 23.5 (21.6, 26.9) | 0.233 | 0.035 | 1 | |
Proteins (g/d) % kcal/d | 102.7 (70.9, 150.6) | 64.2 (57.6, 94.1) | 60.5 (55.8, 83.7) | 0.053 | 0.002 | 0.990 |
17.0 (15.0, 18.1) | 15.9 (13.8, 16.9) | 15.7 (13.7, 18.6) | 0.076 | 0.933 | 0.666 | |
Vitamin A (ER/d) % adequacy | 859.1 (545.7, 1224.8) | 521.6 (428.4, 735.5) | 489.3 (364.9, 603.7) | 0.102 | 0.006 | 1 |
171.8 (109.1, 244.9) | 104.3 (85.7, 147.1) | 97.9 (72.9, 120.7) | 0.102 | 0.006 | 1 | |
Vitamin C (mg/d) % adequacy | 138.2 (113.4, 222.7) | 198.3 (147.9, 226.2) | 157.0 (137.2, 172.8) | 0.111 | 1 | 0.195 |
230.2 (189.1, 371.2) | 330.6 (246.6, 377.0) | 261.6 (228.5, 288.0) | 0.111 | 1 | 0.195 | |
Vitamin E (mg/d) % adequacy | 4.26 (3.31, 5.13) | 4.20 (3.51, 4.96) | 3.69 (3.03, 4.39) | 1 | 0.296 | 0.362 |
35.4 (27.6, 42.7) | 35.0 (29.3, 41.3) | 30.8 (25.3, 36.6) | 1 | 0.296 | 0.362 |
Newborns 8-OHdG Tertile | ||||||
---|---|---|---|---|---|---|
Tertile 1 Median (p25, p75) | Tertile 2 Median (p25, p75) | Tertile 3 Median (p25, p75) | p-Value § | |||
a | b | c | ||||
Calories (kcal/d) | 2446 (1787, 3283) | 1772 (1539, 2344) | 1616 (1334, 1816) | 0.068 | <0.001 | 0.284 |
Carbohydrates (g/d) % kcal/d | 372.4 (269.0, 478.7) | 281.9 (245.2, 352.7) | 256.3 (201.1, 296.2) | 0.076 | <0.001 | 0.406 |
57.4 (54.4, 60.2) | 59.9 (56.9, 63.6) | 60.6 (54.4, 62.6) | 0.406 | 0.650 | 1 | |
Lipids (g/d) % kcal/d | 73.3 (52.3, 102.8) | 51.43 (42.24, 69.35) | 44.85 (41.10, 47.22) | 0.0912 | <0.001 | 0.273 |
25.4 (23.3, 27.3) | 23.79 (22.28, 27.50) | 24.28 (22.96, 28.86) | 0.754 | 1 | 1 | |
Proteins (g/d) % kcal/d | 124.2 (77.2, 157.9) | 68.3 (58.4, 98.9) | 61.0 (56.3, 72.7) | 0.034 | <0.001 | 0.455 |
17.1 (14.9, 18.1) | 15.9 (13.8, 17.7) | 15.1 (13.8, 17.4) | 0.334 | 0.243 | 1 | |
Vitamin A (ER/d) % adequacy | 853.3 (545.1, 1191) | 590.4 (479.0, 964.4) | 428.5 (364.9, 539.0) | 0.499 | <0.001 | 0.015 |
170.6 (109.0, 238.2) | 118.0 (95.8, 192.8) | 85.7 (72.9, 107.8) | 0.499 | <0.001 | 0.015 | |
Vitamin C (mg/d) % adequacy | 202.3 (124.6, 248.7) | 161.8 (132.0, 226.2) | 154.0 (129.6, 172.2) | 1 | 0.167 | 0.576 |
337.2 (207.7, 414.5) | 269.8 (220.0, 377.0) | 256.7 (216.0, 287.0) | 1 | 0.167 | 0.576 | |
Vitamin E (mg/d) % adequacy | 4.71 (3.65, 5.43) | 3.87 (3.33, 4.77) | 3.56 (2.90, 4.32) | 0.179 | 0.005 | 0.655 |
39.3 (30.4, 45.2) | 32.3 (27.7, 39.8) | 29.6 (24.2, 35.9) | 0.179 | 0.005 | 0.655 |
Parameter | Mothers 8-OHdG (ng/mL) β (95% CI) a | p-Value | Newborns 8-OHdG (ng/mL) β (95% CI) a | p-Value |
---|---|---|---|---|
Pregestational BMI | ||||
Normal-weight | Reference | Reference | ||
Overweight | −0.002 (−0.64 to 0.63) | 0.995 | 0.048 (−0.56 to 0.66) | 0.874 |
Obesity | −1.04 (−1.78 to −0.29) | 0.007 | −0.977 (−1.69 to −0.26) | 0.008 |
Vitamin A (ER/d) | ||||
Tertile 1 (91 to 475) | Reference | Reference | ||
Tertile 2 (485 to 745) | −0.123 (−0.90 to 0.66) | 0.753 | −1.15 (−1.90 to −0.41) | 0.003 |
Tertile 3 (757 to 4028) | −1.26 (−2.28 to −0.24) | 0.016 | −2.17 (−3.15 to −1.19) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz-Garcia, H.; Vilchis-Gil, J.; Garcia-Roca, P.; Klünder-Klünder, M.; Gomez-Lopez, J.; Granados-Riveron, J.T.; Sanchez-Urbina, R. Dietary and Antioxidant Vitamins Limit the DNA Damage Mediated by Oxidative Stress in the Mother–Newborn Binomial. Life 2022, 12, 1012. https://doi.org/10.3390/life12071012
Diaz-Garcia H, Vilchis-Gil J, Garcia-Roca P, Klünder-Klünder M, Gomez-Lopez J, Granados-Riveron JT, Sanchez-Urbina R. Dietary and Antioxidant Vitamins Limit the DNA Damage Mediated by Oxidative Stress in the Mother–Newborn Binomial. Life. 2022; 12(7):1012. https://doi.org/10.3390/life12071012
Chicago/Turabian StyleDiaz-Garcia, Hector, Jenny Vilchis-Gil, Pilar Garcia-Roca, Miguel Klünder-Klünder, Jacqueline Gomez-Lopez, Javier T. Granados-Riveron, and Rocio Sanchez-Urbina. 2022. "Dietary and Antioxidant Vitamins Limit the DNA Damage Mediated by Oxidative Stress in the Mother–Newborn Binomial" Life 12, no. 7: 1012. https://doi.org/10.3390/life12071012
APA StyleDiaz-Garcia, H., Vilchis-Gil, J., Garcia-Roca, P., Klünder-Klünder, M., Gomez-Lopez, J., Granados-Riveron, J. T., & Sanchez-Urbina, R. (2022). Dietary and Antioxidant Vitamins Limit the DNA Damage Mediated by Oxidative Stress in the Mother–Newborn Binomial. Life, 12(7), 1012. https://doi.org/10.3390/life12071012