Microvasculopathy Evaluated by Dual-Energy Computed Tomography in Patients with Chronic Thromboembolic Pulmonary Hypertension and Pulmonary Arterial Hypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. DE-CT Imaging Protocol
2.2. Evaluation of Subpleural Perfusion and Lung PBV Score on DE-CT
2.3. Statistical Analysis
3. Results
3.1. Lung PBV Score and Pulmonary Vascular Resistance
3.2. Hemodynamic Results of CTEPH According to Subpleural Perfusion on DE-CT
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M. Pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: Pathophysiology. Eur. Respir. Rev. 2010, 19, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H. Group 4 Pulmonary Hypertension: Chronic Thromboembolic Pulmonary Hypertension: Epidemiology, Pathophysiology, and Treatment. Cardiol. Clin. 2016, 34, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Torbicki, A.; Dorfmüller, P.; Kim, N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev. 2017, 26, 160112. [Google Scholar] [CrossRef] [PubMed]
- Delcroix, M.; Torbicki, A.; Gopalan, D.; Sitbon, O.; Klok, F.A.; Lang, I.; Jenkins, D.; Kim, N.H.; Humbert, M.; Jais, X.; et al. ERS Statement on Chronic Thromboembolic Pulmonary Hypertension. Eur. Respir. J. 2021, 57, 2002828. [Google Scholar] [CrossRef]
- Tanabe, N.; Sugiura, T.; Jujo, T.; Sakao, S.; Kasahara, Y.; Kato, H.; Masuda, M.; Tatsumi, K. Subpleural perfusion as a predictor for a poor surgical outcome in chronic thromboembolic pulmonary hypertension. Chest 2012, 141, 929–934. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Brenot, P.; Jais, X.; Garcia, C.; Weatherald, J.; Planche, O.; Fadel, E.; Humbert, M.; Simonneau, G. Poor Subpleural Perfusion Predicts Failure After Balloon Pulmonary Angioplasty for Nonoperable Chronic Thromboembolic Pulmonary Hypertension. Chest 2018, 154, 521–531. [Google Scholar] [CrossRef]
- Nakazawa, T.; Watanabe, Y.; Hori, Y.; Kiso, K.; Higashi, M.; Itoh, T.; Naito, H. Lung perfused blood volume images with dual-energy computed tomography for chronic thromboembolic pulmonary hypertension: Correlation to scintigraphy with single-photon emission computed tomography. J. Comput. Assist. Tomogr. 2011, 35, 590–595. [Google Scholar] [CrossRef]
- Yoshizumi, T. Dual Energy CT in Clinical Practice. Med. Phys. 2011, 38, 6346. [Google Scholar] [CrossRef]
- Fuld, M.K.; Halaweish, A.F.; Haynes, S.E.; Divekar, A.A.; Guo, J.; Hoffman, E.A. Pulmonary Perfused blood volume with dual-energy CT as surrogate for pulmonary perfusion assessed with dynamic multidetector CT. Radiology 2013, 267, 747–756. [Google Scholar] [CrossRef]
- Takagi, H.; Ota, H.; Sugimura, K.; Otani, K.; Tominaga, J.; Aoki, T.; Tatebe, S.; Miura, M.; Yamamoto, S.; Sato, H.; et al. Dual-energy CT to estimate clinical severity of chronic thromboembolic pulmonary hypertension: Comparison with invasive right heart catheterization. Eur. J. Radiol. 2016, 85, 1574–1580. [Google Scholar] [CrossRef] [PubMed]
- Onishi, H.; Taniguchi, Y.; Matsuoka, Y.; Yanaka, K.-I.; Izawa, Y.; Tsuboi, Y.; Mori, S.; Kono, A.; Nakayama, K.; Emoto, N.; et al. Evaluation of microvasculopathy using dual-energy computed tomography in patients with chronic thromboembolic pulmonary hypertension. Pulm. Circ. 2021, 11, 2045894020983162. [Google Scholar] [CrossRef] [PubMed]
- Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Respir. J. 2016, 37, 67–119. [Google Scholar]
- Kim, N.H.; Delcroix, M.; Jais, X.; Madani, M.M.; Matsubara, H.; Mayer, E.; Ogo, T.; Tapson, V.F.; Ghofrani, H.-A.; Jenkins, D.P. Chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801915. [Google Scholar] [CrossRef]
- Tunariu, N.; Gibbs, S.J.; Win, Z.; Gin-Sing, W.; Graham, A.; Gishen, P.; Al-Nahhas, A. Ventilation-perfusion scintigraphy is more sensitive than multidetector ctpa in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J. Nucl. Med. 2007, 48, 680–684. [Google Scholar] [CrossRef] [PubMed]
- Johns, C.; Swift, A.J.; Rajaram, S.; Hughes, P.; Capener, D.J.; Kiely, D.G.; Wild, J.M. Lung perfusion: MRI vs. SPECT for screening in suspected chronic thromboembolic pulmonary hypertension. J. Magn. Reson. Imaging 2017, 46, 1693–1697. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, S.; Swift, A.J.; Telfer, A.; Hurdman, J.; Marshall, H.; Lorenz, E.; Capener, D.; Davies, C.; Hill, C.; Elliot, C.; et al. 3D contrast-enhanced lung perfusion MRI is an effective screening tool for chronic thromboembolic pulmonary hypertension: Results from the ASPIRE Registry. Thorax 2013, 68, 677–678. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Zhou, M.; Liu, D.; Long, X.; Guo, T.; Kong, X. Diagnostic accuracy of computed tomography for chronic thromboembolic pulmonary hypertension: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0126985. [Google Scholar] [CrossRef]
- Masy, M.; Giordano, J.; Petyt, G.; Hossein-Foucher, C.; Duhamel, A.; Kyheng, M.; De Groote, P.; Fertin, M.; Lamblin, N.; Bervar, J.-F. Dual-energy CT (DECT) lung perfusion in pulmonary hypertension: Concordance rate with V/Q scintigraphy in diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). Eur. Radiol. 2018, 28, 5100–5110. [Google Scholar] [CrossRef]
- Dournes, G.; Verdier, D.; Montaudon, M.; Bullier, E.; Rivière, A.; Dromer, C.; Picard, F.; Billes, M.-A.; Corneloup, O.; Laurent, F.; et al. Dual-energy CT perfusion and angiography in chronic thromboembolic pulmonary hypertension: Diagnostic accuracy and concordance with radionuclide scintigraphy. Eur. Radiol. 2014, 24, 42–51. [Google Scholar] [CrossRef]
- Moser, K.M.; Bloor, C.M. Pulmonary vascular lesions occurring in patients with chronic major vessel thromboembolic pulmonary hypertension. Chest 1993, 103, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Dorfmüller, P.; Günther, S.; Ghigna, M.-R.; De Montpréville, V.T.; Boulate, D.; Paul, J.-F.; Jais, X.; Decante, B.; Simonneau, G.; Dartevelle, P.; et al. Microvascular disease in chronic thromboembolic pulmonary hypertension: A role for pulmonary veins and systemic vasculature. Eur. Respir. J. 2014, 44, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Azarian, R.; Wartski, M.; A Collignon, M.; Parent, F.; Hervé, P.; Sors, H.; Simonneau, G. Lung perfusion scans and hemodynamics in acute and chronic pulmonary embolism. J. Nucl. Med. 1997, 38, 980–983. [Google Scholar] [PubMed]
- Lau, E.M.; Manes, A.; Celermajer, D.S.; Galiè, N. Early detection of pulmonary vascular disease in pulmonary arterial hypertension: Time to move forward. Eur. Hear. J. 2011, 32, 2489–2498. [Google Scholar] [CrossRef]
- Boulate, D.; Perros, F.; Dorfmüller, P.; Arthur-Ataam, J.; Guihaire, J.; Lamrani, L.; Decante, B.; Humbert, M.; Eddahibi, S.; Dartevelle, P.; et al. Pulmonary microvascular lesions regress in reperfused chronic thromboembolic pulmonary hypertension. J. Hear. Lung Transplant. 2015, 34, 457–467. [Google Scholar] [CrossRef]
- Kikuchi, H.; Goda, A.; Takeuchi, K.; Inami, T.; Kohno, T.; Sakata, K.; Soejima, K.; Satoh, T. Exercise intolerance in chronic thromboembolic pulmonary hypertension after pulmonary angioplasty. Eur. Respir. J. 2020, 56, 1901982. [Google Scholar] [CrossRef]
- Nakade, T.; Adachi, H.; Murata, M.; Oshima, S. Characteristics of patients with a relatively greater minimum VE/VCO(2) against peak VO(2)% and impaired exercise tolerance. Eur. J. Appl. Physiol. 2018, 118, 1547–1553. [Google Scholar] [CrossRef]
- Suda, R.; Tanabe, N.; Ishida, K.; Kato, F.; Urushibara, T.; Sekine, A.; Nishimura, R.; Jujo, T.; Sugiura, T.; Shigeta, A.; et al. Prognostic and pathophysiological marker for patients with chronic thromboembolic pulmonary hypertension: Usefulness of diffusing capacity for carbon monoxide at diagnosis. Respirology 2017, 22, 179–186. [Google Scholar] [CrossRef]
Variable | PAH (n = 23) | CTEPH (n = 113) | p Value |
---|---|---|---|
Baseline characteristics | |||
Age (years) | 68 ± 14 | 70 ± 13 | 0.450 |
Male (n, %) | 10 (43) | 27 (24) | 0.054 |
NYHA FC (I/II/III/IV) (%) | 4/39/53/4 | 1/20/72/7 | 0.128 |
BNP (pg/mL) | 170 [210] | 263 [204] | 0.208 |
DE-CT parameters | |||
Poor subpleural perfusion (n, %) | 1 (4%) | 58 (51%) | <0.001 |
Lung PBV score (Hounsfield Unit) | 21.5 ± 6.51 | 24.0 ± 6.5 | 0.188 |
Baseline hemodynamics | |||
Mean RAP (mmHg) | 4.0 ± 3.3 | 5.0 ± 3.6 | 0.963 |
Systolic PAP (mmHg) | 59 ± 13.2 | 63 ± 18.7 | 0.071 |
Diastolic PAP (mmHg) | 25 ± 7.5 | 22 ± 7.8 | 0.138 |
Mean PAP (mmHg) | 38 ± 8.3 | 37 ± 10.9 | 0.826 |
PAWP (mmHg) | 8.0 ± 3.8 | 8.0 ± 3.8 | 0.826 |
Cardiac output (L/min) | 3.16 ± 0.76 | 3.54 ± 2.22 | <0.001 |
Cardiac index (L/min/m2) | 2.12 ± 0.43 | 2.06 ± 0.78 | 0.216 |
PVR (dynes-sec/cm5) | 703 ± 413 | 564 ± 395 | 0.207 |
Exercise capacity | |||
6MWD (m) | 300 ± 116 | 318 ± 97 | 0.416 |
Peak VO2 in CPET (mL/min/kg) | 13 ± 5.2 | 12.4 ± 4.1 | 0.526 |
VE/VCO2 slope in CPET | 37.3 ± 14.2 | 39.1 ± 11.5 | 0.697 |
Lung function test | |||
%VC (%) | 89.6 ± 20.0 | 90.35 ± 17.3 | 0.691 |
FEV 1.0% (%) | 84.9 ± 17.3 | 85.4 ± 18.7 | 0.325 |
%DLCO/VA (%) | 39.8 ± 22.0 | 70.1 ± 17.5 | <0.001 |
Variable | Poorly Perfused n = 58 | Normally Perfused n = 55 | p Value |
---|---|---|---|
Baseline characteristics | |||
Age (years) | 70 ± 12 | 71 ± 13 | 0.700 |
Male (n, %) | 15 (26%) | 12 (22%) | 0.663 |
NYHA FC (I/II/III/IV) (%) | 0/17/72/10 | 2/24/71/4 | 0.334 |
Baseline hemodynamics | |||
Mean RAP (mmHg) | 4.0 ± 3.9 | 5.0 ± 3.3 | 0.835 |
Systolic PAP (mmHg) | 70.0 ± 16.8 | 60.0 ± 19.6 | 0.018 |
Diastolic PAP (mmHg) | 25.2 ± 7.7 | 20.0 ± 7.7 | 0.032 |
Mean PAP (mmHg) | 39.2 ± 10.2 | 34.1 ± 11.1 | 0.052 |
PAWP (mmHg) | 8.3 ± 3.5 | 8.0 ± 4.1 | 0.191 |
Cardiac output (L/min) | 3.86 ± 1.93 | 3.20 ± 2.37 | 0.508 |
Cardiac index (L/min/m2) | 1.89 ± 0.78 | 2.27 ± 0.73 | 0.023 |
PVR (dynes-sec/cm5) | 768 ± 445 | 463 ± 284 | <0.001 |
SvO2 (%) | 60.3 ± 8.2 | 64.9 ± 7.4 | 0.003 |
Exercise capacity | |||
6MWD (m) | 305 ± 97 | 355 ± 94 | 0.097 |
Peak VO2 in CPET (mL/min/kg) | 13.5 ± 4.3 | 11.6 ± 3.9 | 0.700 |
VE/VCO2 slope in CPET | 39.7 ± 11.6 | 37.1 ± 10.7 | 0.039 |
Lung function test | |||
%VC (%) | 91.7 ± 16.7 | 88.3 ± 17.8 | 0.646 |
FEV 1.0% (%) | 73.1 ± 8.9 | 76.5 ± 8.7 | 0.188 |
%DLCO/VA (%) | 60.4 ± 16.8 | 75.9 ± 15.7 | <0.001 |
Medications initiated since diagnosis | |||
anticoagulation | |||
Warfarin (n, %) | 40 (69%) | 33 (60%) | 0.319 |
DOAC (n, %) | 18 (31%) | 22 (40%) | 0.319 |
PAH-specific drugs | |||
ERA (n, %) | 9 (16%) | 1 (2%) | 0.017 |
PDE5-i (n, %) | 6 (10%) | 0 (0%) | 0.027 |
sGC stimulator (n, %) | 27 (47%) | 26 (47%) | 0.939 |
Poorly Perfused Group (n = 38) | Normally Perfused Group (n = 48) | ||||||
---|---|---|---|---|---|---|---|
Variable | Baseline | After BPA | p Value | Baseline | After BPA | p Value | p Value * |
Number of BPA session | 4.1 ± 2.2 | 4.4 ± 1.6 | 0.235 | ||||
NYHA FC (I/II/III/IV) (%) | 0/17/73/10 | 34/58/8/0 | <0.001 | 2/23/71/4 | 42/56/2/0 | <0.001 | 0.395 |
Hemodynamics after BPA | |||||||
Mean RAP (mmHg) | 4.4 ± 3.7 | 3.7 ± 3.5 | 0.033 | 5.2 ± 3.3 | 3.8 ± 2.4 | 0.030 | 0.712 |
Systolic PAP (mmHg) | 68.5 ± 16.9 | 34.5 ± 7.7 | <0.001 | 57.0 ± 19.3 | 32.3 ± 6.5 | <0.001 | 0.090 |
Diastolic PAP (mmHg) | 22.0 ± 7.3 | 11.3 ± 3.5 | <0.001 | 19.5 ± 7.3 | 11.1 ± 3.5 | <0.001 | 0.766 |
Mean PAP (mmHg) | 37.5 ± 10.5 | 19.6 ± 5.0 | <0.001 | 32.5 ± 11.1 | 19.2 ± 3.3 | <0.001 | 0.220 |
PAWP (mmHg) | 7.9 ± 3.5 | 7.5 ± 3.5 | 0.387 | 8.2 ± 4.1 | 8.1 ± 3.4 | 0.433 | 0.650 |
Cardiac index (L/min/m2) | 1.95 ± 0.85 | 2.48 ± 0.64 | 0.013 | 2.32 ± 0.74 | 2.29 ± 0.71 | 0.398 | 0.419 |
PVR (dynes-sec/cm5) | 611 ± 467 | 270 ± 118 | <0.001 | 422 ± 280 | 220 ± 88 | <0.001 | 0.133 |
SvO2 (%) | 61.0 ± 7.7 | 67.8 ± 4.4 | <0.001 | 65.1 ± 7.4 | 68.7 ± 5.3 | 0.013 | 0.800 |
Exercise capacity after BPA | |||||||
6MWD (m) | 300 ± 97 | 390 ± 102 | <0.001 | 352 ± 93 | 365 ± 69 | 0.185 | 0.627 |
Peak VO2 in CPET (ml/min/kg) | 11.1 ± 3.8 | 15.0 ± 4.5 | <0.001 | 13.4 ± 4.4 | 15.4 ± 3.6 | 0.005 | 0.888 |
VE/VCO2 slope in CPET | 39.4 ± 12.7 | 28.8 ± 5.9 | <0.001 | 35.3 ± 11.1 | 25.9 ± 4.5 | <0.001 | 0.040 |
Lung function test | |||||||
%VC (%) | 91.7 ± 16.7 | 100.8 ± 20.7 | 0.065 | 88.3 ± 17.8 | 94.2 ± 14.8 | 0.190 | 0.821 |
FEV 1.0% (%) | 73.1 ± 8.9 | 77.8 ± 8.5 | 0.164 | 76.5 ± 8.7 | 76.7 ± 9.2 | 0.702 | 0.629 |
%DLCO/VA (%) | 60.4 ± 16.8 | 55.5 ± 13.1 | 0.141 | 75.9 ± 15.7 | 70.0 ± 12.4 | 0.040 | 0.001 |
Medication | |||||||
sGC stimulator (n, %) | 19 (50%) | 18 (47%) | 23 (48%) | 21 (44%) | 0.738 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miwa, K.; Taniguchi, Y.; Fujii, H.; Matsuoka, Y.; Onishi, H.; Yanaka, K.; Izawa, Y.; Tsuboi, Y.; Kono, A.; Emoto, N.; et al. Microvasculopathy Evaluated by Dual-Energy Computed Tomography in Patients with Chronic Thromboembolic Pulmonary Hypertension and Pulmonary Arterial Hypertension. Life 2022, 12, 1232. https://doi.org/10.3390/life12081232
Miwa K, Taniguchi Y, Fujii H, Matsuoka Y, Onishi H, Yanaka K, Izawa Y, Tsuboi Y, Kono A, Emoto N, et al. Microvasculopathy Evaluated by Dual-Energy Computed Tomography in Patients with Chronic Thromboembolic Pulmonary Hypertension and Pulmonary Arterial Hypertension. Life. 2022; 12(8):1232. https://doi.org/10.3390/life12081232
Chicago/Turabian StyleMiwa, Keisuke, Yu Taniguchi, Hiroyuki Fujii, Yoichiro Matsuoka, Hiroyuki Onishi, Kenichi Yanaka, Yu Izawa, Yasunori Tsuboi, Atsushi Kono, Noriaki Emoto, and et al. 2022. "Microvasculopathy Evaluated by Dual-Energy Computed Tomography in Patients with Chronic Thromboembolic Pulmonary Hypertension and Pulmonary Arterial Hypertension" Life 12, no. 8: 1232. https://doi.org/10.3390/life12081232
APA StyleMiwa, K., Taniguchi, Y., Fujii, H., Matsuoka, Y., Onishi, H., Yanaka, K., Izawa, Y., Tsuboi, Y., Kono, A., Emoto, N., & Hirata, K. (2022). Microvasculopathy Evaluated by Dual-Energy Computed Tomography in Patients with Chronic Thromboembolic Pulmonary Hypertension and Pulmonary Arterial Hypertension. Life, 12(8), 1232. https://doi.org/10.3390/life12081232