Determining the Effects of Compost Substitution on Carbon Sequestration, Greenhouse Gas Emission, Soil Microbial Community Changes, and Crop Yield in a Wheat Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field and Design
2.2. Test Materials
2.2.1. Production of Compost
2.2.2. Experimental Wheat
2.3. Single Factor Experimental Design
2.4. Observation Indicators and Methods
2.4.1. Collection and Determination of Greenhouse Gases
2.4.2. Calculation of Comprehensive Warming Potential and Greenhouse Gas Emission Intensity
2.4.3. Determination of Yield
2.4.4. Soil sample Collection and Treatment
2.4.5. Extraction and Sequencing of Soil DNA
2.4.6. Statistical Analysis
3. Results
3.1. Effects of Different Compost Substitution Ratios on Soil N2O, CH4, and CO2 Emissions
3.2. GWP and GHGI under Different Compost Substitution Ratios
3.3. Effects of Different Compost Substitution Ratios on Wheat Yield and Yield Components
3.4. Effect of Microbial Community Composition under Different Compost Substitution Ratios
3.5. Redundancy Analysis of the Microbial Community Structure, Environmental Factors, and Soil Nutrient Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawluk, C.D.L.; Grant, C.A.; Razc, G.J. Ammonia volatilization from soils fertilizer with urea and varying rates of urease inhibitor NBPT. Can. J. Soil Sci. 2001, 81, 239–246. [Google Scholar] [CrossRef]
- Wakase, S.; Sasaki, H.; Itoh, K.; Otawa, K.; Kitazume, O.; Nonaka, J.; Satoh, M.; Sasaki, T.; Nakai, Y. Investigation of the microbial community in a microbiological additive used in a manure composting process. Bioresour. Technol. 2008, 99, 2687–2693. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Heydarpour, E. Sequestration of organic carbon influenced by the application of straw residue and farmyard manure in two different soils. Int. Agrophys. 2014, 28, 169–176. [Google Scholar] [CrossRef]
- Turmel, M.S.; Speratti, A.; Baudron, F. Crop residue management and soil health: A systems analysis. J. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Ngoran, k.; Zapata, F.; Sanginga, N. Availability of N from casuarina residues and inorganic N to maize using15N reisotope technique. Biol. Fert. Soils 1998, 8, 95–100. [Google Scholar] [CrossRef]
- Naher, U.A.; Biswas, J.C.; Maniruzzaman, M. Bioorganic fertilizer: A green technology to reduce synthetic N and P fertilizer for rice production. J. Front. Plant Sci. 2021, 12, 602052. [Google Scholar] [CrossRef]
- Farmaha, B.S. Evaluating Animo model for predicting nitrogen leaching in rice and wheat. J. Arid. Land. Res. Manag. 2014, 28, 25–35. [Google Scholar] [CrossRef]
- Lenaerts, S.; Van Der Borght, M.; Callens, A. Suitability of microwave drying for mealworms(Tenebriomolitor) as alternative tofreeze drying: Impact on nutritional quality and colour. J. Food Chem. 2018, 254, 129–136. [Google Scholar] [CrossRef]
- Azam, F.; Benckiser, G.; Müller, C. Release, movement and recovery of 3, 4-dimethylpyrazole phosphate (DMPP) ammonium and nitrate from stabilized nitrogen fertilizer granules in a silty clay soil under laboratory conditions. J. Biol. Fertil. Soils 2001, 34, 118–125. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Wienhold, B.J.; Black, A.L. Tillage and nitrogen fertilization influence grain and soil nitrogen in an annual cropping system. Agron. J. 2001, 93, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, J.; Li, X.; Zheng, Y.; Feng, S.; Jiang, G. Mitigating greenhouse gas emissions through replacement of chemical fertilizer with organic manure in a temperate farmland. Sci. Bull. 2015, 60, 598–606. [Google Scholar] [CrossRef]
- Cong, T.; Frank, J.L.; Nancy, G.C. Responses of soil microbial biomass and N availability to transitionstrategies from conventional to organic farming systems. J. Agric. Ecosyst. Environ. 2005, 113, 206–215. [Google Scholar] [CrossRef]
- Bastida, F.; Kandeler, E.; Hernandez, T. Longtern effect of municipal solid waste amendment on microbial abundance and humus associated enzymed activities under semiarid conditions. J. Microb. Ecol. 2008, 55, 651–661. [Google Scholar] [CrossRef]
- Chaoui, H.I.; Zibilske, L.M.; Ohno, T. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol. Biochem. 2003, 35, 295–302. [Google Scholar] [CrossRef]
- Chotte, J.L.; Ladd, J.L. Measurement of biomass C N and 14C of soil at different water contents using a fumigation extraction assay. Soil Biol. Biochem. 1998, 30, 1221–1224. [Google Scholar] [CrossRef]
- Mahmood, T.; Ali, R.; Malik, K.A.; Shamsi, S.R.A. Nitrous oxide emissions from an irrigated sandyclay loam cropped to maize and wheat. J. Biol. Fertil. Soils 1998, 27, 189–196. [Google Scholar] [CrossRef]
- Wang, C.; Luo, X.; Zhang, H. Differences between the shares of greenhouse gas emissions calculated with GTP and GWP for major countries. Clim. Change Res. 2013, 9, 49–54. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, T.; Li, Y.; Xiong, W.; Ran, W.; Shen, B.; Shen, Q.; Zhang, R. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS ONE 2014, 9, e85301. [Google Scholar] [CrossRef]
- Miron, J.; Yosef, E.; Nikbachat, M.; Zenou, A.; Zuckerman, E.; Solomon, R.; Nadler, A. Fresh dairy manure as a substitute for chemical fertilization in growing wheat forage; effects on soil properties, forage yield and composition, weed contamination, and hay intake and digestibility by sheep. Anim. Feed Sci. Technol. 2011, 168, 179–187. [Google Scholar] [CrossRef]
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Asada, K.; Toyota, K.; Nishimura, T.; Ikeda, J.I.; Hori, K. Accumulation and mobility of zinc in soil amended with different levels of pig-manure compost. J. Environ. Sci. Health Part B 2010, 45, 285–292. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. J. Nucl. Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Eghball, B.; Ginting, D.; Gilley, J.E. Residual effects of manure and compost applications on corn production and soil properties. Agron. J. 2004, 96, 442–447. [Google Scholar] [CrossRef]
- Erhart, E.; Hartl, W.; Putz, B. Biowaste compost affects yield, nitrogen supply during the vegetation period and crop quality of agricultural crops. Eur. J. Agron. 2005, 23, 305–314. [Google Scholar] [CrossRef]
- Pérez-Piqueres, A.; Edel-Hermann, V.; Alabouvette, C.; Steinberg, C. Response of soil microbial communities to compost amendments. Soil Biol. Biochem. 2006, 38, 460–470. [Google Scholar] [CrossRef]
- Patrick, D.S.; Anthony, G.H.; David, B.W.; Larry, P.W. Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiol. Ecol. 2003, 46, 1–9. [Google Scholar] [CrossRef]
- Bronson, K.F.; Neue, H.U.; Singh, U. Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil. I. Residue, nitrogen, and water management. J. Soil Sci. Soc. Am. 1997, 61, 981–987. [Google Scholar] [CrossRef]
- Bichel, A.; Oelbermann, M.; Echarte, L. Impact of residue addition on soil nitrogen dynamics in intercrop and sole crop agroecosystems. J. Geoderma 2017, 304, 12–18. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. J. Sci. 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Ewel, K.C.; Cropper, W.P.; Gholz, H.L. Soil CO2 evolution in Florida slash pine plantations Ⅰ. Changes through time. J. Can. J. For. Res. 1987, 17, 325–329. [Google Scholar] [CrossRef]
- Ugalde, D.; Brungs, A.; Kaebernick, M.; McGregor, A.; Slattery, B. Implications of climate change for tillage practice in Australia. Soil Till. Res. 2007, 97, 318–330. [Google Scholar] [CrossRef]
- Sodhi, G.P.S.; Beri, V.; Benbi, D.K. Soil aggregation and distribution of carbon and nitrogen in different fractions under long-term application of compost in rice wheat system. J. Soil Tillage Res. 2009, 103, 412–418. [Google Scholar] [CrossRef]
- Skiba, U.; Smith, K.A. Nitrification and denitrification as sources of nitric and nitrous oxide in a sandy loam soil. Soil Biol. Biochem. 1993, 25, 1527–1536. [Google Scholar] [CrossRef]
- Sey, B.; Whalen, J.; Gregorich, E.; Rochette, P.; Cue, R. Carbon dioxide and nitrous oxide content in soils under corn and soybean. Soil Sci. Soc. Am. J. 2008, 72, 931–938. [Google Scholar] [CrossRef]
- Owen, L.B.; Edwards, W.M.; van Keuren, R.W. Groundwaer nitrate levels under fertilized grass and grass-legume pastures. J. Environ. Qual. 1994, 23, 752–758. [Google Scholar] [CrossRef]
- Frolking, S.; Qiu, J.J.; Boles, S. Combing remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. J. Glob. Biogeochem. Cycle 2002, 16, 1091. [Google Scholar] [CrossRef]
- Mutegi, J.K.; Munkholm, L.J.; Petersen, B.M. Nitrous oxide emissions and controls as influenced by tillage and crop residue management strategy. J. Soil Biol. Biochem. 2010, 42, 1701–1711. [Google Scholar] [CrossRef]
- Fan, F.; Yin, C.; Tang, Y.; Li, Z.; Song, A.; Wakelin, S.A.; Zou, J.; Liang, Y. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biol. Biochem. 2014, 70, 12–21. [Google Scholar] [CrossRef]
- Beatty, P.H.; Good, A.G. Plant science. Future prospects for cereals that fix nitrogen. Science 2011, 333, 416–417. [Google Scholar]
- Das, S.; Adhya, T.K. Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice. Geoderma 2014, 213, 185–192. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Wang, R.; Xie, B.; Butterbach-Bahl, K.; Zhu, J. Nitrous oxide and methane fluxes from a rice–wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmos. Environ. 2013, 79, 641–649. [Google Scholar] [CrossRef]
- Tseng, C.H.; Tang, S.L. Marine microbial metagenomics: From individual to the environment. Int. J. Mol. Sci. 2014, 15, 8878–8892. [Google Scholar] [CrossRef] [PubMed]
- Okuda, H.; Noda, K.; Sawamoto, T. Emission of N2O and CO2 and uptake of CH4 in soil from a Satsuma mandarin orchard under mulching cultivation in central Japan. J. Jpn. Soc. Hortic. Sci. 2007, 76, 279–287. [Google Scholar] [CrossRef]
- Brix, H.; Sorrell, B.K.; Lorenzen, B. Are phragmites-dominated wet-lands a net source or net sink of greenhouse gases. J. Aquat. Bot. 2001, 69, 313–324. [Google Scholar] [CrossRef]
Treatment | N2O Cumulative Emission (kg N∙hm−2) | CH4 Cumulative Emission (kgC∙hm−2) | CO2 Cumulative Emission (kg C∙hm−2) | GWP (kgCO2-eq·hm−2) | GHGI (g CO2-eq·kg−1) |
---|---|---|---|---|---|
T0 | 0.32 ± 0.01 b | −28.21 ± 0.71 d | 55,731.98 ± 1393.30 a | 55,121.75 a | 6.93 a |
T1 | 0.74 ± 0.02 a | 3.74 ± 0.09 b | 48,128.64 ± 1203.22 b | 48,442.61 b | 6.56 a |
T2 | −1.26 ± 0.03 c | −0.22 ± 0.01 c | 22,451.49 ± 561.29 d | 22,070.57 d | 2.63 c |
T3 | −1.07 ± 0.03 c | 9.39 ± 0.23 a | 38,729.71 ± 968.24 c | 38,645.56 c | 4.01 b |
Treatments | Spike Number (Ear/each) | Kernels Per Spike (Per Spike) | 1000-Grainweight (g) | Yield (kg/hm2) |
---|---|---|---|---|
T0 | 620.00 ± 2.65 a | 32.38 ± 1.00 c | 39.61 ± 4.03 b | 7950.35 ± 33.93 b |
T1 | 566.00 ± 4.93 b | 35.90 ± 0.29 b | 36.32 ± 1.61 b | 7380.70 ± 64.32 c |
T2 | 624.67 ± 16.34 a | 38.92 ± 0.67 a | 34.41 ± 2.55 b | 8363.91 ± 218.83 b |
T3 | 630.67 ± 11.84 a | 31.18 ± 0.74 c | 49.07 ± 0.59 a | 9647.01 ± 181.06 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, H.; Huang, X.; Xu, D.; Shao, Q.; Li, Q.; Wang, H.; Ren, L. Determining the Effects of Compost Substitution on Carbon Sequestration, Greenhouse Gas Emission, Soil Microbial Community Changes, and Crop Yield in a Wheat Field. Life 2022, 12, 1382. https://doi.org/10.3390/life12091382
Min H, Huang X, Xu D, Shao Q, Li Q, Wang H, Ren L. Determining the Effects of Compost Substitution on Carbon Sequestration, Greenhouse Gas Emission, Soil Microbial Community Changes, and Crop Yield in a Wheat Field. Life. 2022; 12(9):1382. https://doi.org/10.3390/life12091382
Chicago/Turabian StyleMin, Hongzhi, Xingchen Huang, Daoqing Xu, Qingqin Shao, Qing Li, Hong Wang, and Lantian Ren. 2022. "Determining the Effects of Compost Substitution on Carbon Sequestration, Greenhouse Gas Emission, Soil Microbial Community Changes, and Crop Yield in a Wheat Field" Life 12, no. 9: 1382. https://doi.org/10.3390/life12091382
APA StyleMin, H., Huang, X., Xu, D., Shao, Q., Li, Q., Wang, H., & Ren, L. (2022). Determining the Effects of Compost Substitution on Carbon Sequestration, Greenhouse Gas Emission, Soil Microbial Community Changes, and Crop Yield in a Wheat Field. Life, 12(9), 1382. https://doi.org/10.3390/life12091382